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Abstract

Insulin resistance (IR) and cardiovascular disease (CVD) represent two universal public health

hazards, especially in today’s Western societies. A causal-effect relationship has been established

that links IR with CVD. The mediating mechanisms are perplexing, under ongoing, rigorous

investigation and remain to be fully elucidated. IR is a condition encompassing hyperglycemia

and compensatory hyperinsulinemia. It occurs when insulin is not capable of exerting its maxi-

mum effects on target tissues, including skeletal muscles, liver and adipose tissue. This alteration

of insulin signaling pathways results in the development of cardiometabolic disorders, including

obesity, dyslipidemia, low-grade inflammation, endothelial dysfunction and hypertension, all of

which are predisposing factors for atherosclerosis and CVD. The management of IR can be

achieved through dietary modifications, the inclusion of regular exercise routines in everyday

life, pharmacological agents and other interventions tailored to each individual patient’s needs. It

is important to underline though that, although various antidiabetic drugs that may improve IR

are available, no medications are as yet specifically approved for the treatment of IR. This nar-

rative review will focus on the current scientific and clinical evidence pertaining to IR, the

mechanisms connecting IR with CVD, as well as plausible strategies for a holistic, personalized

approach for IR management.

1Division of Cardiology, Department of Medicine,

Montefiore Medical Center, Bronx, NY, USA
2School of Medicine, University of Crete, Heraklion,

Greece
3Laboratory of Clinical Chemistry, Medical Department,

School of Health Sciences, Faculty of Medicine, University

of Ioannina, Ioannina, Greece

4General Directorate of Public Health and Social Welfare,

Attica Region, Athens, Greece
5Athens Bioclinic, Athens, Greece

Corresponding author:

Constantine E. Kosmas, Cardiology Unlimited, P.C,

629 West 185th Street, New York, NY 10033, USA.

Email: cekosmas1@gmail.com

Journal of International Medical Research

2023, Vol. 51(3) 1–49

! The Author(s) 2023

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/03000605231164548

journals.sagepub.com/home/imr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative

Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits

non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed

as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0003-3926-0304
https://orcid.org/0000-0001-7045-1323
mailto:cekosmas1@gmail.com
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/03000605231164548
journals.sagepub.com/home/imr


Keywords

Insulin, insulin resistance, inflammation, dyslipidemia, oxidative stress, endothelial dysfunction,

hypertension, cardiovascular disease

Date received: 9 December 2022; accepted: 2 March 2023

Introduction

Insulin is a hormone involved in the metab-
olism of carbohydrates, lipids and proteins
and is involved in cell growth and differen-
tiation.1,2 Insulin resistance (IR) constitutes
a significant health hazard in a global
aspect. IR, which is closely related to met-
abolic syndrome (MetS), has been associat-
ed with the so-called Western lifestyle,
characterized by high-calorie food con-
sumption, limited physical activity and
excessive stress.3 IR is a clinical condition
in which tissues sensitive to insulin, namely
skeletal and cardiac muscle, adipose tissue
and the liver, demonstrate a diminished
ability of glucose uptake due to a reduced
biological effect of insulin in comparison
with healthy individuals.4,5 The excess glu-
cose in the bloodstream leads to hypergly-
cemia and indirectly to hyperinsulinemia
with subsequent disruption of glucose
metabolism.4–7 IR has been extensively
linked with chronic low-grade inflammation
and production of proinflammatory cyto-
kines, such as tumor necrosis factor a
(TNF-a), interleukin (IL)-6, IL-8, plasmino-
gen activator inhibitor-1 (PAI-1) and mono-
cyte chemoattractant protein-1 (MCP-1);
their increased production is accompanied by
elevated levels of C-reactive protein (CRP), a
widely used inflammatory biomarker.8–11 IR
can be assessed with various indices, such as
fasting insulin levels, homeostasis model
assessment-insulin resistance (HOMA-IR),
serum-triglyceride-to-serum-high-density-lipop
rotein-cholesterol-ratio, as well as by the most
recently proposed, clinically valuable IR indi-
ces, triglyceride-glucose-neck circumference
and triglyceride-glucose-neck circumference

to height ratio.11,12 The gold standard for IR
measurement is the glucose clamp technique.
IR alone has been established as a separate
risk factor for cardiovascular events, even in
patients without diabetes mellitus.13–15

Cardiovascular disease (CVD) was
responsible for 17.9 million lives lost in
2019; by 2030, this number is expected to
increase to >22.2 million,16 making CVD
the leading cause of death globally. The
vast majority of cardiovascular events are
attributed to atherosclerosis, in which lipid
plaques form in the vessel walls.17 CVD has
been extensively associated with chronic
low-grade inflammation and involvement
of both innate and adaptive immunity
with macrophages being the protagonists
of this process;17,18 thus, it becomes clear
that the pathogenesis of CVD has an immu-
noinflammatory background. During the
initial phase of atherosclerosis, endothelial
injury triggers the production of proinflam-
matory cytokines like MCP-1, ILs, TNF-a
and adhesion molecules, thus laying the
foundation for increased production of
CRP.19 As mentioned earlier, these same
events occur in the setting of IR. Impaired
insulin cellular signaling in IR alters glucose
metabolism and endothelial dysfunction
and may contribute to the acceleration of
atherosclerosis.19,20 Moreover, numerous
studies link IR with other health conditions,
including obesity, non-alcoholic fatty liver
disease (NAFLD), hypertension, polycystic
ovary syndrome (PCOS) and heart failure
(HF).21,22 IR and HF form a vicious cycle;
IR is an independent risk factor for HF
development, while HF may exacerbate
whole body IR.22
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This narrative review article shall

attempt to present and discuss the current

clinical and scientific data illustrating the

pathophysiological connection between IR

and CVD. In addition, potential therapeu-

tic strategies for the treatment of IR will

also be discussed.

Insulin: physiology, signaling and

metabolism

In 1921, Frederick Banting and Charles

Best made a groundbreaking discovery: a

specific substance secreted from the pancre-

as, later named insulin, lowered blood glu-

cose levels in canines. The first purification

of insulin by James Collip and its use for

the treatment of the first human patient

with diabetes mellitus took place in

1922.23 The discovery of insulin paved the

way for the subsequent effective treatment

of type 1 diabetes (T1D), an incurable cause

of death at that time, and endless scientific

research. Since 1960, studies and experi-

ments have demonstrated that biologically

active human insulin is a 51 amino-acid pro-

tein composed of two peptide chains, A and

B. There are 21 amino acids in chain A and

30 amino acids in chain B. The two chains

are interlinked with two disulphide bonds,

located in A7-B7 and A20-B19. An addition-

al disulfide bond links amino acids 7 and 11

in chain A. In the presence of zinc, insulin

forms hexamers.24,25

Insulin is derived from proinsulin, an

inactive protein produced by beta cells in

the islets of Langerhans. Its biological

activity is precipitated by the cleavage of

C-peptide in proinsulin, an event that fur-

ther allows insulin to connect to the appro-

priate receptor.26 Once active, it is stored in

granules inside the cells and then released

via glucose signaling-induced exocytosis;

glucose enters the cell and the pathway of

glycolysis produces adenosine triphosphate

(ATP) and leads to the closure of

ATP-dependent potassium (Kþ) channels.
Membrane depolarization is followed by
the opening of voltage-gated calcium
(Ca2þ) channels, an increase in intracellular
Ca2þ concentration and, finally, the exocy-
tosis of insulin-containing granules and the
release of insulin in the bloodstream.27,28

Insulin is then released into the portal vein
system and enters the hepatocytes. A trans-
membrane glycoprotein, carcinoembryonic
antigen-related cell adhesion molecule 1, is
responsible for the clearance of 80% of the
secreted insulin; its degradation seems to be
reduced in IR, resulting in hyperinsulinemia
and suggesting a possible correlation or
even causation through desensitization. The
remaining insulin molecules are transferred
to insulin-sensitive tissues and exert their
action via binding to insulin receptors.29

Insulin is an anabolic hormone with both
metabolic and mitogenic effects. It exerts its
function during postprandial hyperglyce-
mia, mediates glucose uptake and storage
in muscle cells and adipocytes, promotes
glycogen synthesis, inhibits lipolysis and
decreases gluconeogenesis in hepato-
cytes.1,6,30 Its function is exerted through
binding to insulin receptors. The insulin
receptor belongs to the subfamily of tyro-
sine kinase receptors, similar to the insulin
growth factor 1 (IGF-1) receptor, a tetra-
meric glycosylated protein with two a and
two b subunits integrated with the cell
membrane.21,24 The receptor is activated
when insulin binds to the a subunits, lead-
ing to autophosphorylation of tyrosine res-
idues in b subunit domains and subsequent
activation of various intracellular kinase
cascades, including phosphorylation of
phosphatidylinositol 3-kinase (PI3K), Akt-1
and Akt-2, and mammalian target of rapa-
mycin.21,24 This leads to increased transport
of glucose transporter 4 (GLUT4) to the sur-
face of the membrane and glucose uptake
by skeletal muscle cells and adipocytes.24

A reference regarding its action on vascular
walls ought to be made; insulin can either
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protect or adversely affect the vessels via dif-
ferent kinase cascades.6 Its protective action
is related to the activation of the PI3K cas-
cade and the production of endothelial nitric
oxide synthase (eNOS) and nitric oxide
(NO), whereas its detrimental impact per-
tains to the activation of mitogen-activated
protein kinase (MAPK) and vascular
smooth muscle cell proliferation, inflamma-
tion and atherosclerosis.6

When insulin signaling malfunctions, as
in the case of IR, glucose is not being
appropriately used and cellular metabolism
shifts to alternative pathways to obtain
energy and preserve homeostasis. These
alterations may actually represent some of
the mechanisms responsible for the devel-
opment of CVD.

