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Abstract 
Infection with SARS-CoV-2 is expected to result in substantial 
reorganization of host cell RNA metabolism. We identified 14 proteins 
that were predicted to interact with host RNAs or RNA binding 
proteins, based on published data for SARS-CoV and SARS-CoV-2. 
Here, we describe a series of affinity-tagged and codon-optimized 
expression constructs for each of these 14 proteins. Each viral gene 
was separately tagged at the N-terminus with Flag-His8, the C-
terminus with His8-Flag, or left untagged. The resulting constructs 
were stably integrated into the HEK293 Flp-In T-REx genome. Each 
viral gene was expressed under the control of an inducible Tet-On 
promoter, allowing expression levels to be tuned to match 
physiological conditions during infection. Expression time courses 
were successfully generated for most of the fusion proteins and 
quantified by western blot. A few fusion proteins were poorly 
expressed, whereas others, including Nsp1, Nsp12, and N protein, 
were toxic unless care was taken to minimize background expression. 
All plasmids can be obtained from Addgene and cell lines are 
available. We anticipate that availability of these resources will 
facilitate a more detailed understanding of coronavirus molecular 
biology.
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Introduction
SARS-CoV-2 is a large positive-sense, single-stranded RNA 
virus that encodes four structural proteins, several accessory pro-
teins, and sixteen nonstructural proteins (nsp1-16) (Figure 1).  
The latter are mainly engaged in enzymatic activities impor-
tant for translation and replication of the RNA genome. In addi-
tion, nonstructural proteins also target host RNA metabolism 
in order to manipulate cellular gene expression or facilitate 
immune evasion (Gordon et al., 2020; Thoms et al., 2020; Yuen  
et al., 2020). Understanding these pathways in greater detail  
will be an important step in the development of antiviral therapies.

Our lab has previously developed techniques to map the  
RNA-bound proteome, including crosslinking and analysis of 
cDNA (CRAC), to identify binding sites for proteins on RNA, 
and total RNA-associated proteome purification (TRAPP) to  
identify and quantify the RNA-bound proteome (Granneman 
et al., 2009; Shchepachev et al., 2019). Among other things,  
TRAPP has given insights into the mechanism of stress-induced 
translation shutdown in yeast (Bresson et al., 2020b). In the  
context of SARS-CoV-2, CRAC is expected to identify host 
RNAs that are targeted by viral factors, while TRAPP will reveal 
how host cell RNA-protein interactions are globally remodeled  
in response to specific viral proteins.

To facilitate application of these techniques to SARS-CoV-2, 
we generated a series of synthetic, codon-optimized constructs 
for 14 different viral proteins that are expected to interact 
with RNA or RNA binding proteins. To remove the need for 
error-prone PCR steps, we devised a cloning scheme in which 
a single synthetic construct could be used to generate untagged,  
N-, or C-terminally tagged versions of the protein. Using these 
vectors, we generated and tested a series of human cell lines 
with the viral open reading frames (ORFs) stably integrated, 
under the control of an inducible Tet-On promoter. We expect 
that broad availability of this collection will enable a deeper  
understanding of the coronavirus life cycle and its impact  
on host RNA biology.

Results and discussion
Design and cloning of viral expression constructs
We selected 14 proteins for initial analysis, based on putative 
roles in viral or host RNA metabolism (Figure 1 and Table 1). 
Two of the selected proteins, Nsp7 and Nsp8, reportedly form a 
stable heterodimer in vivo (Gao et al., 2020; Hillen et al., 2020;  
te Velthuis et al., 2012), so we also designed constructs in  
which Nsp7 and Nsp8 were expressed as a fusion protein,  
connected by a short, unstructured linker.

For cloning, we selected pcDNA5-FRT/TO (Thermo Fisher) 
as the backbone vector (Figure 2A). This vector can be used 
for transient transfection or flippase (Flp) recombinase-medi-
ated integration into the genome of cells with a pre-inserted Flp  
Recombination Target (FRT). It also carries a hygromycin 
resistance gene to allow selection for integration (Figure 2). 
As host cells, we used HEK293 Flp-In T-REx cells (293FiTR),  
but other cell lines that carry an FRT site could also be used.

