

The analgesic efficacy of pregabalin for shoulder arthroscopy

A meta-analysis of randomized controlled trials

Chunhong Liu, MD^a, Ling Cheng, MD^b, Bo Du, MD^a, Shuang Cheng, MD^c, Yangming Jiang, MD^b, Xiaohong Tan, MD^b, Ke Qian, MD^{a,*}

Abstract

Introduction: The efficacy of pregabalin for pain management of shoulder arthroscopy remains controversial. We conduct this meta-analysis to explore the influence of pregabalin versus placebo on the postoperative pain intensity of shoulder arthroscopy.

Methods: We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through November 2019 for randomized controlled trials assessing the effect of pregabalin versus placebo on pain control of shoulder arthroscopy. This meta-analysis was performed using the random-effect model.

Results: Three randomized controlled trials were included in the meta-analysis. Overall, compared with control group for shoulder arthroscopy, pregabalin remarkably decreased pain scores at 0 to 1 hour (Std. MD = -0.57; 95% CI = -1.04 to -0.09; P = .02) and 12 hours (Std. MD = -0.37; 95% CI = -0.72 to -0.02; P = .04), as well as analgesic consumption (Std. MD = -1.84; 95% CI = -2.24 to -1.44; P < .00001), but showed no notable influence on pain scores at 24 hours (Std. MD = -0.54; 95% CI = -1.47 to 0.38; P = .25), nausea or vomiting (RR = 0.84; 95% CI = 0.53-1.33; P = .45), dizziness (RR = 1.14; 95% CI = 0.89-1.47; P = .30).

Conclusions: Pregabalin may benefit to pain control after shoulder arthroscopy.

Abbreviations: CI = confidence interval, RCTs = randomized controlled trials, SMD = standard mean difference.

Keywords: meta-analysis, pain management, pregabalin, randomized controlled trials, shoulder arthroscopy

1. Introduction

Arthroscopy has become common for the treatment of shoulder, knee, and hip diseases.^[1–4] Many patients still encounter moderate to severe pain after arthroscopic surgery, and the pain is mainly derived from insertion of arthroscopic instruments into the joint, soft tissue dissection, and distention.^[5–9] Postoperative pain after arthroscopic can complicate postoperative course by hindering patient early mobilization and rehabilitation.^[10–12]

The authors have no funding and conflicts of interest to disclose.

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

^a Department of Anesthesiology, People's Hospital of Chongqing Banan District, ^b Department of Hepatological Surgery, The People's Hospital of Kaizhou District, Chongqing, China, ^c Department of Surgery, The TCM Hospital of Kaizhou District, Chongqing, China.

^{*} Correspondence: Ke Qian, Department of Anesthesiology, People's Hospital of Chongqing Banan District, 659 Yunan Dadao, Banan District, Chongqing, China (e-mail: 147552148@qq.com).

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Liu C, Cheng L, Du B, Cheng S, Jiang Y, Tan X, Qian K. The analgesic efficacy of pregabalin for shoulder arthroscopy: a meta-analysis of randomized controlled trials. Medicine 2021;100:38(e26695).

Received: 22 October 2020 / Received in final form: 7 June 2021 / Accepted: 19 June 2021

http://dx.doi.org/10.1097/MD.00000000026695

Intravenous opioid-based patient-controlled analgesia has been widely accepted to control postoperative pain, but leads to high incidence of opioid-related adverse effects such as respiratory depression, pruritus, constipation, and nausea.^[13,14] The use of multimodal analgesic regimens comprising nonopioids may be effective to reduce opioid consumption without compromising the analgesic efficacy.^[15,16] Pregabalin is a ligand of the $\alpha 2-\delta$ subunit of presynaptic voltage-gated calcium channels, and is widely used for neuropathic pain. It shows some potential in the multimodal approach for the control of postoperative pain without any apparent side effects.^[17-19]

Recently, several studies have explored the efficacy of pregabalin versus placebo for the multimodal pain management of shoulder arthroscopy, but the results are conflicting.^[20–22] With accumulating evidence, we therefore performed this metaanalysis of randomized controlled trials (RCTs) to explore the efficacy of pregabalin in patients with shoulder arthroscopy.

2. Materials and methods

Ethical approval and patient consent were not required because this was a meta-analysis of previously published studies. This meta-analysis was conducted and reported in adherence to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).^[23,24]

2.1. Search strategy and study selection

Two investigators have independently searched the following databases (inception to November 2019): PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases. The electronic search strategy was conducted using the following

Editor: Ardavan Khoshnood.

LC and BD contributed equally to this work.

keywords "pregabalin," AND "arthroscopy," AND "shoulder." We also checked the reference lists of the screened full-text studies to identify other potentially eligible trials. The inclusive selection criteria were as follows: patients underwent shoulder arthroscopy; intervention treatments were pregabalin versus placebo; study design was RCT.