Insulin resistance

Insulin resistance refers to the diminished
response of insulin-sensitive tissues to insu-
lin signaling.4,5,7 Insulin cannot exert its full
biological activity, which is the facilitation
of glucose entrance in cells to be utilized as
the primary energy substrate. The excess
glucose remains in the blood circulation, a
condition named hyperglycemia, and tissues
shift their metabolic pathways in response to
inadequate energy uptake, underpinning dis-
orders such as impaired adipose tissue
function and obesity, inflammation, dyslipi-
demia, production of reactive oxidative spe-
cies (ROS), atherosclerosis, endothelial
dysfunction and hypertension, all of which
are associated with the promotion of
CVD.31,32

Obesity and impaired adipose tissue
function

White adipose tissue (WAT) was once
known to serve the sole purpose of storing
energy in the form of lipids.33 However,
over time, this perception has changed rad-
ically: adipose tissue is an endocrine tissue

as well.34 WAT is either subcutaneous
(SCAT) or visceral (VAT), which vary in
distribution, morphology and function.35

Obesity is defined as a body mass index
(BMI) �30 kg/m2.36 In obese individuals,
excess fat is stored in the adipocytes of
WAT, increasing their size and thus the
overall tissue mass. The size of adipocytes
is indicative of their function, as large adi-
pocytes tend to be insulin-resistant, hyper-
lipolytic and resistant to the anti-lipolytic
effect of insulin.37,38 Many comorbidities
accompany obesity.39 In particular, IR and
impairments in glucose metabolism are asso-
ciated with increased lipid storage in VAT,
although increased SCAT percentage also
accounts for IR development. Nonetheless,
obesity contributes to low-grade inflamma-
tion, activating the immune cells residing in
the adipose tissue.40–43

Insulin promotes fatty acid and triacylgly-
cerol synthesis, decreases the rate of lipoly-
sis, increases the uptake of triglycerides from
the blood circulation and decreases the rate
of fatty acid oxidation in muscle and liver.44

As previously mentioned, obesity leads to
IR and hyperlipolysis in adipocytes. IR
activates hormone-sensitive lipase (HSL),45

leading to an increase of free fatty acids
(FFA) plasma levels along with high dietary
fat accumulation, namely lipotoxicity.
Lipotoxicity is considered a risk factor for
IR; high levels of FFA and, in particular,
two specific metabolites, ceramide and diac-
ylglycerol (DAG), intervene in proper insu-
lin signaling by generating a negative
feedback loop and suppression of insulin
receptor substrate-1 (IRS-1).44 The contribu-
tion of elevated FFA plasma levels to IR is
also clearly demonstrated in late-term preg-
nant women, who commonly develop IR in
the presence of increased FFA levels.46

Clearly, IR and lipotoxicity create a vicious
cycle and a proatherogenic profile.20,47,48

Mitochondrial dysfunction in obese WAT
is also producing lipid metabolites, ultimate-
ly contributing to IR.49
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Inflammation

Insulin resistance and an excess lipid pool
also trigger inflammatory signaling path-
ways like c-Jun N-terminal kinase (JNK),
IjBa kinase b and nuclear factor KB
(NF-kB), resulting in the production
of proinflammatory cytokines, such as
TNF-a, IL-6, IL-1b, PAI-1, MCP-1, leptin
and resistin, and a reduction of adiponectin
levels.7,20,47,50 Proinflammatory cytokines
shift adipose tissue macrophage polariza-
tion,51 especially in immune cell-rich VAT.
Proinflammatory M1 macrophages are abun-
dant in obese mice, while anti-inflammatory
M2 are more prominent in lean subjects,52,53

the former further inducing the production of
cytokines and thus maintaining the inflam-
matory state.

Tumor necrosis factor-a affects the
expression of other inflammatory cytokines
from adipocytes, such as IL-6, MCP-1 and
PAI-1, inhibits peroxisome proliferator-
activated receptor-c2, GLUT454 and IRS-1,
leading to IR, and increases FFA in the cir-
culation through stimulation of lipolysis and
inhibition of triglyceride (TG) synthesis.55

Interleukin-6 is a pleiotropic cytokine
with its levels being elevated in obese indi-
viduals. IL-6 increases lipolysis and sup-
presses the expression of the IRS1 and
GLUT4 genes. Hence, it is linked to IR,
reduced glucose uptake in adipose tissue
and impaired glycogen synthesis in the
liver, while, on the other hand it sensitizes
muscle cells for the effects of insulin.56,57

Interleukin-1b is secreted by macrophages
as the final product of the NLR family pyrin
domain-containing 3 (NLRP3) inflamma-
some activation. This cytokine has been
related to type 2 diabetes (T2D) and athero-
sclerosis. Its deleterious effects on pancreatic
b-cells in the islets of Langerhans are nota-
ble, along with its action upon endothelial
cells, macrophages and smooth muscle
cells. The NLRP3 inflammasome possesses
a pivotal role in obesity-related insulin

resistance. IL-1b is also a mediator for the
production of other proinflammatory cyto-
kines.58–60

Plasminogen activator inhibitor-1 is a
serine protease inhibitor with pleiotropic
functions. It is primarily involved in throm-
bosis, also mediating a connection between
obesity, CVD and IR. The literature per-
taining to studies regarding the latter is
extensive. The gene that encodes for
PAI-1 is upregulated in atherosclerotic pla-
ques.61 TNF-a, IL-1b, very-low density
lipoprotein (VLDL-C) and lipoprotein (a)
constitute specific mediators, and PAI-1
itself is an acute phase protein, elevated in
inflammatory states.61 A large cohort study
revealed that healthy non-diabetic subjects
who developed T2D in a 5-year interval
presented significantly elevated PAI-1,
fibrinogen and CRP levels compared with
those who did not develop T2D.62 Elevated
plasma PAI-1 levels and hypofibrinolysis
are interconnected via IR and obesity.63

All of the aspects of the MetS, namely insu-
lin, glucocorticoids, VLDL, FFA, glucose
and angiotensin II, are associated with
increased PAI-1 production. VAT secretes
PAI-1, thus explaining its connection with
obesity-related insulin resistance.64,65 The
PAI-1 genotype seems to affect the vascular
risk linked to hyperinsulinemia.66 A previ-
ous study also described a causality relation-
ship between elevated PAI-1 plasma levels
and coronary artery disease (CAD).67

Finally, a cross-sectional analysis based on
the Framingham Offspring Study showed
that elevated fasting insulin levels in impaired
glucose tolerance conditions were associated
with elevated PAI-1 plasma levels and, sub-
sequently, impaired fibrinolysis.68

Monocyte chemoattractant protein, or
chemokine (CC motif) ligand 2 (CCL2), is
a chemokine secreted by skeletal muscle
cells, smooth muscle cells, adipocytes and
endothelial cells. When bound in its recep-
tor, C-C chemokine receptor type 2, it pro-
motes the recruitment of monocytes and
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T-lymphocytes in tissues. MCP-1 plays a
prominent role in the pathogenesis of ath-
erosclerosis69 and its high plasma levels
have been correlated with plaque vulnera-
bility. Injured endothelium secretes MCP-1
for its renewal, which amongst other effects,
facilitates the migration of monocytes to
the site of the lesion; these cells later
become foam cells.70 Circulating MCP-1
levels are elevated in subjects with increased
adipose tissue mass and T2D, but weight
loss, exercise and thiazolidinediones (TZD)
lower these levels.69 CCL2 seems to exert
a direct effect on adipocytes, decreasing
insulin-regulated glucose uptake and altering
the expression of certain adipogenic genes.71

Leptin is a peptide produced and secret-
ed from WAT and mediates appetite and
feeding behavior. Its plasma levels are ele-
vated in obese individuals and patients with
CVD. Leptin reduces insulin synthesis, lead-
ing to a condition known as leptin resistance,
hyperleptinemia and hyperphagia. Leptin
increases proinflammatory cytokines’ pro-
duction from immune cells and stimulates
inflammatory pathways, such as MAPK
and PI3. These facts confirm a clear correla-
tion between leptin, IR and CVD.72,73

Resistin is another peptide secreted by
macrophages, monocytes and bone marrow
cells in humans. There is evidence that resis-
tin contributes to IR and inflammation,
although the association between resistin
levels and IR remains controversial.72