The expression levels of viral proteins vary substantially  
during infection, so we used constructs that, in addition to  
stably integrating, were expressed under the control of a  
tetracycline-regulated human cytomegalovirus (CMV)⁄TetO2 
promoter, which is induced by the addition of doxycycline to 
the medium (Figure 2). Viral protein expression can then be 
titrated by varying either doxycycline concentration or induction  
time.

Using pcDNA5-FRT/TO as a starting point, we generated two 
additional parental vectors with pre-inserted tandem-affinity puri-
fication tags, either an N-terminal, FH-tag (FLAG-Ala

4
-His

8
)  

or C-terminal HF-tag (His
8
-Ala

4
-FLAG) (Figure 2A). We have 

recently shown that these tags work well for tandem affin-
ity purification, including in the denaturing conditions used for  
CRAC (Bresson et al., 2020b).

Each synthetic construct was codon-optimized and included 
a consensus Kozak sequence upstream of the start codon  

Figure 1. SARS-CoV-2 genome organization. The viral genome consists of a ~30 kb positive-sense transcript that is capped and 
polyadenylated. Two overlapping open reading frames (ORFs) are translated from the genomic RNA, ORF1a and ORF1ab. Translation of the 
ORF1b region is mediated by a -1 frameshift allowing readthrough of the stop codon at the end of ORF1a. ORF1a and ORF1ab encode large 
polyproteins that are cleaved into 16 nonstructural proteins. Structural and accessory proteins (shown in blue and pink, respectively) are 
separately translated from subgenomic RNAs. ORFs selected for tagging are highlighted in green.
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Table 1. Predicted molecular weights and putative functions of selected open reading frames (ORFs).

ORF Size 
(aa)

Putative function References

Nsp1 180 Suppresses host translation; binds 40S ribosomal 
subunit

(Huang et al., 2011; Lokugamage et al., 2012; Tanaka et al., 2012; 
Thoms et al., 2020)

Nsp2 638 Unknown function; binds eIF4E (Gordon et al., 2020)

Nsp5 306 CL3 Mpro; Protease (3C-like) (Kneller et al., 2020; Muramatsu et al., 2016)

Nsp7 83 RNA polymerase cofactor (Gao et al., 2020; Hillen et al., 2020)

Nsp8 198 RNA polymerase cofactor; poly(A) polymerase (Gao et al., 2020; Hillen et al., 2020; Tvarogova et al., 2019)

Nsp9 113 ssRNA binding (Egloff et al., 2004; Littleret al., 2020; Sutton et al., 2004)

Nsp10 139 Cap methylation complex (Chen et al., 2011; Krafcikova et al., 2020; Viswanathan et al., 2020)

Nsp12 932 RNA polymerase catalytic subunit (Gao et al., 2020; Hillen et al., 2020)

Nsp13 601 RNA helicase; cap tri-phosphatase (Jang et al., 2020) (Tanner et al., 2003)

Nsp14 527 3’ exoribonuclease (NTD); RNA cap N7 
methyltransferase (CTD)

(Ma et al., 2015) (Eckerle et al., 2010; Ogando et al., 2020)

Nsp15 346 Uridine-specific RNA endoribonuclease (Bhardwaj et al., 2004)

Nsp16 298 RNA 2’-O-methyltransferase (Chen et al., 2011; Krafcikova et al., 2020; Viswanathan et al., 2020)

Orf6 61 Blocks nuclear-cytoplasmic transport; significantly 
diverged between SARS-CoV and SARS-CoV-2

(Frieman et al., 2007; Gussow et al., 2020; Li et al., 2020;  
Sims et al., 2013)

N 418 Nucleocapsid phosphoprotein (Cascarina & Ross, 2020; Chang et al., 2014; Cubuk et al., 2020)

(Figure 2B). The sequences initially used for all ORFs were  
generated by the algorithms used by Integrated DNA  
Technologies (IDT; Coralville, Iowa). The prevalence of G-C 
base pairs, particularly in the third position of codons (GC3), 
is strongly correlated with increased protein accumulation  
(Kudla et al., 2006; Mordstein et al., 2020). To potentially 
enhance protein synthesis, we ordered alternative ORFs for 
Nsp8, Nsp13, and N, using the algorithms from GeneArt  
(Thermo-Fisher Scientific), which have a higher G-C content,  
particularly in third codon positions.