2.2. Data extraction and outcome measures

We extracted the following information: author, number of patients, age, female, body weight, duration of surgery, and detail methods in each group etc. Data were extracted independently by 2 investigators, and discrepancies were resolved by consensus. The primary outcomes were pain scores at 0 to 1 hours and 12 hours. Secondary outcomes included pain scores at 24 hours, analgesic consumption, nausea, vomiting, and dizziness.

2.3. Quality assessment in individual studies

Methodological quality of the included studies was independently evaluated using the modified Jadad scale.^[25] There were 3 items for Jadad scale: randomization (0–2 points), blinding (0–2 points), dropouts and withdrawals (0–1 points). The score of Jadad Scale varied from 0 to 5 points. An article with Jadad score≤2 was considered to have low quality. If the Jadad score≥3, the study is thought to have high quality.^[26]

2.4. Statistical analysis

We estimate the standard mean difference (Std. MD) with 95% confidence interval (CI) for continuous outcomes (pain scores at 0–1 h, 12 h, and 24 h, analgesic consumption) and risk ratio (RR) with 95% CIs for dichotomous outcomes (nausea, vomiting, and dizziness). The random-effects model was used regardless of heterogeneity. Heterogeneity was reported using the I² statistic, and I² > 50% indicated significant heterogeneity.^[24,27] Whenever significant heterogeneity was present, we searched for potential sources of heterogeneity via omitting one study in turn for the meta-analysis or performing subgroup analysis. All statistical analyses were performed using Review Manager Version 5.3 (The Cochrane Collaboration, Software Update, Oxford, UK).

3. Results

3.1. Literature search, study characteristics, and quality assessment

A detailed flowchart of the search and selection results is shown in Figure 1. Two hundred eight potentially relevant articles are initially identified and 3 RCTs are finally included in the metaanalysis.^[20–22] The baseline characteristics of 3 eligible RCTs in the meta-analysis are summarized in Table 1. The 3 studies are published between 2010 and 2016, and the sample size is 187. The doses of pregabalin include $150 \,\mathrm{mg}^{[20]}$ and $300 \,\mathrm{mg}$ twice^[21] before the surgery, as well as $150 \,\mathrm{mg}$ twice daily for 4 times.^[22]

Among the 3 studies included here, 2 studies report pain scores at 0 to 1 hour, ^[20,21] 2 studies report pain scores at 12 hours, ^[21,22] 3 studies report pain scores at 24 hours, ^[20–22] 2 studies report analgesic consumption, ^[20,21] and 3 studies report nausea, vomiting, and dizziness. ^[20–22] Jadad scores of the 3 included studies vary from 3 to 5, and all three studies are considered to have high quality according to quality assessment.

3.2. Primary outcomes: pain scores at 0 to 1 and 12 hours

Compared with control group for shoulder arthroscopy, pregabalin results in significantly lower pain scores at 0 to 1 hour (Std. MD = -0.57; 95% CI = -1.04 to -0.09; P = .02) with low heterogeneity among the studies (I²=48%, heterogeneity P=.16) (Fig. 2) and 12 hours (Std. MD = -0.37; 95% CI = -0.72 to -0.02; P = .04) with no heterogeneity among the studies (I² = 0%, heterogeneity P=.76) (Fig. 3).

3.3. Sensitivity analysis

Low or even no heterogeneity is observed among the included studies for the primary outcomes, so we do not perform sensitivity analysis via omitting one study in turn to detect the heterogeneity.

3.4. Secondary outcomes

In comparison with control group for shoulder arthroscopy, pregabalin exhibits no obvious impact on pain scores at 24 hours (Std. MD = -0.54; 95% CI = -1.47 to 0.38; P = .25; Fig. 4), but is associated with substantially reduced analgesic consumption (Std. MD = -1.84; 95% CI = -2.24 to -1.44; P < .00001; Fig. 5). There is no statistical difference of nausea or vomiting (RR = 0.84; 95% CI = 0.53-1.33; P = .45; Fig. 6), dizziness (RR = 1.14; 95% CI = 0.89-1.47; P = .30; Fig. 7) between 2 groups.

4. Discussion

Shoulder arthroscopy has been widely used for shoulder diseases such as rotator cuff tear, and provides the improvement in shoulder function, the quality of sleep, and life.^[28] The functional recovery of shoulder arthroscopy is affected by many factors such as pain control, anterior greater tubercle cysts, and operation technique.^[29,30] Various methods have been developed to control postoperative pain after arthroscopic shoulder surgery, and they include subacromial/intra-articular infiltration of local anesthetic, suprascapular and/or axillary nerve block, and interscalene block.^[31–33] However, these have some procedural difficulties and are limited by complications inherent in their invasive nature.^[34] The use of nonsteroidal anti-inflammatory drugs and opioid drugs may result in some adverse events such as nausea, vomiting, and gastrointestinal bleeding. A multimodal approach is widely applied to reduce these opioid-related adverse effect.^[35]