Adiponectin is the only anti-inflammatory
adipokine produced by adipose tissue during
inflammation. Overall, it increases insulin
sensitivity. Its levels tend to be lower in
obese individuals. Inflammation is possibly
the main factor suppressing adiponectin
levels in IR. The anti-inflammatory effects
of adiponectin extend to the cardiovascular
system, as adiponectin seems to protect the
endothelium and the smooth muscle cells.
In a study, male patients with hypoadiponec-
tinemia had a two-fold increased risk of
developing CAD.74 Adiponectin also seems

to modify the macrophage phenotype via a
plethora of mechanisms.72–75

In addition to the aforementioned medi-
ators, other less familiar yet significant hor-
mones appear to influence IR, some of
them acting as potential novel markers of
metabolic disturbances.76 Irisin is a recently
discovered myokine, highly expressed in
skeletal muscles after exercise. Irisin enters
the circulatory system and is able to convert
WAT into brown adipose tissue. Other
target tissues include skeletal muscles, the
pancreas, the liver, the kidneys and the
brain, especially the hypothalamus, although
most of the mechanisms involved remain
unknown. The net effect of irisin in tissues
results in normoglycemia and normal lipid
levels.77 Irisin alleviated IR related to FFA
and lipotoxicity, ameliorated PI3K/Akt
insulin signaling and impeded the Toll-like
receptor 4/NF-jB inflammatory pathways
in murine models.78 Another in vitro study
concluded that PI3K/Akt activation by irisin
inhibits autophagy in rat H9c2 cells, thus
improving IR.79 Circulating levels of irisin
are elevated in obese patients, diminished
in patients with diabetes, and are positively
correlated with enhanced insulin sensitivi-
ty.77,79 Moreover, irisin plays a significant
role in atherosclerosis.80 It interferes with a
plethora of intracellular pathways, potenti-
ating direct or indirect vascular repair and
alleviating vascular inflammation and cru-
cial related disorders, discussed in the
upcoming paragraphs, including dyslipide-
mia and oxidative stress.80

Apelin is another relatively recently dis-
covered peptide hormone, initially extracted
from bovine stomachs. Apelin is an endoge-
nous ligand for the apelin receptor (APJ),
a G-coupled protein receptor distributed
abundantly in the human body. Apelin is
mainly secreted by endothelial cells and adi-
pose tissue and the apelin/APJ system exerts
multiple systemic functions. Apelin improves
insulin resistance and insulin secretion and
diminishes serum glucose, glycosylated
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hemoglobin (HbA1c) and low-density lipo-
protein cholesterol (LDL-C) levels. Apelin
and pro-inflammatory factors also partici-
pate in an endless regulatory cycle, with
apelin downregulating the activity of macro-
phages and decreasing MCP-1 and other
chemotactic proteins and TNF-a, overall
improving inflammatory states, although,
under certain circumstances, it may potenti-
ate inflammation.81 Serum apelin levels are
found to be elevated in IR states and its
direct administration is related to improve-
ments in insulin sensitivity, while its secre-
tion is largely regulated by insulin.
Molecular mechanisms involve augmenta-
tion of glucose uptake via adenosine
monophosphate-activated protein kinase
(AMPK) and eNOS and inhibition of lipol-
ysis via phosphorylation of HSL, leading to
a decrease of FFA levels and, finally,
reduced IR.82 Further basic and clinical evi-
dence suggest that apelin is an insulin sensi-
tizer and its elevated levels are linked with
T2D rather than obesity.83 Concerning ath-
erosclerosis, a case–control study on 60
Egyptian patients demonstrated a powerful
correlation between serum apelin and the
degree of carotid intima-media thickness,
suggesting a plausible future application for
apelin as a clinically useful prognostic
biomarker.84

Visfatin is an insulin-mimetic adipocyto-
kine and its function depends on nicotin-
amide adenine dinucleotide biosynthesis.
Mainly, but not exclusively, produced by
visceral fat, visfatin aids in maintaining
insulin sensitivity and exerts its actions via
phosphorylation of insulin receptors and
activation of the PI3K and MAPK signal-
ing pathways. Its levels appear to be elevat-
ed in obesity, compensating for abnormal
serum glucose levels. Nonetheless, visfatin
levels exceeding a certain value may act det-
rimentally and precipitate development of IR,
endothelial dysfunction and inflammation, as
it is widely expressed in foam cells.85 Thus,
visfatin presents dose-dependent beneficial or

proinflammatory properties.85 An in vitro
study concluded that visfatin favors
proinflammatory cytokine production and
inhibits insulin signaling via the signal
transducer and activator of transcription 3
(STAT3) and NF-kB pathways,86 while a
meta-analysis of 14 articles demonstrated
a positive correlation between serum circu-
lating visfatin levels and IR, thus rendering
it a valuable predictor of metabolic distur-
bances, amongst which IR, MetS and
CVD.87

Fetuin-A is a hepatokine, which has been
demonstrated to affect MetS and athero-
sclerosis and may act as either a positive
or a negative acute phase protein. In
patients with MetS, where the SCAT percent-
age is increased, an overproduction of fetuin-
A occurs. This protein possibly contributes
to adipose tissue inflammation acting as a
chemoattractant and macrophage-polarizing
agent. Concerning CVD, from a clinical per-
spective, decreased fetuin-A levels are associ-
ated with subclinical as well as with clinical
CAD. On the other hand, fetuin-A levels
have been shown to be significantly lower in
the setting of ischemic cardiomyopathy, as
compared with that of dilated cardiomyopa-
thy, potentially providing fetuin-A with a dis-
criminative power between these different
types of HF.88 Results of different studies
regarding fetuin-A confirm its contribution
to the pathogenesis of IR; it seemingly
impedes the maturation of b cells in the pan-
creatic islets,89 enhances apoptosis and dam-
ages pancreatic b cells when oversecreted,90

and is overexpressed at the initiation of a
high-fat diet, concurrent with IR, in murine
models.91 Additionally, fetuin-A along with a
Western lifestyle are held accountable for the
development of IR, vascular inflammation
and atherosclerosis,92 as well as for the devel-
opment of T2D in people of Pakistani
origin.93 In addition, a previous study sug-
gested that a pro-inflammatory diet might
aide IR and T2D development via fetuin-
A.94 Moreover, a thorough meta-analysis
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comprising more than 110 00 participants
concluded that increased circulating levels of
fetuin-A were linked to an elevated risk of
T2D.95 Serum fetuin-A levels have been pro-
posed to be used as a potential biomarker
regarding IR and PCOS.96 Elevated serum
levels of fetuin-B, a second member of the
fetuin family in mammals, are also linked to
impaired glucose metabolism, inducing IR
and chronic inflammation, with hepatic stea-
tosis apparently being the common denomi-
nator.97–100 Its expression is modified via
upregulation of the leptin-STAT3 signaling
cascade.101 Along with fetuin-A, it can also
be a potentially useful biomarker in PCOS.102

Interestingly, other studies suggest that
fetuin-A and fetuin-B may alter glucose
metabolism in a different manner,103 or may
present inconsistent findings regarding their
metabolic effects.104 There is also some evi-
dence suggesting a non-causal relationship
between fetuin-B and IR.105

Adropin is a peptide with pleiotropic func-
tions. Interest has been focused on glucose
metabolism, as literature reports evidence of
a reduction of hepatic gluconeogenesis, acti-
vation of the GLUT4 receptor, stimulation of
insulin sensitizing cascades, such as Akt,
improvement of lipid profile and most impor-
tantly, inhibition of inflammation. TNF-a
and IL-6 are reduced and the endothelium
is protected via effects exerted on eNOS.106

With regard to liver glucose synthesis,
researchers demonstrated that adropin sensi-
tizes the AMPK pathway by acting on pro-
tein phosphatase 2 (PP2A).107 A few studies
also demonstrated the association between
elevated plasma adropin levels and glucose
and lipid homeostasis and insulin sensitivity,
whereas its absence predisposes to obesity
and IR.108–110

Sodium-glucose cotransporter 2 inhibitors
(SGLT2-i), which will be discussed later, are
instrumental in regulating atherosclerosis-
related inflammation. Their mechanism of
action includes attenuation of M1 macro-
phages and foam cell formation,

enhancement of anti-inflammatory M2
macrophages and peroxisome proliferator-
activated receptor-gamma (PPAR-c) signal-
ing, reduced oxidation of LDL-C and
reduced production of pro-inflammatory
cytokines, tipping the balance in favor of
an anti-inflammatory state and regression
of atherosclerotic plaque formation.111

Dyslipidemia

Type 2 diabetes mellitus and IR are associ-
ated with dyslipidemia; the combination of
these entities may further increase the risk
for CVD. For example, the Framingham
Heart Study (FHS) and later associated
studies have demonstrated a correlation
between abnormal circulating cholesterol
levels and CVD for more than half a centu-
ry;112,113 setting the foundation for determin-
ing certain risk profiles and scores, including
the well-known Framingham Risk Score for
coronary heart disease (CHD).114 Total cho-
lesterol and high-density lipoprotein choles-
terol (HDL-C) plasma levels are among the
score parameters. On the other hand, the
ARIC study has also demonstrated an
increased relative risk of CHD, and there-
fore CVD, with increased LDL-C and espe-
cially small dense LDL-C (sdLDL-C)
levels.115 IR is the culprit behind diabetic
dyslipidemia and is characterized by
decreased levels of HDL-C and increased
levels of sdLDL-C, both metabolically
linked to each other through hypertriglycer-
idemia or elevated VLDL-C plasma
levels.116 Approximately 75% of T2D
patients present with dyslipidemia;117 it pre-
cedes T2D and constitutes an early event in
the pathogenesis of atherosclerotic CVD.118

In the Look AHEAD study, a higher risk of
adverse CVD outcomes was found in over-
weight and obese patients with T2D and dys-
lipidemia.119 Studies suggest causality between
hypertriglyceridemia and CVD;120–122 TG
levels >500mg/dl (>5.7mmol/l) are associ-
ated with increased CVD risk and
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mortality.123 Another study demonstrated
a strong correlation between hypertrigly-
ceridemia and sdLDL-C with myocardial
infarction (MI) and peripheral
atherosclerosis.124