The insert sequences were designed such that a single  
synthetic construct could be used to generate an untagged, 
or N- or C-terminal fusion protein (Figure 2B). BamHI and 
EcoRV restriction sites were placed on either side of the open 
reading frame, together with an AvrII site overlapping the 
stop codon (important for C-terminal cloning, as discussed  
below).

Generating the untagged and N-terminal tagged constructs 
was straightforward. The synthetic constructs were cut with 
BamHI and EcoRV and ligated into pre-cut vector, either  
pcDNA5-FRT/TO (generating an untagged construct), or  
pcDNA5-FRT/TO-N-Flag-His8 (generating an N-terminally 
tagged construct) (Figure 2C). The resulting plasmids were  
verified by colony PCR and Sanger sequencing.

Generating the C-terminal tagged construct required  
additional steps to remove the in-frame stop codon upstream 

of the EcoRV restriction site. Cleavage of the AvrII restriction 
site, which overlaps the stop codon in the synthetic constructs  
(Figure 2B), left a 5′ overhang containing the stop codon. Sub-
sequently, the overhang (and thus the stop codon) was removed 
by treatment with Mung Bean Nuclease, an ssDNA endonu-
clease (Figure 2C). The resulting fragment possessed a blunt 
3′ end, compatible with the EcoRV restriction site in the target 
vector. Subsequently, the 5′ end of the insert was prepared by 
digestion with BamHI, and the resulting fragment was ligated 
into pcDNA5-FRT/TO-C-His8-Flag pre-cut with BamHI and  
EcoRV.

In total, we generated 54 viral protein expression vectors, and 
three additional GFP expression vectors as controls. These con-
structs, together with the parental tagging vectors, are listed in  
Table 2.

Expression of fusion proteins
Each construct was introduced into Flp-In T-REx cells (Thermo 
Fisher) by transfection, followed by hygromycin treatment 
for 10–16 days to select for chromosomal integration  
(Figure 2E). In the initial experiments, all constructs except 
the Nsp1 series, and the GC3 (high-expression) optimized ver-
sions of untagged N and FH-N protein yielded stable hygromy-
cin-resistant cells (Table 2, column 4). Resistant clones were 
obtained for FH-N by co-transfecting this construct with a plas-
mid encoding a tetracycline repressor protein (pcDNA6/TR), 
to suppress possible high levels of FH-N expression at initial  
transfection.
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Figure 2. Schematics illustrating the cloning strategy. (A) The three parental vectors used for generating untagged, N-, and C-terminally 
tagged constructs. (B) Features common to all synthesized insert sequences. Each insert included BamHI and EcoRV sites at either end to 
facilitate cloning into the three parental vectors. To allow for C-terminal cloning, an AvrII site was inserted such that it overlapped the stop 
codon (see text for details). In order to accommodate the AvrII site, an alanine residue was added to the end of each expression construct. 
The viral open reading frames (ORFs) were codon-optimized for moderate or high expression, and lacked BamHI, AvrII, and EcoRV sites.  
(C) For untagged and N-terminal tagging, inserts were digested with BamHI and EcoRV and ligated directly into plasmid precut with the 
same enzymes. For C-terminal cloning, the inserts were first digested with AvrII, blunted with Mung Bean Nuclease, and then cut with 
BamHI. The resulting fragment was ligated into plasmid cut with BamHI and EcoRV. (D) Untagged, N-, and C-terminally tagged expression 
constructs. (E) Strategy for generating stable cell lines (see text for details).
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Table 2. List of available plasmids and cell lines.