Gabapentinoids before surgical trauma were found to interact with other analgesics additively or synergistically to decrease inflammatory hyperalgesia.^[36] Gabapentinoids as an adjunct to a multimodal approach can decrease opioid consumption for postoperative pain management.^[37] Among the gabapentinoids, pregabalin demonstrated the analgesic efficacy for postoperative pain in various surgical settings.^[38,39] Our meta-analysis has included 3 RCTs and 187 patients, and the results suggest that pregabalin leads to the substantial decrease in pain scores at 0–1 hours, 12 hours, and analgesic consumption for shoulder arthroscopy, but reveals no remarkable influence on pain scores at 24 hours. These indicate that pregabalin is effective for pain relief after shoulder arthroscopy, which is very crucial for the postoperative recovery.

Although there is no significant heterogeneity in this metaanalysis, several factors may lead to some bias. First, the doses of pregabalin are different, ranging from 150 mg to 600 mg daily for

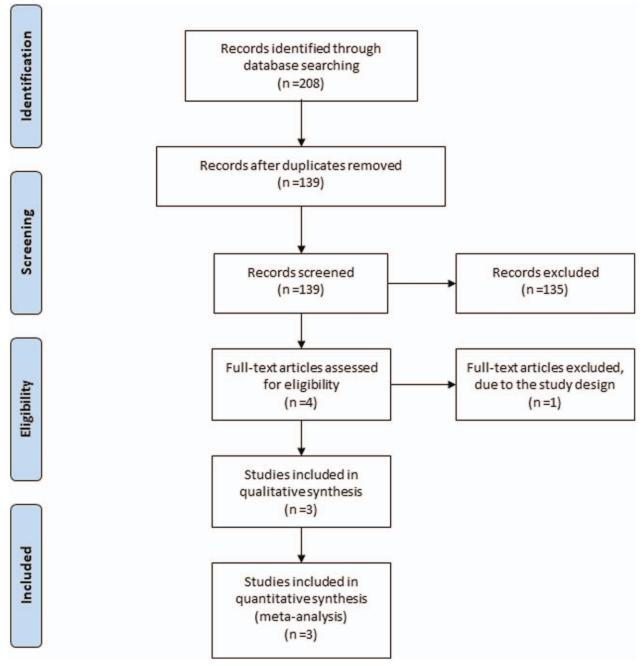
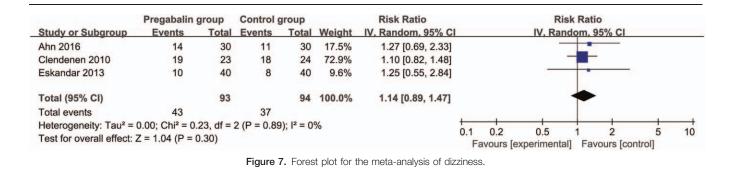



Figure 1. Flow diagram of study searching and selection process.

Table 1 Characteristics of included studies.

					Pregaba	lin group		Control group						
No.	Author	Number	Age (yrs)	Female (n)	Weight (kg)	Duration of surgery (min)	Methods	Number	Age (yrs)	Female (n)	Weight (kg)	Duration of surgery (min)	Methods	Jada scores
1	Ahn 2016	30	55 ± 9	17	64±10	136±31	Pregabalin 150 mg 1 h before anesthetic induction	30	51±12	17	63±13	138 ± 46	Placebo	4
2	Eskandar 2013	40	41.3±14.7	18	75.2±7.54	77±19.89	Pregabalin 300 mg 12 and 1 h before surgery	40	42.15 ± 13.08	24	79.3±7.88	82.5 ± 15.52	Placebo	5
3	Clendenen 2010	23	63±11	6	_	_	150 mg, twice daily, administered orally for a total of four doses	24	60±10	5	_	_	Placebo	3