In the IR state, insulin, despite its
already high levels, cannot exert its inhibi-
tory effects toward VLDL-C secretion from
the hepatocytes or degradation of apolipo-
protein B (apoB), leading to the elevation of
triglycerides in the circulation; these levels
are also sustained at a high value due to
the concurrent release of FFA, as part of
IR-related adipose tissue dysfunction.
Lipoprotein lipase (LPL) activity is also
affected and the clearance of VLDL-C is
impaired. Hypertriglyceridemia ultimately
leads to the generation of the highly athero-
genic sdLDL-C, although the total LDL-C
levels appear to increase only mildly, and
also leads to lower quality and quantity of
HDL-C. The role of cholesteryl ester trans-
fer protein is crucial in enriching LDL-C
and HDL-C with TG, further inducing
their lipolysis by hepatic lipase. As a
result, sdLDL-C plasma levels increase,
whereas HDL-C plasma levels and apolipo-
protein A-I diminish.125 In fact, TG to
HDL-C ratio is a widely used index indica-
tive of IR development,126 although it may
not necessarily represent an independent
prognostic factor for CVD development
after taking into account the already estab-
lished traditional risk factors, as demon-
strated by a cohort study conducted on
postmenopausal women.11 The sdLDL-C
particles are particularly proatherogenic
for various reasons: their smaller size facil-
itates their entrance into the vessel walls;
they have impaired affinity with the
LDL-C receptor; a longer half-life and
lower resistance to oxidation.127,128

Oxidative stress

A contemporary definition of oxidative
stress focuses on the incapability of

endogenous cellular mechanisms to maintain
redox homeostasis, mainly because of the
disruption of redox signaling. Abundant
reactive oxygen species (ROS) and nitrogen
species, either radical or non-radical, and
deficiency of antioxidant mechanisms are
the main components of oxidative stress.
Focusing on ROS, inflammation majorly
contributes to their genesis, enhanced by
the accumulation of polymorphonuclear
cells and macrophages.129 Odd electrons
derived from cellular respiration and other
metabolic processes generate superoxide
and hydrogen peroxide, the primary oxi-
dants that cause cellular and molecular
damage, also giving rise to reactive species
like peroxynitrite, singlet oxygen and hypo-
chlorous acid.129 Oxidative stress has a det-
rimental impact on DNA, proteins and
lipids and participates in the formation of
advanced glycation end-products (AGEs)
in hyperglycemic conditions, while being
also an essential contributing factor to the
formation of atherosclerotic plaques.130

Oxidized LDL-C (oxLDL-C) is pro-
duced when ROS indirectly oxidize apoB-
100 and modify the original LDL-C,
rendering it a crucial factor in atherogene-
sis. Smoking also directly oxidizes LDL-C.
OxLDL-C is capable of binding to specific
receptors on endothelial cells, known as
lectin-like oxidized LDL receptors-1. The
uptake of oxLDL-C by endothelial cells pro-
motes matrix metalloproteinase (MMP)
production, downregulates eNOS, thus
impairing vasodilation ability, induces leu-
kocyte adhesion to the endothelium and ren-
ders the endothelium prothrombotic.
OxLDL-C also binds to scavenger receptors
(SR) on macrophages, yielding lipid-rich
foam cells, a core element of plaques.
Excess ROS are additionally held account-
able for stimulating smooth muscle cell
migration and SR expression, as well as col-
lagen deposition to the injured endothelial
site, acting as a link between innate and
adaptive immunity and inducing the release
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of MMPs, which ultimately lead to rupture
of the plaques’ fibrous caps.131,132 They also
lead to dismantled insulin function and adi-
pokine dysregulation.31 ROS are generated
by various systems, namely nicotinamide
adenine dinucleotide phosphate oxidase
(NOX), xanthine oxidase, mitochondrial
enzymes, myeloperoxidases and uncoupled
eNOS.131,132 All systems contribute to ath-
erosclerosis. However, NOX is the most
crucial ROS generator system in the cardio-
vascular system, with the NOX2 subunit
being of significant importance in athero-
sclerosis, increasing superoxide production
and reducing the bioavailability of NO.133

On the other hand, dysfunction of the mye-
loperoxidase system and smoking potentiate
alterations in MAPK signaling, which medi-
ates inflammation, cell proliferation and ath-
erosclerosis;131 MAPK is associated with the
mitogenic effects of insulin, as previously
mentioned.6

Advanced glycation end-product genera-
tion occurs when cellular protein and lipid
molecules are constantly exposed to elevated
glucose levels, as in IR and diabetes; and
AGEs are the cause of diabetic complica-
tions, such as diabetic retinopathy, nephrop-
athy and CVD.134,135 Hyperglycemia favors
their formation, induces chronic inflamma-
tion biomarkers and participates in ROS
formation.6,136 AGEs activate NOX, inhibit
eNOS activity and interact with the extracel-
lular matrix to promote ROS generation
after binding to AGE receptors, inducing
further endothelial damage and reduced
NO production.135 AGEs also stimulate oxi-
dative pathways, such as the protein kinase
C signaling cascade.137 Ultimately, AGEs
are core elements in the generation of
excess ROS levels.

Endothelial dysfunction

The endothelium comprises the innermost
single-cell layer of the arterial wall and its
functions are a cornerstone in maintaining

vascular integrity. Vascular homeostasis
ensures oxygen and nutrient transportation
to tissues, conservation of optimal vascular
tone, regulation of hemostasis and the
inflammatory response. When endothelial
cells cannot exert their function properly,
conditions like atherosclerosis and hyper-
tension rise. NO is a small lipophilic mole-
cule that mediates vascular tone and its
bioavailability determines vascular homeo-
stasis, being the most potent vasodilator. It
also has anti-inflammatory, antioxidant
and anti-coagulant properties and inhibits
leukocyte adhesion and smooth muscle
cell proliferation.138–140 NO is produced
from L-arginine by nitric oxide synthase
(NOS) isoforms with the aid of various
co-factors. NOS3, or eNOS, is abundant
in endothelial cells. Post-translational mod-
ifications of eNOS along with ROS create
the uncoupled form of eNOS and thus
decrease NO production, which is also
diminished by reduced availability of sub-
strates or co-factors and increased NO
breakdown.141,142 NOS2, or inducible NO
synthase (iNOS), is widely expressed in
macrophages, stimulated by inflammatory
signals and regulated by pathways and
agents linked to IR, namely MAPK and
NF-kB. Finally, NOS1, or neuronal NO
synthase, is found mainly in the ventrome-
dial hypothalamus.143–145

Insulin mediates cardiovascular events
via the L-arginine/NO pathway, and these
elements appear to be part of a vicious,
never-ending cycle.146 Insulin enhances
endothelial NO production and vasodila-
tion via the PI3K cascade activation; how-
ever, in IR, insulin’s action is shifted
towards vasoconstriction, hypertrophy of
smooth muscle cells and accelerated athero-
sclerosis via activation of the MAPK path-
way.146 Vascular IR is prominent in obese
and diabetic patients and increased vascular
resistance related to obesity and diabetes is
mainly attributed to diminished NO bio-
availability. Defective NO synthesis in the
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vessels and impaired vasodilation are linked
to hyperinsulinemia and IR, a state in
which oxLDL is also elevated, as previously
mentioned. In addition, elevated LDL-C
levels extensively contribute to downregu-
lating eNOS expression.147,148 Obesity,
accompanied by IR, diminishes the expres-
sion of eNOS. Anti-obesogenic and insulin-
sensitizing abilities are attributed to
eNOS-derived NO; eNOS additionally
mediates insulin and glucose transport in
skeletal muscle and adipocytes and regu-
lates gluconeogenesis. Absence of iNOS
has been linked with ameliorated glucose
tolerance and insulin sensitivity, whereas
its overexpression in liver promotes hypergly-
cemia, hyperinsulinemia and hepatic IR.
NOS1-derived NO is related to appetite stim-
ulation and hyperphagia.149 Nevertheless,
glucose metabolism and insulin-stimulated
NO production share common signaling
pathways, underpinning a coupling between
insulin’s metabolic and vascular effects.150

Interestingly, a previous study demonstrated
that glucosamine is a potent inhibitor of
endothelial NO production; glucosamine pro-
duction is enhanced by chronically elevated
plasma glucose levels.148 Overall, inadequate
bioavailability of NO in the endothelium
abolishes vasodilation and results in hyper-
tension and inflammation while facilitating
arterial stiffness, a precursor and predictor
of CVD.151

Hypertension

Hypertension is one of the most common
clinical predicaments that stem from
increased peripheral vascular resistance and,
in some cases, increased cardiac output.
Increased basal sympathetic tone activity
and overactivation of the renin–angiotensin–
aldosterone system (RAAS) characterize
hypertension.152 Hypertensive patients tend
to be hyperinsulinemic and glucose intoler-
ant.153 As suggested by a meta-analysis of
10 230 hypertension patients, fasting insulin

levels and IR constitute independent factors
for hypertension development; the relative
risk of hypertension for fasting insulin con-
centrations was 1.54, with a higher risk in
women compared with men, and the RR
for HOMA-IR, an IR index, was 1.43.153