Protein Plasmid 
number

Tag Stable 
cell line

Induction

pcDNA5-FRT-TO untagged

pcDNA5-FRT-TO-N-Flag-His8 pSB084 N-terminal FH

pcDNA5-FRT-TO-C-His8-Flag pSB085 C-terminal HF

eGFP 56 untagged yes

eGFP 55 N-terminal FH yes +++

eGFP 57 C-terminal HF yes +++

N protein 10 untagged yes

N protein 22 N-terminal FH yes ++

N protein (GC3 opt.) 28 untagged no

N protein (GC3 opt.) 31 N-terminal FH yes +++

N protein (GC3 opt.) 54 C-terminal HF yes +++

Nsp1 1 untagged no

Nsp1 12 N-terminal FH no N/A

Nsp1 39 C-terminal HF no N/A

Nsp2 2 untagged yes

Nsp2 33 N-terminal FH yes ++

Nsp2 40 C-terminal HF yes +++

Nsp5 3 untagged yes

Nsp5 13 N-terminal FH yes +++

Nsp5 41 C-terminal HF yes +++

Nsp7 4 untagged yes

Nsp7 14 N-terminal FH yes -

Nsp7 42 C-terminal HF yes +

Nsp7-Nsp8 (GC3 opt.) 26 untagged yes

Nsp-Nsp8 (GC3 opt.) 29 N-terminal FH yes +

Nsp7-Nsp8 (GC3 opt.) 53 C-terminal HF yes +++

Nsp8 5 untagged yes

Nsp8 15 N-terminal FH yes +

Nsp8 43 C-terminal HF yes -

Nsp8 (GC3 opt.) 35 untagged yes

Nsp8 (GC3 opt.) 37 N-terminal FH yes +

Nsp8 (GC3 opt.) 50 C-terminal HF yes ++

Nsp8-Nsp7 (GC3 opt.) 27 untagged yes

Nsp8-Nsp7 (GC3 opt.) 30 N-terminal FH yes ++

Nsp8-Nsp7 (GC3 opt.) 52 C-terminal HF yes +++

Nsp9 6 untagged yes
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For expression analyses, doxycycline was added to the cell  
culture medium to a final concentration of 1 μg ml-1, and time-
points were collected for analysis by western blot. A prominent 
cross-reacting band visible in all samples was used as a load-
ing control for most analyses. The exceptions were Nsp15 and 
Nsp12, for which anti-M2-Flag and GAPDH were used, as they 
have migration positions close to the cross-reacting band. Rep-
resentative data are shown in Figure 3B–C; all other western 
scans are shown in Figure 4. Quantitation is shown in Figure 5, 
and associated raw data are provided as Underlying data. Clear  
protein expression was observed for 29 of the 34 tagged constructs  
(Table 2, column 5). In general, C-terminal tagged proteins 
were more highly expressed than their N-terminally tagged  
counterparts.

As described above, we were initially unable to generate  
stable cell lines for any of the Nsp1 constructs. To confirm that 
Nsp1 could be expressed in cells, we transiently transfected each 

construct into 293FiTR cells, and confirmed protein expres-
sion by western blot. Only the C-terminally tagged Nsp1 showed  
robust expression (Figure 6).

To allow absolute quantification of SARS-CoV-2 protein  
expression, we used the N-terminally tagged N protein (inte-
grated from plasmid 22; moderate expression) as a reference  
standard. Cells containing integrated FH-N were treated with 
doxycycline for 0, 6, and 18 hours. Protein was extracted,  
separated by SDS-PAGE and analyzed using mass spectrom-
etry with label-free quantification. To compare proteins, their  
abundance was expressed as a percentage of the total  
proteome. This value was calculated using the relative,  
intensity-based absolute quantification (riBAQ) score for each  
protein, which represents the iBAQ score for a given protein 
divided by the iBAQ scores for all proteins. After induction for 
six hours, N protein comprised 0.2% of the cellular proteome  
(Figure 3A).