1010 1010		balin gr			rol grou			Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean		Total				Weight	IV. Random, 95% CI	IV, Random, 95% C	1
Ahn 2016	7.8	0.9	30	8.1	1	30	47.2%	-0.31 [-0.82, 0.20]		
Eskandar 2013	4.65	1.53	40	5.8	1.32	40	52.8%	-0.80 [-1.25, -0.34]		
Total (95% CI)			70			70	100.0%	-0.57 [-1.04, -0.09]	•	
Heterogeneity: Tau ² =	0.06; Chi	² = 1.94		(P = 0.1)	6); ² = .				+ + +	-
Test for overall effect:									-4 -2 0 Favours [experimental] Favours [2 control1
			Fig	uro 2	Forcet r	olot fo	r the meta	-analysis of pain score		controlj
					0.001 p					
		balin gr			rol grou			Std. Mean Difference	Std. Mean Difference	
Study or Subgroup Clendenen 2010	Mean 1.1	2.1	Total 23	<u>Nean</u> 2.4	3.5	24	Weight 36.7%	IV. Random, 95% CI	IV, Random, 95% C	
Eskandar 2013	2.35	0.99	40	2.4	3.5	40	63.3%	-0.44 [-1.02, 0.14] -0.33 [-0.77, 0.12]		
LSKallual 2015	2.55	0.99	40	2.15	1.41	40	03.376	-0.55 [-0.77, 0.12]	_	
Total (95% CI)			63			64	100.0%	-0.37 [-0.72, -0.02]		
Heterogeneity: Tau ² =	0.00; Chi	² = 0.10), df = 1	(P = 0.7)	6); l ² =	0%			-2 -1 0	1
Test for overall effect:	Z = 2.05	(P = 0.0)	(4)						Favours [experimental] Favours [
			F	iaure 3	Forest	nlot t	for the met	ta-analysis of pain scor	e contra de la contr	
				.90.0 0.		. pier i				
	-	balin gr			rol grou			itd. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean		Total				Weight	IV. Random. 95% CI	IV. Random. 95% Cl	
Ahn 2016	3.3	2.2	30	6.1	1.5	30	32.7%	-1.47 [-2.04, -0.89]		
	3.1	2.4	23	3.9	2.7 0.83	24 40	32.7% 34.6%	-0.31 [-0.88, 0.27] 0.11 [-0.33, 0.55]	1	
		1 70	40					0.111-0.33. 0.331		
	2.1	1.79	40	1.95	0.05					
Eskandar 2013		1.79	40 93	1.95	0.03		100.0%	-0.54 [-1.47, 0.38]	•	
Clendenen 2010 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² =	2.1		93			94	100.0%	-0.54 [-1.47, 0.38]	+	<u>!</u>
Eskandar 2013 Total (95% CI)	2.1 0.59; Chi	² = 18.4	93 6, df = 2			94	100.0%	-0.54 [-1.47, 0.38]	-10 -5 0 Favours [experimental] Favours [i	5 1
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² =	2.1 0.59; Chi	² = 18.4	93 6, df = 2 5)	2 (P < 0.	0001); I	94 ² = 89	100.0% %	-0.54 [-1.47, 0.38]	Favours [experimental] Favours [d	
Eskandar 2013 Total (95% CI) Heterogeneity: Tau² =	2.1 0.59; Chi	² = 18.4	93 6, df = 2 5)	2 (P < 0.	0001); I	94 ² = 89	100.0% %	-0.54 [-1.47, 0.38]	Favours [experimental] Favours [d	
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	2.1 0.59; Chi Z = 1.15 Pregat	² = 18.4 (P = 0.2 palin gro	93 6, df = : 5) F	2 (P < 0. igure 4. Cont	0001); I Forest	94 1 ² = 89 1 plot 1 1	100.0% % for the met	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference	Favours [experimental] Favours [es at 24 h.	e a
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup	2.1 0.59; Chi Z = 1.15 Pregat Mean	² = 18.4 (P = 0.2 palin gro SD	93 6, df = : 5) F	2 (P < 0. igure 4. Cont	0001); I Forest rol grou	94 1 ² = 89 2 plot 1 2 plot 1 4 up Tota	100.0% % for the met	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random, 95% C	Favours [experimental] Favours [es at 24 h.	e a
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016	2.1 0.59; Chi Z = 1.15 Pregat <u>Mean</u> 1,126	² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 55) F oup <u>Total</u> 30	2 (P < 0. igure 4. <u>Cont</u> <u>Mean</u> 1,641.4	0001); I Forest rol grou SD 320.3	94 1 ² = 89 2 plot 1 2 plot 1 30 30	100.0% % for the met <u>I Weight</u>) 45.1%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference <u>IV. Random. 95% C</u> -1.68 [-2.28, -1.09]	Favours [experimental] Favours [es at 24 h.	e a
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² =	2.1 0.59; Chi Z = 1.15 Pregat <u>Mean</u> 1,126	² = 18.4 (P = 0.2 palin gro SD	93 6, df = 2 5) F	2 (P < 0. igure 4. <u>Cont</u> <u>Mean</u> 1,641.4	0001); I Forest rol grou	94 1 ² = 89 2 plot 1 2 plot 1 30 30	100.0% % for the met	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random, 95% C	Favours [experimental] Favours [es at 24 h.	e a
Eskandar 2013 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013	2.1 0.59; Chi Z = 1.15 Pregat <u>Mean</u> 1,126	² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 55) F oup <u>Total</u> 30	2 (P < 0. igure 4. <u>Cont</u> <u>Mean</u> 1,641.4	0001); I Forest rol grou SD 320.3	94 2 = 89 2 plot 1 2 plot 1 30 40	100.0% % for the met <u>I Weight</u>) 45.1%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% C -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43]	Favours [experimental] Favours [es at 24 h.	e a
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI)	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8	² = 18.4 (P = 0.2 palin gro SD 283.6 6.89	93 6, df = : 5) F Dup Total 30 40 70	2 (P < 0. igure 4. <u>Cont</u> 1,641.4 46.4	0001); I Forest rol grou SD 320.3 5.72	94 2 = 89 2 plot 1 2 plot 1 30 40 70	100.0% % for the met <u>I Weight</u>) 45.1%) 54.9%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference <u>IV. Random. 95% C</u> -1.68 [-2.28, -1.09]	Favours [experimental] Favours [des at 24h.	e a
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² =	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ²	² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F Total 30 40 70 df = 1 (2 (P < 0. igure 4. <u>Cont</u> 1,641.4 46.4	0001); I Forest rol grou SD 320.3 5.72	94 2 = 89 2 plot 1 2 plot 1 30 40 70	100.0% % for the met <u>I Weight</u>) 45.1%) 54.9%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% C -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43]	Favours [experimental] Favours [des at 24h.	e I 2
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: <u>Study or Subgroup</u> Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² =	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ²	² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 cdf = 1 (0001)	2 (P < 0. igure 4. <u>Cont</u> 1,641.4 46.4 P = 0.48	0001); I Forest rol grou 320.3 5.72	94 ¹² = 89 ¹² plot f Tota 30 40 70 %	100.0% % for the met <u>I Weight</u>) 45.1%) 54.9%) 100.0%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% C -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43]	Favours [experimental] Favours [des at 24h. Std. Mean Difference IV. Random. 95% C Favours [experimental] Favours [Favours [experimental] Favours [e I 2