A previous study used the euglycemic hyper-
insulinemic clamp method to demonstrate
that 25% of the hypertensive subjects had
concurrent IR.154 On the other hand, other
estimations predict that 50% of hypertensive
patients are insulin resistant,155 not to men-
tion the recent finding that the triglyceride-
glucose (TyG) index is a potentially useful
index for IR screening in Asian patients
with hypertension.156 Association between
increased plasma insulin levels and elevated
plasma catecholamine levels, evidence dem-
onstrating IR development in rodents fed a
high-carbohydrate diet, as well as prospective
epidemiological studies linking hyperinsuline-
mia with CAD have been enforcing the estab-
lishment of a relationship between IR,
hypertension and CVD for more than
30 years.157

Insulin regulates endothelial NO produc-
tion and the secretion of endothelin-1
(ET-1), a strong vasoconstrictor agent.
The balance between vasorelaxation and
vasoconstriction in IR tilts towards the
latter, leading to hypertension and endothe-
lial dysfunction. Decreased NO production
interferes with renal vascular tone, inducing
vasoconstriction and increased sodium
reabsorption.155,158 RAAS consists of hor-
mones essential to maintaining homeostasis
in arterial blood pressure. Renin converts
angiotensinogen to angiotensin (Ang) I,
which is in turn converted to Ang II by
angiotensin converting enzyme (ACE).
Ang II induces an increase in blood pres-
sure via AT1 and AT2 receptors. In short,
Ang II stimulates vasoconstriction and pro-
motes sodium retention, acting on proximal
tubules and the adrenal zona glomerulosa
and releasing aldosterone, which also
retains sodium and water in the distal
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tubules. Increased RAAS expression in
WAT, especially in VAT, is associated
with an increase in BMI. RAAS activity
and increased body weight are positively
correlated, and RAAS activity is decreased
after weight loss. Adipose RAAS induces
and exacerbates IR; Ang II and aldosterone
disturb insulin-dependent glucose uptake
and generate ROS, further promoting
IR.159 Hyperinsulinemia is involved in a
vicious cycle of vasculopathy, smooth
muscle cell proliferation, atherogenesis, cel-
lular calcium overload and renal sodium
reabsorption.160 In addition, it might syner-
gistically activate the MAPK pathway
along with RAAS.161 In diabetic patients,
RAAS is upregulated with prominent eleva-
tions in plasma renin, arterial pressure and
renal vascular resistance. On the other
hand, losartan had a better antihyperten-
sive result in hyperglycemic than normogly-
cemic patients. Hyperglycemia aids local
Ang II production and enhances the tissue
response to it, produces AGEs, which also
cause stimulation of the Ang II/AT1R path-
way, and finally downregulates ACE2, an
enzyme producing Ang 1-7, causing a fur-
ther imbalance in RAAS. In general,
RAAS antagonists can reverse the diabetes-
induced RAAS activation and its effects
on hypertension and vasculopathy.162

Furthermore, certain antidiabetic media-
tions exerting protective cardiovascular
effects, such as SGLT2-i and glucagon-like
peptide-1 (GLP-1) receptor agonists, appear
to favorably interact with RAAS.163 Finally,
10–15% of hypertensive patients, >50 years
old, present with atherosclerotic renal artery
stenosis (ARAS), a clinical condition predis-
posed by classic atherosclerotic risk factors,
including MetS and diabetes mellitus. As the
prevalence of MetS is increased in both
patients with ARAS and patients with
peripheral artery disease, and as patients
with ARAS frequently have co-existing
peripheral atherosclerotic lesions, it appears
safe to postulate that both IR states and

renal artery atherosclerosis are contributing

to hypertension.164–166

A very recent large Chinese nationwide,

prospective, cohort study, which was con-

ducted on 111 576 adults without CVD at

baseline, elucidated the causal relationship

between IR and CVD in relation to the glu-

cose tolerance status.167 The study reached

the following conclusions: (i) glucose intol-

erance status exacerbated the association

between IR and CVD; (ii) prediabetic

obese adults with IR were at a higher risk

for CVD; (iii) in diabetic patients, IR

increased the risk for CVD; however, this

risk was not further increased by the pres-

ence of obesity.167

A brief summary of the mechanisms

by which IR promotes CVD is shown in

Table 1. In addition, a schematic depiction

of the pathophysiological factors linking IR

with CVD is shown in Figure 1.

Management of insulin resistance

Modification in lifestyle choices along with

medications constitute the core of the man-

agement of IR states. Nutritional guidelines

and meta-analyses propose a low glycemic

index diet, preferably low-carbohydrate,

rich in fibers (both soluble and insoluble),

with an adequate protein and low-fat con-

tent, combined with at least 150 minutes of

moderately intensive aerobic exercise, or

75min of strenuous aerobic activity, or a

combination of them, per week. These nutri-

tional routines have been proved to improve

IR, decrease BMI due to fat loss, reduce

HbA1c and render the gut microbiota

more balanced. Plant-based proteins and

carbohydrates induced more notable effects

toward improvement of IR and achievement

of target weight. Undoubtedly, clinicians

ought to personalize and tailor dietary and

exercise plans to each patient’s metabolic

profile, preferences, habits and lifestyle for

maximum efficacy.168,169
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Dietary adjustments and bariatric surgery

A 24-week randomized, open, parallel study

on 74 patients with T2D, assigned an isoca-

loric, calorie-restricted vegetarian diet versus

a conventional diabetic diet to the experi-

mental and control groups, respectively,

along with exercise in the second half of
the study.170 The findings demonstrated
that insulin sensitivity improved significantly
with vegetarian meals compared with the
control group: 30% (95% confidence inter-
val [CI] 24.5, 39) versus 20% (95% CI 14, 25),

Table 1. A brief summary of the mechanisms by which insulin resistance promotes cardiovascular disease.

Mechanism Mediators and systems involved

Lipotoxicity Increased free fatty acid plasma levels

Inflammation Involved cytokines: tumor necrosis factor-a, interleukin-6, plasminogen

activator inhibitor-1, monocyte chemoattractant protein-1, leptin,

adiponectin

Dyslipidemia High levels of low-density lipoprotein cholesterol, small dense low-density

lipoprotein cholesterol, hepatic triglycerides

Low levels of high-density lipoprotein cholesterol

Oxidative stress Increased production of reactive oxygen species and nitrogen species

Oxidized low-density lipoprotein cholesterol

Advanced glycation end-products

Endothelial dysfunction Disrupted vascular homeostasis due to impaired nitric oxide production

Hypertension Renin–angiotensin–aldosterone system overactivation

Endothelin-1

Elevated plasma catecholamines

Figure 1. Schematic depiction of the pathophysiological factors linking insulin resistance (IR) with car-
diovascular disease (CVD). FFA, free fatty acids; LDL-C, low-density lipoprotein cholesterol; sdLDL-C, small
dense LDL-C; TGs, triglycerides; HDL-C, high-density lipoprotein cholesterol; ROS, reactive oxygen
species; oxLDL-C, oxidized LDL-C; AGEs, advanced glycation end-products; NO, nitric oxide; RAAS,
renin–angiotensin–aldosterone system; ET-1, endothelin-1.
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respectively (P¼ 0.04).170 The reduction of
IR may be attributed to the concurrently
observed weight loss, visceral fat loss and
the amelioration of oxidative stress
markers, as the beneficial adaptations in
these factors were also greater in the exper-
imental group.170 An excellent example of a
primarily plant-based and holistically bal-
anced diet is the Mediterranean diet
(MedDiet), which has copious amounts of
vegetables, whole-grain meals, seeds, fruits
and extra virgin olive oil (which alone has
been studied and solidly proven to prevent
CVD),168 moderate consumption of white
meat, eggs and dairy and low consumption
of red meat and animal-derived fat. Its
structure provides polyunsaturated fatty
acids, anthocyanins, resveratrol and poly-
phenols, all of which contribute to a
decrease of inflammation and lipotoxicity,
an increase of insulin-dependent glucose
uptake, neuroprotection, improvement of
hyperinsulinemia and hyperandrogenemia,
and even mediate gene transcriptions with
favorable effects on glycose homeostasis,
atherosclerosis and tumorigenesis.171 The
PREDIMED study, a multicentered, ran-
domized, nutritional intervention trial
enrolling 7447 subjects, was conducted in
Spain and confirmed that the MedDiet is
a valuable tool in the primary prevention
of CVD, providing a 30% risk reduction
in the incidence of major cardiovascular
events with a per-protocol (adherence-
adjusted) reduction of 58% over a median
follow-up of 4.8 years.172 Assessment of the
effects of the MedDiet has also been made
in obese pediatric and adolescent patients.
For example, an open-label study in Mexico
selected 49 children from another study
investigating the management of T2D in
pediatric subjects and randomly assigned
them to the MedDiet versus a standard
diet.173 Children that followed the MedDiet
presented a 10.5% decrement (95% CI
–13.1, –7.7) in glucose levels compared
with a 4.9% decrease (95% CI –8.1, –1.7)

in the standard diet group, as well as a sig-
nificant decrease in the frequency of glucose
>100mg/dl, a 45% decrease in MetS and a
significant decrease in BMI.173

Nevertheless, another study disputes the
supremacy of the MedDiet, suggesting that
high-protein dietary patterns achieve better
results in minimizing IR.174 In 16 women
that completed the 21-day randomized,
controlled, inpatient crossover feeding
trial, the high-protein diet reduced IR
more effectively than the MedDiet, while
improving glycemic variability and favorably
altering the gut microbiota.174 Either way,
low-carbohydrate intake is generally well tol-
erated in humans who can utilize ketone
bodies as an alternative fuel. Ketotic states
maintain low insulin levels, improve insulin
sensitivity, potentiate the breakdown of fat
stores and spare lean muscles, while improv-
ing metabolic and inflammatory parameters;
hence, ketosis could also be helpful for lean
weight loss, fat loss and improvement of insu-
lin resistant states.175 Finally, a systematic
review pertaining to a ubiquitous IR manifes-
tation in females, PCOS, assessed dietary
interventions on 1193 participants with
PCOS.176 Results revealed that IR markers
and body composition might be optimally
benefited from the Dietary Approaches
to Stop Hypertension diet and calorie-
restricted diets, respectively, with results
comparable with metformin.176