Protein Plasmid 
number

Tag Stable 
cell line

Induction

Nsp9 16 N-terminal FH yes -

Nsp9 44 C-terminal HF yes +

Nsp10 7 untagged yes

Nsp10 17 N-terminal FH yes -

Nsp10 45 C-terminal HF yes -

Nsp12 18 N-terminal FH yes

Nsp12 25 untagged yes +

Nsp12 46 C-terminal HF yes +

Nsp13 32 untagged yes

Nsp13 34 N-terminal FH yes +

Nsp13 (GC3 opt.) 36 untagged yes

Nsp13 (GC3 opt.) 38 N-terminal FH yes +

Nsp13 (GC3 opt.) 51 C-terminal HF yes +++

Nsp14 23 untagged yes

Nsp14 19 N-terminal FH yes +

Nsp14 47 C-terminal HF yes +

Nsp15 8 untagged yes

Nsp15 20 N-terminal FH yes ++

Nsp15 48 C-terminal HF yes ++

Nsp16 9 untagged yes

Nsp16 21 N-terminal FH yes ++

Nsp16 49 C-terminal HF yes +++

Orf6 11 untagged yes

Orf6 24 N-terminal FH yes -
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Figure 3. Viral protein induction. (A) Quantification of N protein abundance following a 0, 6, or 18 h induction. Protein levels were assessed 
by mass spectrometry and label-free quantification, and expressed as a percentage of the total cellular proteome. (B) A representative blot 
showing induction for C-terminally tagged Nsp2 (lanes 2–7). A prominent cross-reacting band was used as a loading control. To quantify 
protein abundance, each blot included a normalization standard (lane 1), consisting of lysate from cells expressing N-terminally tagged N 
protein for 6 h derived from (A). (C) Quantification of the protein bands in (B). Expression was normalized to both the loading control and 
the N protein standard.

Figure 4. Viral protein induction western blots. As Figure 3B, but showing the proteins indicated.
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Figure 5. Viral protein induction western blot quantitation. As Figure 3C, but showing the proteins indicated.

Figure 6. Transient transfection of FH-Nsp1 (derived from 
plasmid 12) and Nsp1-HF (derived from plasmid 39). Protein 
expression was assessed following induction from 3 to 24 h.

Because all of the tagged proteins possessed an identical FLAG 
epitope, aliquots of this 6h N protein sample could then be used 
as a reference standard on all subsequent western blots (e.g. 
lane 1 in Figure 3B), to allow similar abundance estimates for  
the other viral proteins (Figure 4; see Underlying data). This 
approach allows viral protein levels to be carefully titrated, 
so that protein induction approximately matches physiologi-
cal conditions. This is important because different viral proteins 

show extreme differences in expression during infection. The  
nucleocapsid (N) protein can represent 2% of total protein, 
whereas the non-structural proteins may be 2 to 3 orders of  
magnitude less abundant (Finkel et al., 2020; Grenga et al.,  
2020). Moreover, all proteins will vary in their abundance  
throughout the course of infection.

Conclusions
There has been a large amount of research activity surrounding 
COVID-19 but, understandably, this has predominately focused 
on epidemiology and the development of anti-viral strategies. 
The fundamental biology of SARS-CoV-2 infection has been 
relatively less addressed, and we aim to help fill this gap. To  
facilitate this process, we report the construction of 57 expres-
sion vectors and cell lines. The plasmids can be obtained from 
Addgene and cell lines are available. We expect that these col-
lections will be a valuable resource for future research into the 
mechanisms by which coronavirus exploits the genetic machinery  
of its host to facilitate its own replication.
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Methods
Construction of expression vectors
All viral genes were cloned into each of three parental  
vectors: pcDNA5-FRT-TO (to generate an untagged version of the 
protein), pcDNA5-FRT-TO-N-Flag-His8 (N-terminal tag), and 
pcDNA5-FRT-TO-C-His8-Flag (C-terminal tag). The N-terminal 
tag consisted of a single Flag motif, a four-alanine spacer, eight 
consecutive histidine residues, and a short unstructured linker  
(DYKDDDDKAAAAHHHHHHHHGSG). The C-terminal tag  
was essentially the same but in reverse (SGGHHHHHHHHAAA 
ADYKDDDDK). Oligos used and sequences of fusion constructs 
are provided as Underlying data.