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: <u>Study or Subgroup</u> Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² =	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ²	² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 cdf = 1 (0001)	2 (P < 0. igure 4. <u>Cont</u> 1,641.4 46.4 P = 0.48	0001); I Forest rol grou 320.3 5.72	94 ¹² = 89 ¹² plot f Tota 30 40 70 %	100.0% % for the met <u>I Weight</u>) 45.1%) 54.9%) 100.0%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% C -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44]	Favours [experimental] Favours [des at 24h. Std. Mean Difference IV. Random. 95% C Favours [experimental] Favours [Favours [experimental] Favours [e I 2
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group	2 (P < 0. igure 4. <u>Contr</u> 1,641.4 46.4 P = 0.48 ure 5. F	00001); I Forest 701 grou 320.3 5.72 5); I ² = 0 Forest p	94 94 12 = 89 12 = 89 13 = 89 14 = 89 14 = 89 15 = 89 16 = 10 = 10 16 = 10 17 = 89 16 = 10 16 = 10	100.0% % for the met 0 45.1% 0 54.9% 0 100.0%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% C -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic c Risk Ratio	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total	2 (P < 0. igure 4. Cont Mean 1,641.4 46.4 P = 0.48 ure 5. F Contr Even	00001); I Forest rol grou 320.3 5.72 c); I ² = 0	94 94 94 94 94 94 96 96 97 98 99 99 99 99 99 99 99 99 99	100.0% % for the met) 45.1%) 54.9%) 100.0% the meta- Weight	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic c Risk Ratio IV. Random. 95% CI	Favours [experimental] Favours [des at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total 30 30 30 30 30 30 40 30 30 30 40 30 30 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 50 50 50 50 50 50 50 50 50 5	2 (P < 0. igure 4. Contr Mean 1,641.4 46.4 P = 0.48 ure 5. F Contr Even 1	00001); I Forest rol grou 320.3 5.72 c); I ² = 0 Forest p	94 94 12 = 89 12 = 89 13 = 89 13 = 89 13 = 89 14 = 89 15 = 89 16 = 10 = 10 16 = 10 17 = 89 10 = 10 10 = 10 10 10 = 10 10 10 10 10 10 10 10 10 10	100.0% % for the met) 45.1%) 54.9%) 100.0% the meta- <u>Weight</u> 25.7%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic c Risk Ratio IV. Random. 95% CI 0.64 [0.29, 1.42]	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Clendenen 2010	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total 30 23	2 (P < 0. igure 4. Contr Mean 1,641.4 46.4 P = 0.48 ure 5. F Contr Event 1	00001); I Forest rol grou 320.3 5.72 c); I ² = 0 Forest p rol grou ts Tr 1 6	94 94 12 = 89 12 = 89 13 = 89 14 = 89 15 = 89 16 = 16 16 =	100.0% % for the met) 45.1%) 54.9%) 100.0% the meta- <u>Weight</u> 25.7% 23.0%	-0.54 [-1.47, 0.38] ta-analysis of pain score Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic of Risk Ratio IV. Random. 95% CI 0.64 [0.29, 1.42] 1.57 [0.66, 3.70]	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Clendenen 2010	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total 30 30 30 30 30 30 40 30 30 30 40 30 30 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 50 50 50 50 50 50 50 50 50 5	2 (P < 0. igure 4. Contr Mean 1,641.4 46.4 P = 0.48 ure 5. F Contr Event 1	00001); I Forest rol grou 320.3 5.72 c); I ² = 0 Forest p	94 94 12 = 89 12 = 89 13 = 89 13 = 89 13 = 89 14 = 89 15 = 89 16 = 10 = 10 16 = 10 17 = 89 10 = 10 10 = 10 10 10 = 10 10 10 10 10 10 10 10 10 10	100.0% % for the met) 45.1%) 54.9%) 100.0% the meta- <u>Weight</u> 25.7%	-0.54 [-1.47, 0.38] ta-analysis of pain scor Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic c Risk Ratio IV. Random. 95% CI 0.64 [0.29, 1.42]	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Clendenen 2010 Eskandar 2013	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total 30 23	2 (P < 0. igure 4. Contr Mean 1,641.4 46.4 P = 0.48 ure 5. F Contr Event 1	00001); I Forest rol grou 320.3 5.72 c); I ² = 0 Forest p rol grou ts Tr 1 6	94 1 ² = 89 1 ² =	100.0% % for the met) 45.1%) 54.9%) 100.0% the meta- <u>Weight</u> 25.7% 23.0%	-0.54 [-1.47, 0.38] ta-analysis of pain score Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic of Risk Ratio IV. Random. 95% CI 0.64 [0.29, 1.42] 1.57 [0.66, 3.70]	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Eskandar 2013 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016 Clendenen 2010 Eskandar 2013 Total (95% Cl)	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (² = 18.4 (P = 0.2)))))))))))))))))))	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total 30 40 23 40	2 (P < 0. igure 4. <u>Cont</u> 1,641.4 46.4 P = 0.48 ure 5. F <u>Cont</u> <u>Even</u> 1 2	00001); I Forest rol grou 320.3 5.72 c); I ² = 0 Forest p rol grou ts Tr 1 6	94 1 ² = 89 1 ² =	100.0% % for the met 0 45.1% 0 54.9% 0 100.0% r the meta- 25.7% 23.0% 51.4%	-0.54 [-1.47, 0.38] ta-analysis of pain score Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic of Risk Ratio IV. Random. 95% CI 0.64 [0.29, 1.42] 1.57 [0.66, 3.70] 0.73 [0.45, 1.17]	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]
Eskandar 2013 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Study or Subgroup Ahn 2016	2.1 0.59; Chi Z = 1.15 Pregat Mean 1,126 33.8 0.00; Chi ² Z = 9.04 (Prega Eve	$^{2} = 18.4$ (P = 0.2) palin grows 283.6 6.89 $^{2} = 0.50$, P < 0.00 balin g nts 7 9 16 32 hi ² = 2.8	93 6, df = 2 5) F oup Total 30 40 70 df = 1 (0001) Fig group Total 30 40 70 df = 1 (0001) Fig 30 80, df = 2 50 80 80 80 80 80 80 80 80 80 8	2 (P < 0. igure 4. Cont Mean 1,641.4 46.4 P = 0.48 ure 5. F Contr Even 1 2 3	00001); I Forest rol grou 320.3 5.72 b); I ² = 0 Forest p forest p to grou ts Tr 1 6 2 9	94 plot f plot f 70 % plot for yp otal 1 30 24 40 94	100.0% % for the met 0 45.1% 0 54.9% 0 100.0% c the meta- 25.7% 23.0% 51.4% 100.0%	-0.54 [-1.47, 0.38] ta-analysis of pain score Std. Mean Difference IV. Random. 95% CI -1.68 [-2.28, -1.09] -1.97 [-2.51, -1.43] -1.97 [-2.51, -1.43] -1.84 [-2.24, -1.44] -analysis of analgesic of Risk Ratio IV. Random. 95% CI 0.64 [0.29, 1.42] 1.57 [0.66, 3.70] 0.73 [0.45, 1.17] 0.84 [0.53, 1.33]	Favours [experimental] Favours [es at 24h. Std. Mean Difference IV. Random, 95% C Favours [experimental] Favours [onsumption.	e I 2 control]