Typical eating patterns in modern socie-
ties comprise at least three meals a day.
Routines based on intermittent fasting
(IF), namely early-time restricted feeding
(eTRF), have been the main subject of
interest for various studies. IF and periodic
fasting in rodents may be able to delay the
development and evolution of various dis-
eases, including diabetes, CVD, Alzheimer’s
disease and stroke. IF has also been proven
to be efficient in humans, prompting weight
loss and favorably affecting IR and other
risk factors for CVD. A randomized con-
trolled trial tested the efficacy of eTRF in
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prediabetic men compared with a control
diet for 5 weeks.177 This pattern suggests a
6-h eating period with dinner prior to 15:00,
followed by an extended fasting period; all
patients that completed the study exceeded
expectations with regard to compliance.
Results concluded that eTRF is useful in
lowering insulin levels and arterial blood
pressure, improving insulin sensitivity, and
reducing appetite and oxidative stress, thus
rendering it an efficient strategy for predia-
betic and prehypertensive patients with no
apparent significant impact on lipid profile,
arterial stiffness or inflammatory markers.
Overall health improvement relies on sig-
naling cascades related to mitochondrial
function, DNA repair mechanisms and
autophagy.177,178 Another randomized con-
trolled trial studied the impact of intermit-
tent and continuous energy restriction (IER
and CER, respectively) on metabolic dis-
ease markers and weight loss in 107 preme-
nopausal women with a BMI varying from
24 to 40 kg/m2.179 Both IER and CER were
equally effective in weight loss (–6.4 kg [95%
CI –7.9, –4.8 kg] for IER versus –5.6kg
[95% CI –6.9, –4.4 kg] for CER).179 There
was a more significant impact of IER on
IR reduction and fasting insulin levels: the
difference between the groups for fasting
insulin was –1.2mU/ml (95% CI –1.4,
–1.0mU/ml); and for insulin resistance it
was –1.2lU/mmol/l (95% CI –1.5, –1.0)
(both comparisons P¼ 0.04).179 Reductions
in leptin, androgens, high-sensitivity CRP,
TC and LDL-C, TGs and arterial blood
pressure were comparable.179

Gut microbiota alterations in IR, diabe-
tes and obesity is a significant, ongoing field
of investigation. There is some evidence
suggesting that overweight people present
an altered Bacteroidetes/Firmicutes ratio,
with an increase in Firmicutes and a
decrease in Bacteroidetes, diminished bacte-
ria with anti-inflammatory properties, an
abundance of pathogens and less microbial
diversity. Diet modifications may change

the gut microbiota rapidly and may even
predispose to inflammation. Intestinal per-
meability is disturbed in overweight condi-
tions. High-fat and low-fiber intake, as in
the Western diet, enhances the transloca-
tion of lipopolysaccharides due to increased
growth of Gram-negative bacteria and sub-
sequent endotoxemia; this metabolic endo-
toxemia triggers toll-like receptor 2-induced
inflammation from adipocytes, rendering it a
pathogenic factor for IR. These acknowl-
edgements lay the foundation for a potential
therapeutic approach based on an appropri-
ately structured diet, possibly enriched with
probiotic and prebiotic supplements to form
a healthy gut microbiota. However, evidence
to date is not convincing.180

Vitamin D deficiency characterizes
patients with T1D and T2D, and numerous
observational and preclinical trials under-
line the importance of this nutrient in
their pathogenesis; 70% of prediabetic
patients with hypovitaminosis D eventually
become diabetic. Vitamin D receptors are
abundant in pancreatic beta cells and in
immune cells, plausibly explaining why
vitamin D potentiates improvement in insu-
lin sensitivity and inflammatory states.
Hence, nutritional vitamin D supplementa-
tion might retard the conversion of predia-
betes to diabetes and improve IR by up to
60%, also favorably affecting other condi-
tions related to IR, such as PCOS and
MetS. Dosage must be calibrated accord-
ingly, taking into account parameters like
the degree of deficit, age, possible bariatric
surgery status and other malabsorption fac-
tors.181 Nonetheless, the hypothesis that
vitamin D supplementation may potentiate
insulin sensitivity, thus improving IR, is
supported mainly by observational studies,
whereas pertinent relative clinical evidence
to this day has not been conclusive.181 In a
randomized clinical trial, 2423 prediabetic
adults were assigned to receive either vita-
min D3 (4000 IU daily) or placebo on a
daily basis.182 Within 2.5 years, 9.39 and
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10.66 events of diabetes per 100 person-years
occurred, respectively, with the hazard ratio
for vitamin D being 0.88 compared with pla-
cebo (P¼ 0.12 not significant), suggesting
that vitamin D supplementation, even at
the maximum recommended daily dose,
does not necessarily contribute to the pre-
vention of T2D development.182

Metabolic or bariatric surgery is the
most effective therapeutic choice for obese
patients leading to weight loss and amelio-
ration of diabetes and IR. Meta-analyses
report that, along with weight loss, diabetes
remitted after bariatric surgery, with a
chance for remission being as high as 65%,
and simultaneous favorable 5-year changes
in glycated hemoglobin were also noted.
These improvements were noticed shortly
after the performance of the operation;
some suggested mechanisms include altera-
tions in gut microbiota and decreased caloric
intake with depletion of liver fat and
improvement of IR and the associated
inflammatory profile. A systematic review
of the literature, which assessed 19 543
patients subjected to metabolic surgery,
demonstrated a reduction in the incidence
of cardiovascular risk factors, such as T2D,
hypertension and dyslipidemia, in those
patients, which would potentially lead to a
reduction in the occurrence of adverse car-
diovascular events.183 Notably, in this study,
73% of the patients with T2D presented
resolution or remission of diabetes.183

Additionally, following bariatric operations,
adaptive immunity shifts in favor of an anti-
inflammatory state, along with an increase
of anti-oxidant properties and reduction of
oxidative stress, thus establishing an overall
low-inflammation phenotype and a reduc-
tion in IR.184

Exercise

The link between exercise, longevity and
delayed onset of diseases has been noted
for more than 2000 years by Hippocrates

and was proven epidemiologically for the
first time in the 1950s when sedentary life-
style was correlated to increased prevalence
of CHD. T2D development can be delayed
or even reversed in prediabetic patients with
systematic exercise, regardless of race.
Studies in China, Finland and the US con-
cluded that the onset of T2D was reduced
by 46% in 6 years with exercise. On the
other hand, diet alone reduced T2D by
31%. A combination of diet and exercise
increased that percentage to 58%, which
was more efficacious than metformin
alone. During exercise, muscle fiber contrac-
tion generates metabolic and mitochondrial
adaptations, facilitating insulin-dependent
glucose uptake by skeletal muscles, thus
improving hyperinsulinemia and promoting
cross-talk between tissues through myokine
secretion. Myokines released from muscles
after bouts of exercise have an endocrine
function and seem to increase GLP-1 secre-
tion, lipolysis and glucose uptake by adipo-
cytes, all of which are related to the
promotion of insulin sensitivity.185 High-
intensity interval training and high-intensity
functional training effectively improve all
health markers, induce the secretion of vas-
cular endothelial growth factor, an enhanc-
ing factor for NO production, and stimulate
anti-oxidant enzymes and IGF-1, all favor-
ably affecting insulin sensitivity.186

Exercise has been shown to play a strong
beneficial role in patients with MetS. For
example, a study of 19 223 men demonstrat-
ed that the relative risk (RR) for all-cause
and CVD mortality was 1.29 and 1.89,
respectively, for men with MetS compared
with healthy men.187 However, this differ-
ence was smoothed out and became
non-statistically significant once cardiore-
spiratory fitness (CRF) was included in life-
style, with RR being 0.98 for all-cause and
1.23 for CVD mortality.187 CRF impact
was dose-dependent.187 Another trial on
the same group demonstrated the allevia-
tion of statistical significance of RRs for
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all-cause and CVD mortality in normal,
overweight and obese people with and with-
out MetS after the inclusion of CRF in their
lifestyles.188 Time spent on physical activity
is another determinant, with 60 minutes a
week of leisure-time vigorous physical
activity significantly reducing rates of
MetS among unfit and fit men.189 A meta-
analysis of the impact of structured exercise
programs on IR in 846 diabetic patients
demonstrated clear evidence for the effec-
tiveness of structured exercise programs in
reducing IR in patients with T2D.190

Another randomized controlled trial con-
firmed the effectiveness of an 8-week aero-
bic exercise protocol on diabetic women in
decreasing glucose plasma levels, insulin
levels and IR with HOMA-IR being the
evaluation tool.191