Construction of pcDNA5-FRT-TO-N-Flag-His8. To generate 
the Flag-His8 tag, we first designed partially complemen-
tary DNA oligonucleotides (oSB707 and oSB708) containing 
the Flag-His sequence. These oligos contained 20 nucleotides 
of complementarity at their 3′ ends, and an additional 35–36  
nucleotides at their 5′ ends. The oligos were annealed in a 
reaction consisting of 12.5 µM forward oligo and 12.5 µM  
reverse oligo in a 40 µL reaction volume. The hybridization  
reaction was initially incubated at 95°C for 6 min, and gradually 
decreased to 25°C at the rate of 1.33°C/min. Subsequently, 
the annealed oligos were incubated in the same buffer sup-
plemented with 250 µM dNTPs and 5U Klenow exo- (NEB) 
in a 50µL reaction at 37°C to fill in the single-stranded regions.  
After 1 hour, the insert sequence was purified on a silica column 
(Oligo Clean & Concentrator, Zymo Research, Cat No. D4060).

The insert fragment was then digested with restriction enzymes 
to facilitate cloning into the acceptor plasmid pcDNA5-FRT-
TO. The insert was digested at 37°C for 2 hours in a reaction 
consisting of 800 ng of DNA, 1X Cutsmart buffer (NEB),  
40U HindIII-HF (NEB, Cat No. R3104), and 40U BamHI-HF 
(NEB, Cat No. R3136). Subsequently, the DNA was purified, 
as above. In parallel, pcDNA5-FRT-TO was digested under 
identical conditions but with 2 μg of DNA. The digested DNA 
was subsequently purified on a silica column (QIAquick  
PCR Purification Kit, Qiagen, Cat No. 28104). To prevent self-
ligation, the vector DNA was phosphatase treated in a reaction 
consisting of ~2 μg of DNA, 50mM Bis-Tris-Propane-HCl pH 6, 
1 mM MgCl

2
, 0.1 mM ZnCl

2
, and 5U of Antarctic phosphatase 

(NEB, Cat No. M0289) at 37°C for 40 minutes. The DNA was  
again purified.

Finally, the digested Flag-His insert sequence was ligated into 
the digested and phosphatase-treated pcDNA5-FRT-TO accep-
tor plasmid. The ligation reaction consisted of 0.013 pmol  
vector, 0.042 pmol insert, 50 mM Tris-HCl 7.5, 10 mM MgCl

2
,  

1 mM ATP, 10 mM DTT, and 400U of T4 DNA ligase (NEB, Cat  
No. M0202) in a 20 µL reaction volume. The ligation mix was 
transformed into homemade DH5α E. coli, and plated overnight  
on LB-Amp. DNA was isolated from several colonies and  
sequenced to ensure correct insertion of the Flag-His sequence.

Construction of pcDNA5-FRT-TO-C-His8-Flag. The pcDNA5-
FRT-TO-C-His8-Flag sequence was generated as described 
above for the N-terminal tagging vector, with the following 
changes: 1) the oligos used for hybridization were oSB709 and  

oSB710, and 2) the insert and pcDNA5-FRT-TO were digested 
with 40U of EcoRV-HF (NEB, Cat No. R3195) and 40U of XhoI  
(NEB, Cat No. R0146).

Cloning of untagged and N-terminally tagged viral genes. 
pcDNA5-FRT-TO and pcDNA-FRT-TO-N-Flag-His8 were 
each digested in a 50 µL reaction consisting of 2 µg DNA, 1X  
Cutsmart buffer, 20U of BamHI-HF, and 20U of EcoRV-HF 
at 37°C for two hours. In parallel, 2 µg of plasmid (KanR)  
containing the desired viral gene was digested under identical 
conditions. All three reactions were purified using a PCR cleanup 
kit (QIAquick PCR Purification Kit, Qiagen, Cat No. 28106)  
Subsequently, the acceptor plasmids were phosphatase treated  
as described above and again purified using a PCR cleanup kit.