should arthroscopy. Second, 2 studies report pregabalin use before the surgery,^[20,21] but the remaining study reports pregabalin after the surgery.^[22] Preventive analgesia is a type of treatment before surgical stimuli and aims to prevent the central sensitization of the dorsal horn caused by incisional injury. Pregabalin has the ability to reduce central sensitization and hyperalgesia after tissue injury by inhibiting calcium influx in voltage-gated calcium channels.^[40] Third, different procedures in shoulder arthroscopy produce various levels of pain intensity. Regarding the adverse events, the incidence of nausea, vomiting, and dizziness shows no statistical difference between 2 groups.

Our meta-analysis has included 3 RCTs and 187 patients at the follow-up of 1 to 24 hours, and allows the systematic assessment of pain intensity. Various procedures ranged from simple debridement to massive rotator cuff repair, which helps the general evaluation of pregabalin for shoulder arthroscopy. However, there are also several limitations. First, our analysis is based on 3 RCTs, and all of them have relatively small sample sizes (n < 100). Overestimation of the treatment effect is more likely in smaller trials compared with larger samples. Second, although there is no significant heterogeneity, different doses and methods of pregabalin, and various procedures may lead to some bias. Among the 3 included RCTs, 1 RCT involves the bankart repair and rotator cuff repair,^[20] another RCT just provides the information of should arthroscopy. Thus, it is difficult to divide them into different procedures for meta-analysis, and the metaanalysis of different procedures may produce some bias. Third, it is not feasible to perform the meta-analysis of some important index such as discharge time based on current RCTs. Fourth, regarding the concomitant medications or regional anesthesia, 2 RCTs report induction with propofol and remifentanil ^[20] or thiopental and atracurium,^[21] while the remaining RCT reports interscalene brachial plexus block with 30 mL of 0.5% ropivacaine,^[22] which may have some influence on the pain assessment of pregabalin assessment.