Current literature involving numerous
studies suggests that resistance training
enhances insulin sensitivity and glucose tol-
erance among different population groups,
including young and old subjects, postmen-
opausal women and hypertensive or diabet-
ic patients. Emerging evidence also suggests
that aerobic exercise and resistance training
provide benefits through distinct mecha-
nisms of action, which are worthy of further
investigation.192 Resistance training in dia-
betic adults was found to be more effective
than aerobic training at increasing maximal
oxygen consumption within 12 weeks or
longer with no apparent differences in
HbA1c, BMI and lipid profile.193 Exercise
intervention is also strongly recommended
with regard to juvenile IR, as it can moder-
ately improve insulin levels and IR.194

Another meta-analysis involving obese chil-
dren and adolescents showed that physical
exercise improved fasting insulin levels and
HOMA-IR (fasting insulin: –3.37lU/ml
[95% CI –5.16, –1.57lU/ml]; I2¼ 54%; P¼
0.003; HOMA-IR: –0.61 [95% CI –1.19,
–0.02]; I2¼ 49%; P¼ 0.040), but not fasting
glucose levels.195 Evaluation of aerobic train-
ing, resistance training or their combination

showed that aerobic exercise was clearly more
efficient in reducing insulin levels and
HOMA-IR (fasting insulin: –4.52lU/ml
[95% CI –7.40, –1.65lU/ml]; I2¼ 65%; P¼
0.002); HOMA-IR: –1.33 [95% CI –2.47,
–0.18]; I2¼ 73%; P¼ 0.005).195

Medications

It ought to be mentioned that there are cur-
rently no medications approved specifically
for the treatment of IR. However, various
studies confirm the efficacy of certain anti-
diabetic drugs in reducing IR, including
metformin, TZDs, SGLT2-i and GLP-1
receptor agonists, which will be described
below.

Metformin is an oral biguanide and one
of the oldest antidiabetic drugs in use. Its
glucose lowering effects rely on the inhibi-
tion of hepatic glucose production, reduc-
tion of lipid secretion from intestinal cells
and increased fatty acid oxidation in muscle
cells and adipocytes. Therapeutic doses are
beneficial in hepatic cellular respiration. Its
action in intestinal cells is notable, affecting
oxidative phosphorylation, glycolysis, lac-
tate production and the gut microbiota,
though doses exceeding the recommended
range interfere with mitochondrial respira-
tion.196 Metformin potentiates the increase
of GLUT4 production and expression, as
confirmed by numerous trials on animals
and humans, including women with PCOS,
thus facilitating glucose uptake. Involved
mechanisms include interference with the
insulin signaling pathway, activation of
AMPK signaling pathways and GLUT4
transport mediators and epigenetic modifi-
cation, suggesting that metformin improves
IR via AMPK dependent and independent
mechanisms and delays or prevents T2D
development with a concomitant improve-
ment in cardiovascular outcomes.197,198

An ongoing double-blind, randomized
controlled trial on 40 adults, the INTIMET
study, aims to quantify the beneficial effects
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of metformin on liver, muscle and adipose
tissue IR in patients with T1D and may
also identify factors that predict an individu-
al’s response to metformin in T1D.199

Metformin has been found to improve endo-
thelial function by reducing PAI-1, CRP and
ET-1 levels, improving NO synthesis and pos-
itively affecting oxidative stress conditions.
Most importantly, a 32.5% reduction in IR,
as measured by HOMA-IR, during metfor-
min administration was noted.200 Another
double-blind, placebo-controlled clinical trial
on 37 overweight or obese young T1D
patients favored metformin in terms of
improving IR, both whole-body and periph-
eral, but it did not affect endogenous glucose
release.201 A particular reference ought to be
made for metformin and PCOS, a prediabetic
state that affects 5–10% of women of repro-
ductive age and has a negative impact on
body weight and overall cardiovascular risk
factors. Metformin can modify hyperandro-
genemia and irregular menstrual cycles in
PCOS by exerting its effects on IR, and its
combination with myoinositol and TZDs
exert a superior effect.202–205 However, nei-
ther exogenous insulin administration nor
metformin can prevent pancreatic beta cells
from losing their function in young patients
with impaired glucose tolerance or recently
diagnosed T2D.206

Thiazolidinediones, rosiglitazone, piogli-
tazone and troglitazone, are oral antidia-
betic drugs, known to be beneficial in IR
conditions. Their mechanism of action
comprises activation of PPAR-c, a nuclear
receptor that modifies the transcription of
various genes, namely those encoding
GLUT4 receptors, LPL and other enzymes
involved in energy homeostasis. IR is
reduced in adipose tissue, muscle cells and
the liver. PPAR-c is abundant in adipo-
cytes, suggesting endocrine communication
with skeletal muscles and hepatocytes; mol-
ecules like FFAs and TNF-a might also be
a part of signaling. Along with the improve-
ment of dyslipidemia, IR amelioration leads

to a consequent reduction of CVD risk.
Pioglitazone has also been found to reduce
MI and ischemic strokes. Thus, after exten-
sive comprehension of the risk for side-
effects, clinicians are now more capable of
selecting patients eligible for TZD prescrip-
tion, balancing benefits and risks.207–212

Administration of TZDs has been proven
to delay beta cell dysfunction, as measured
by certain specific indices, by exerting
protective effects against oxidative stress
and preserving the composition of the
islets.213,214

Several studies including randomized
controlled trials confirm the value of TZDs
in IR management. For example, in the
DREAM study, 8mg of rosiglitazone daily
reduced the incidence of T2D by 60% and
increased normoglycemia by 70% in people
free of CVD.215 A DREAM substudy
revealed reduction of hepatic and visceral
fat and an increase in subcutaneous fat and
adiponectin levels; however, these changes
cannot explain the normoglycemic effects
of TZDs.216 The ADOPT study indicated
that glucose levels were better regulated
with rosiglitazone compared with metformin
and glibenclamide (risk reduced by 32%
and 63% compared with metformin and gli-
benclamide, respectively; P< 0.001).217 The
CHICAGO, PROactive and PERISCOPE
studies showed a significant delay in the for-
mation of atherosclerotic plaques and ame-
lioration of other traditional CVD risk
factors, underpinning the favorable effect
of TZDs in prediabetic and diabetic
patients.218 Research supports the benefits
provided by TZDs in T2D or MI when com-
bined with metformin or sulfonylureas.218 In
a randomized controlled trial conducted on
prediabetic or diabetic patients with non-
alcoholic steatohepatitis (NASH) on TZDs,
resolution of NASH and improved peripher-
al insulin sensitivity was documented in 51%
of the patients.219 Finally, a meta-analysis of
randomized clinical trials involving patients
with NASH also concluded that
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inflammation regressed following a combi-

nation of TZDs and lifestyle changes but

paradoxically found no effect of TZDs

alone on IR.220 Of course, weight gain,

water retention and HF are well documented

side-effects of TZDs, not to be taken

lightly.218,220

Glucagon-like peptide-1 is an incretin

secreted by the distal ileus, colon, pancreas

and central nervous system. Its half-time is

narrowed to 2 minutes, mainly due to

its catabolism by dipeptidyl-peptidase 4

(DPP-4). GLP-1 binds to GLP-1 receptors,

which are abundant throughout the body

and exert a variety of actions, amongst

which effects that contribute to energy

homeostasis, namely reduced hepatic gluco-

neogenesis and steatosis, increased survival,

proliferation and decreased apoptosis of

pancreatic beta cells, increased insulin sensi-

tivity and glucose uptake from muscle cells,

increased lipolysis and glucose uptake from

adipocytes and reduction of appetite. GLP-1

receptor agonists, liraglutide, exenatide,

semaglutide, lixisenatide, dulaglutide, albi-

glutide, were manufactured to reproduce

the multisystemic actions of GLP-1 via bind-

ing to GLP-1 receptors. The aforementioned

effects of GLP-1 explain the wide use of

GLP-1 receptor agonists in the management

of IR and coexisting conditions, namely

T2D, NASH and PCOS, with encouraging

data concerning protection from CVD.

Studies have demonstrated improved IR

parameters and reduced lipotoxicity related

to NASH, reduced hepatic and visceral fat

accumulation and improved glucose

permeability through the blood–brain barri-

er.221–225 In addition, these receptor agonists

have been proven to be useful treatment

agents in PCOS patients with IR.226

Administration of liraglutide as monother-

apy or combined with metformin also

induced weight loss and reduction of testos-

terone but with mixed results concerning IR

improvement.222

Many clinical studies confirm the efficacy
of GLP-1 receptor agonists in glycemic con-
trol and weight loss management with insig-
nificant risks of hypoglycemia. Different
GLP-1 receptor agonists may exhibit differ-
ent pharmacokinetic and clinical effects,
with convincing evidence regarding their car-
dioprotective capacity.227 Liraglutide in
particular inhibits kinase pathways, such as
PI3K/AKT and ERK 1/2 on one hand,
reducing vascular smooth muscle cell prolif-
eration related to hyperglycemia, and
MKK4/JNK on the other hand, leading to
the improvement of the hypoadiponectine
mia-induced inflammatory stress in
NASH.227 Other beneficial effects of GLP-
1 receptor agonists related to atherosclerosis
include the moderation of inflammation in
plaques, as well as the amelioration of dysli-
pidemia and endothelial dysfunction.225,228