Digested vector and insert were ligated together in a reaction 
consisting of 40 ng vector, 120 ng insert, 50 mM Tris-HCl 7.5, 
10 mM MgCl

2
, 1 mM ATP, 10 mM DTT, and 400 U of T4 DNA 

ligase (NEB) in a 10 reaction volume. The ligation mix was 
transformed into homemade DH5α E. coli, and plated overnight 
on LB-Amp. Colony PCR was performed using oAH195-196 
to verify the presence of the insert: colonies were picked into  
100 µL of Lysogeny broth (LB), and 1 µL of this mix used as 
input in a 12.5 µL reaction containing 0.5 µM of each primer and 
a final 1x dilution of Q5 High-Fidelity 2X Master Mix (NEB, 
Cat No. M0492). PCR cycling was done in a Kyratec SC300 
SuperCycler with the following programme: 98°C for 30 s, then 
30 cycles of 98°C for 5 s, 65°C for 20 s and 72°C for 30 s. Final 
extension was done for 2 minutes at 72°C. Products were run on 
a 2% agarose gel and visualised with SYBR Safe DNA Gel Stain  
(ThermoFisher, Cat No. S33102).

A positive colony for each construct was grown overnight in 
LB-Amp, and plasmids purified with QIAprep Spin Miniprep 
Kit (Qiagen, Cat No. 27106). 30 ng of plasmid was submitted 
for Sanger sequencing at the Medical Research Council Protein 
Phosphorylation and Ubiquitylation Unit (MRC PPU, Dundee,  
UK).

Cloning of C-terminally tagged viral genes. To prepare the 
backbone, 2 µg of pcDNA5-FRT-TO-C-His8-Flag was digested 
with BamHI-HF and EcoRV-HF, as above, followed by DNA 
purification. To prepare viral gene inserts, 1 µg of pUC contain-
ing the relevant gene was initially digested with AvrII (NEB,  
Cat No. R0174S) in the same reaction conditions followed by 
purification. The 5’ overhang, encoding the stop codon, was 
then removed by digestion with Mung Bean Nuclease (NEB, 
Cat No. M0250): 1 U of Mung Bean Nuclease was added to 
1 µg of digested vector in 30 µl of 1x Cutsmart buffer, and  
incubated for 30 minutes at 30 °C. After purification, the final 
insert was produced by digestion with BamHI-HF. The insert  
was then ligated into the backbone after purification, follow-
ing procedure described above with a 4:1 molar ratio of insert  
to backbone.

Cloning of eGFP controls. The eGFP insert was amplified using 
pEGFP-N2 (Clontech) as a template and the DNA oligonucle-
otides oAH211 and oAH212 (untagged and N-terminal cloning) 
or oAH211 and oAH213 (C-terminal cloning). Subsequently, 
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the PCR-generated inserts were cloned into pcDNA5-FRT-TO, 
pcDNA-FRT-TO-N-Flag-His8, and pcDNA5-FRT-TO-C-His8-Flag  
as described above for the viral constructs.

Cell culture and transfection
Generation of stable cell lines. HEK293 Flp-In T-REx cells 
(Thermo Fisher, Cat No. R78007) were cultured at 37°C 
with 5% CO

2
 in DMEM (Thermo-Fisher, Cat No.10566016)  

supplemented with 10% tetracycline-tested FBS (Sigma, Cat No.  
F2442), 100 µg/mL Zeocin (Alfa Aesar, Cat No. J67140.8X), and 
15 µg/mL Blasticidin S (Sigma, Cat No.15205). Approximately 
1×106 cells were seeded without antibiotics on six-well plates  
24 hours prior to transfection. The following day, the viral  
expression constructs and pOG44 (the FRT recombinase) were  
co-transfected in a 1:9 ratio (1 µg total DNA/well) using  
Lipofectamine 2000 (3 µl/well) (Thermo-Fisher, Cat No. 11668030) 
according to the manufacturer’s protocol.