5. Conclusions

Pregabalin may be effective and safe to relieve the pain after shoulder arthroscopy.

Author contributions

Funding acquisition: Bo Du, Chunhong Liu. Investigation: Bo Du, Chunhong Liu. Software: Shuang Cheng. Validation: Yangming Jiang. Visualization: Ling Cheng.

Writing – original draft: Ling Cheng, Xiaohong Tan, Ke Qian. Writing – review & editing: Ling Cheng, Ke Qian.

Correction

The corresponding author originally appeared incorrectly as Ling Cheng. It has been corrected to Ke Qian.

References

- Maradit Kremers H, Schilz SR, Van Houten HK, et al. Trends in utilization and outcomes of hip arthroscopy in the united states between 2005 and 2013. J Arthrop 2017;32:750–5.
- [2] Kandil A, Safran MR. Hip arthroscopy: a brief history. Clin Sports Med 2016;35:321–9.
- [3] Brignardello-Petersen R, Guyatt GH, Buchbinder R, et al. Knee arthroscopy versus conservative management in patients with degenerative knee disease: a systematic review. BMJ Open 2017;7:e016114.
- [4] Gil JA, Gunaseelan V, DeFroda SF, Brummett CM, Bedi A, Waljee JF. Risk of prolonged opioid use among opioid-naïve patients after common shoulder arthroscopy procedures. Am J Sports Med 2019;47:1043–50.
- [5] Botser IB, Smith TWJr, Nasser R, Domb BG. Open surgical dislocation versus arthroscopy for femoroacetabular impingement: a comparison of clinical outcomes. Arthroscopy 2011;27:270–8.
- [6] Li C, Qu J. Efficacy of dexmedetomidine for pain management in knee arthroscopy: a systematic review and meta-analysis. Medicine (Baltimore) 2017;96:e7938.
- [7] Tepolt FA, Bido J, Burgess S, Micheli LJ, Kocher MS. Opioid overprescription after knee arthroscopy and related surgery in adolescents and young adults. Arthroscopy 2018;34:3236–43.
- [8] Tong D, Chung F. Postoperative pain control in ambulatory surgery. Surg Clin North Am 1999;79:401–30.
- [9] Chen X, Mou X, He Z, Zhu Y. The effect of midazolam on pain control after knee arthroscopy: a systematic review and meta-analysis. J Orthop Surg Res 2017;12:179.
- [10] Nicholson T, Maltenfort M, Getz C, Lazarus M, Williams G, Namdari S. Multimodal pain management protocol versus patient controlled narcotic analgesia for postoperative pain control after shoulder arthroplasty. Arch Bone Jt Surg 2018;6:196–202.
- [11] Jung HS, Seo KH, Kang JH, Jeong J-Y, Kim Y-S, Han N-R. Optimal dose of perineural dexmedetomidine for interscalene brachial plexus block to control postoperative pain in patients undergoing arthroscopic shoulder surgery: a prospective, double-blind, randomized controlled study. Medicine (Baltimore) 2018;97:e0440.
- [12] Calvo E, Torres MD, Morcillo D, Leal V. Rotator cuff repair is more painful than other arthroscopic shoulder procedures. Arch Orthop Trauma Surg 2019;139:669–74.
- [13] Feng M, Chen X, Liu T, Zhang C, Wan L, Yao W. Dexmedetomidine and sufentanil combination versus sufentanil alone for postoperative intravenous patient-controlled analgesia: a systematic review and meta-analysis of randomized controlled trials. BMC Anesthesiol 2019;19:81.
- [14] Ekinci M, Ciftci B, Celik EC, Köse EA, Karakaya MA, Ozdenkaya Y. A randomized, placebo-controlled, double-blind study that evaluates

efficacy of intravenous ibuprofen and acetaminophen for postoperative pain treatment following laparoscopic cholecystectomy surgery. J Gastrointest Surg 2019;24:780–5.