Liraglutide, semaglutide and albiglutide
reduce the risk of major adverse cardiac
events, while exenatide and lixisenatide exhibit
neutral effects.229 Another meta-analysis sug-
gested that all GLP-1 receptor agonists are
capable of reducing cardiovascular incidents,
cardiovascular mortality and all-cause mortal-
ity to different degrees, with no significant
adverse effects, allowing for the personaliza-
tion of drugs and regimens.230 A dual gastric
inhibitory peptide and GLP-1 receptor ago-
nist, tirzepatide, favorably modulated metabo-
lites related to IR and future T2D risk with
more significant reductions of HbA1c levels,
HOMA-IR and amelioration of dyslipidemic
profile, as compared with dulaglutide and pla-
cebo, leading to an overall improvement of
metabolic health.231 GLP-1 receptor agonists
enhance NO production and activate several
kinases in cardiomyocytes, including Akt-1,
PI-3K and MAPK, potentiating glucose
uptake and further cardioprotection against
ischemia; additionally, NO production by
GLP-1 receptor agonists in endothelial cells
promotes vasodilation.232

Sodium-glucose cotransporter 2 inhibi-
tion constitutes a novel and effective
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therapeutic strategy for managing T2D
with concomitant cardiovascular benefits.
Empagliflozin, dapagliflozin, canagliflozin
and ertugliflozin are currently approved
and used in everyday clinical practice.
These medications inhibit the glucose reab-
sorption by the S1 segment of the proximal
tubules in nephrons where SGLT2 are
located. SGLT2 are responsible for the
reabsorption of 80–90% of glucose.233

Hence, SGLT2-i achieve glycemic control
via glucosuria; HbA1c levels decrease by
0.5–1.0% and there are also prominent
improvements in BMI, lipid profile, endo-
thelial function and a reduction of arterial
blood pressure.233 Empagliflozin is an
SGLT2-i, ideal as monotherapy or as an
add-on antidiabetic agent due to its once-
a-day dosage regimen, preferred and pre-
scribed for T2D patients with elevated CV
risk in the EU, USA, Japan and other coun-
tries.234 Empagliflozin increases adipose
tissue utilization and browning in WAT
and attenuates IR and obesity-derived
inflammation via activation of M2 macro-
phages.235 Furthermore, it reverses brain
IR by increasing responsiveness of the
hypothalamus to insulin, a plausible mech-
anism concerning the regulation of energy
metabolism and reduction of fasting glu-
cose levels and hepatic fat.236 The action
of empagliflozin is superior to that of sita-
gliptin, a DPP-4 inhibitor, with regard to
amelioration of IR and improvement of
cardiometabolic health in early-stage
T2D.237 Additionally, glucosuria induced
by empagliflozin has been shown to
improve beta cell function and IR, regard-
less of elevated endogenous glucose produc-
tion and decreased insulin secretion, with a
further reduction in fasting and postprandi-
al hyperglycemia.238 Several systematic
reviews and meta-analyses provide data in
favor of SGLT2-i for the management of
NAFLD, the hepatic component of IR
and precursor to NASH, and PCOS.239–243

Empagliflozin and dapagliflozin, along with

hepatic fat reduction, also aid in reducing
total body weight, alanine aminotransami-
nase and aspartate aminotransaminase
levels, IR and liver fibrosis; and in women
with PCOS, these agents have been shown
to reduce body weight, fasting plasma glu-
cose levels, HOMA-IR and androgen
levels.239–243 Literature suggests that several
molecular mechanisms favor the promotion
of insulin sensitivity by SGLT2-i:244,245 (i)
suppression of glucotoxicity, attributed to
the decrease of chronically elevated blood
glucose levels via excretion of glucose
through urine; (ii) enhanced caloric disposi-
tion and weight reduction, which is a con-
sequence of reduction in the absolute
number of adipocytes, reduction in the
levels of adipocytokines and amelioration
of lipotoxicity; (iii) attenuation of inflam-
mation, including regulation of RAAS and
immune responses, decrease of proinflam-
matory cytokines and increase of anti-
inflammatory cytokines (IL-10), lowered
activity of NLRP3 inflammasomes, modu-
lation of expression of inflammatory-
related genes and modification of the
redox state; (iv) improvement of pancreatic
beta cell function, via interference with the
cascades responsible for cell apoptosis;
(v) amelioration of oxidative stress, favor-
ing proper mitochondrial function and
RAAS regulation, decreasing pro-oxidant
enzymes, free radicals and AGEs.

Literature confirms the favorable effects
of SGLT2-i in the prevention of the cardio-
vascular complications attributed to T2D.
SGLT2-i promote the alteration in the met-
abolic preferences of the heart, liver and
kidneys to ketone bodies and short-chain
fatty acids rather than glucose, along with
water preservation and improvement of
glomerular hemodynamics, thus contribut-
ing to cardiac, hepatic and renal protection
in patients with or without T2D.246,247

Cardiovascular protection is also attributed
to decreased plasma volume due to natri-
uresis and decreased oxidative stress, as
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well as decreased plasma uric acid levels,
decreased proteinuria and reduced forma-
tion of AGEs, along with improved vascu-
lar and endothelial function. At the same
time, in addition to the aforementioned
favorable changes in myocardial metabo-
lism, SGLT2-i have been also shown to
improve calcium handling and myocardial
energetics within the cardiomyocytes,
effects that may lead to an improvement
of HF outcomes.248,249 Evidence indicates
that SGLT2-i moderately affect the inci-
dence of major adverse cardiovascular
events related to atherosclerosis but robust-
ly favor the reduction of hospitalizations
due to HF and delay of renal disease,
regardless of patient history, with an asso-
ciated reduction of cardiovascular and
all-cause mortality.250,251 Several studies
concerning SGLT2-i and GLP-1 receptor
agonists suggest their tailored use in diabet-
ic patients with CVD and chronic kidney
disease, according to properly structured
clinical guidelines.252–256

A summary of the results of the main trials
discussed in this review is shown in Table 2
(non-pharmacological interventions) and
Table 3 (pharmacological interventions).

Conclusions and future directions

In conclusion, insulin constitutes an anabolic
hormone with a pivotal role in energy
homeostasis, exerting numerous effects in
muscle cells, hepatocytes and adipocytes.
Its overall action involves the facilitation of
glucose uptake via insulin-dependent mech-
anisms that promote GLUT4 potentiation,
thus maintaining normal circulating blood
glucose levels. Different signaling pathways
involving various kinases are activated and
vessels can be affected positively or negative-
ly, depending on the affected cascade. When
insulin cannot fully exert its effects on target
tissues, a clinical condition known as IR
develops. IR is characterized by hyperglyce-
mia and compensatory hyperinsulinemia,T
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which can exhaust beta cells in the long
term. Its measurement and quantification
rely on various indices, mainly fasting insu-
lin levels, HOMA-IR and glucose clamp
technique.257 IR is a precursor to many
pathological conditions that characterize
Western societies and are considered risk
factors for the development of CVD,
namely obesity, inflammation, dyslipidemia,
endothelial dysfunction, oxidative stress and
hypertension. In addition, IR accompanies
prediabetes, NAFLD and NASH, PCOS
and HF; all conditions associated with an
increased CVD risk. Thus, IR is a condition
predisposing to CVD via various complex,
as yet not fully elucidated, mechanisms. Its
management involves primary prevention
strategies, including abandoning the Western
lifestyle with proper diet modifications and
avoidance of a sedentary lifestyle. Specific
pharmacological agents have also been dem-
onstrated to improve insulin sensitivity, such
as metformin, TZDs, GLP-1 receptor agonists
and SGLT-2-i, with a concomitant proven
efficacy regarding the prevention of cardiovas-
cular events, especially in the case of the latter
classes of agents.

Future directions regarding IR have end-
less potential. Firstly, further in vitro and
in vivo studies are required, in order to
attempt to elucidate the incredibly complex
mechanisms that lead to IR. New bio-
markers for the early detection of IR
along with metabolomics and gut micro-
biota analysis seem to be afar; however,
they ought to constitute very straightfor-
ward approaches,258 based on precision
medicine. IR in children is a critical field
of research, as potential future protocols
for its, currently non-existent, screening
and holistic, personalized management
would reduce child and adult obesity as a
long-term consequence.259 Interestingly,
branched-chain amino acids have been
linked to IR and are therefore worthy of
further research.260 Equally interesting is
the conduction of further research involving

the role of mitochondrial dysfunction,
micro RNAs and autophagy.261–265 In addi-
tion, establishment of novel biomarkers and
therapeutic targets involving less known myo-
kines, hepatokines and adipocytokines, as
previously analysed, ought to be considered.

The search term ‘Insulin Resistance’ in
ClinicalTrials.gov revealed over 3000 stud-
ies with different perspectives. Indicatively,
researchers have focused on identifying
novel urinary biomarkers for IR screening,
the effect of specific diet modifications and
dietary supplements, gut microbiota altera-
tions and exercise in people according to
age and sex, novelties concerning maternal
IR screening and further investigation of
classic antidiabetic drug use in IR. A recent
phase 1b randomized controlled clinical
trial studied an agent known by the name
of BFKB8488A, a bispecific agonist anti-
body targeting fibroblast growth factor
receptor 1c and Klothob.266 In this study,
BFKB8488A proved its safety and tolera-
bility and showed encouraging effects in
T2D and NAFLD, improving the patients’
lipid profile at the same time.266 This sets
the ground for further conduction of relat-
ed trials and assessment of its potential as
a novel pharmacological agent in the man-
agement of IR. Nevertheless, the future can
move in a myriad of different directions.
Undoubtedly, the scientific community
still has a long way ahead on the journey
of clarifying the mechanisms involved in
IR, as well as its association with CVD.
Vast efforts shall be made to discover and
add new pharmacological agents in the
armamentarium of IR management.
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