- [15] Chandrakantan A, Glass PSA. Multimodal therapies for postoperative nausea and vomiting, and pain. Br J Anaesth 2011;107(Suppl_1):i27–40.
- [16] American Society of Anesthesiologists Task Force on Acute Pain Management.Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012;116:248–73.
- [17] Dong J, Li W, Wang Y. The effect of pregabalin on acute postoperative pain in patients undergoing total knee arthroplasty: a meta-analysis. Int J Surg 2016;34:148–60.
- [18] Grant MC, Betz M, Hulse M, et al. The effect of preoperative pregabalin on postoperative nausea and vomiting: a meta-analysis. Anesth Analg 2016;123:1100–7.
- [19] Zhang D, You G, Yao X. Influence of pregabalin on post-operative pain after laparoscopic cholecystectomy: a meta-analysis of randomised controlled trials. J Minim Access Surg 2020;16:99–105.
- [20] Ahn S, Byun SH, Park K, Ha JL, Kwon B, Kim JC. Analgesic efficacy of preemptive pregabalin administration in arthroscopic shoulder surgery: a randomized controlled trial. Can J Anesth 2016;63:283–9.
- [21] Eskandar AM, Ebeid AM. Effect of pregabalin on postoperative pain after shoulder arthroscopy. Egyptian J Anaesth 2013;29:363–7.
- [22] Clendenen S, Rajendran S, Kopacz D, et al. Pregabalin as an adjunct to a multimodal analgesic regimen to achieve opioid sparing in arthroscopic rotator cuff repair. Romanian J Anaesth Intensive Care 2010;17: 5–10.
- [23] Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- [24] Zhao J, Huang W, Zhang S, et al. Efficacy of glutathione for patients with cystic fibrosis: a meta-analysis of randomized-controlled studies. Am J Rhinol Allergy 2019;34:115–21.
- [25] Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1–12.
- [26] Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in metaanalyses. Ann Intern Med 2001;135:982–9.
- [27] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58.

- [28] Serbest S, Tiftikçi U, Askın A, Yaman F, Alpua M. Preoperative and postoperative sleep quality evaluation in rotator cuff tear patients. Knee Surg Sports Traumatol Arthrosc 2017;25:2109–13.
- [29] Şahan MH, Serbest S, Tiftikçi U, Durgut E, İnal M. Evaluation of arthroscopic rotator cuff repair results in patients with anterior greater tubercle cysts. J Orthop Surgery (Hong Kong) 2019;27: 2309499019825602.
- [30] Hurley ET, Maye AB, Thompson K, et al. Pain control after shoulder arthroscopy: a systematic review of randomized controlled trials with a network meta-analysis. Am J Sports Med 2020;49:2262–71.
- [31] Ciccone WJII, Busey TD, Weinstein DM, Walden DL, Elias JJ. Assessment of pain relief provided by interscalene regional block and infusion pump after arthroscopic shoulder surgery. Arthroscopy 2008; 24:14–9.
- [32] Price D. The shoulder block: a new alternative to interscalene brachial plexus blockade for the control of postoperative shoulder pain. Anaesth Intensive Care 2007;35:575–81.
- [33] Delaunay L, Souron V, Lafosse L, Marret E, Toussaint B. Analgesia after arthroscopic rotator cuff repair: subacromial versus interscalene continuous infusion of ropivacaine. Reg Anesth Pain Med 2005; 30:117–22.
- [34] Fredrickson M, Krishnan S, Chen C. Postoperative analgesia for shoulder surgery: a critical appraisal and review of current techniques. Anaesthesia 2010;65:608–24.
- [35] Kehlet H, Dahl JB. The value of "multimodal" or "balanced analgesia" in postoperative pain treatment. Anesth Analg 1993;77:1048–56.
- [36] Hurley RW, Chatterjea D, Feng MR, Taylor CP, Hammond DL. Gabapentin and pregabalin can interact synergistically with naproxen to produce antihyperalgesia. Anesthesiology 2002;97:1263–73.
- [37] Agarwal A, Gautam S, Gupta D, Agarwal S, Singh P, Singh U. Evaluation of a single preoperative dose of pregabalin for attenuation of postoperative pain after laparoscopic cholecystectomy. Br J Anaesth 2008;101:700–4.
- [38] Yadeau JT, Paroli L, Kahn RL, et al. Addition of pregabalin to multimodal analgesic therapy following ankle surgery: a randomized double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2012; 37:302–7.
- [39] Jokela R, Ahonen J, Tallgren M, Haanpää M, Korttila K. Premedication with pregabalin 75 or 150 mg with ibuprofen to control pain after daycase gynaecological laparoscopic surgery. Br J Anaesth 2008;100:834–40.
- [40] Shneker BF, McAuley JW. Pregabalin: a new neuromodulator with broad therapeutic indications. Ann Pharmacother 2005;39:2029–37.