The medium was replaced approximately five hours later to 
remove the transfection reagents. The next day, the cells were 
split to a 10 cm plate, and after an additional 24 hours, hygro-
mycin B (150 µg/mL) and blasticidin S (15 µg/mL) were added 
to the medium. Stable integrants were selected over the course  
of 10–16 days, with medium replacement at regular intervals. 
Thereafter, stable cell lines were maintained in hygromycin B  
and blasticidin S.

For the FH-N constructs that initially yielded no colonies,  
transfection was repeated with the addition of pcDNA6/TR  
(Invitrogen, Cat No. V102520), encoding the tetracycline 
repressor protein: total transfected DNA was kept at 1 µg, with 
pcDNA5/FRT-TO, pcDNA6/TR and pOG44 used at a ratio of  
1:4.5:4.5.

Transient transfection of Nsp1. Approximately 2×105 cells 
were seeded without antibiotics on 24-well plates. The follow-
ing day, 0.2 µg of FH-Nsp1 or Nsp1-HF was transfected into cells 
using Lipofectamine 2000 (Thermo-Fisher, Cat No. 11668030)  
according to the manufacturer’s protocol.

Induction tests
For induction tests, 1–2×105 cells were plated into six wells each 
of a 24-well plate. The following day, the cells were induced 
with 1 µg/mL of doxycycline, and harvested at varying time-
points by resuspending the cells in 50–100 µL of 1X Passive  
Lysis Buffer (Promega, Cat No. E1941). Inductions were stag-
gered so that all timepoints could be harvested simultaneously. 
For the transient transfection experiments, cells were induced 
two hours post-transfection with 1 µg/mL of doxycycline. As 
with the stable cell lines, inductions were staggered and all  
timepoints were harvested at once.

For proteins larger than 20 kDa, cell lysates were resolved on  
4–12% Bis-Tris gels, run at 180V for 1h in 1X MOPS  
(ThermoFisher, Cat No. NP0001). For smaller proteins, lysates 
were run for 25 min in MES buffer (Thermo Fisher, Cat No. 
NP0002). Proteins were wet transferred onto PVDF membrane 
(Millipore, Cat No. IPFL00010), blocked with 5% skimmed milk 
and probed successively with anti-Flag (Agilent, 200474-21; rat 

monoclonal antibody) and anti-Rat (Licor, 926-68076; goat poly-
clonal antibody). This anti-Flag antibody generated a prominent 
cross-reacting band at around 50 kDa which was used for load-
ing normalization. For proteins running at the same size of the 
cross-reacting band (Nsp15 and Nsp12), an anti-M2-FLAG anti-
body (Sigma-Aldrich, F1804) was used in combination with  
anti-GAPDH (BioRad, VPA00187) as the loading control. For 
these, anti-Mouse (Licor, 926-68070) and anti-Rabbit (Licor, 
926-32211) were then used. Protein bands were visualized and 
quantified by scanning in a Licor Odyssey CLX. Normalization 
was performed using the appropriate loading control and the N  
protein expression standard which was included on each gel.

Mass spectrometry
HEK293 cells with stably integrated N-terminal tagged  
N protein (from plasmid 22) were induced with 1 µg/ml doxy-
cyline for 0, 6, and 18 hours. Cells were harvested in lysis 
buffer containing 0.1% Rapigest (Waters, Cat No. 186001861) 
and sonicated (10 cycles of 30 seconds on, 30 seconds off in  
Bioruptor Pico, Diagenode). Approximately 30 μg of protein 
was resolved on a 4–20% Miniprotean TGX gel (Bio-Red, Cat 
No. 4561093), run in Tris-Glycine running buffer at 100 V.  
Subsequently, the gel was rinsed with water, stained for 1 hour  
with Imperial Protein Stain (Thermo Scientific, Cat No.  
10006123), rinsed several times, and destained in water for  
three hours. Each lane was cut into four fractions and proc-
essed using in-gel digestion and the STAGE tip method, as  
previously described (Bresson et al., 2020b; Rappsilber et al.,  
2007).

Availability of materials
The vectors are available from Addgene: Deposit number 78322

(https://www.addgene.org/search/catalog/plasmids/?q=tollervey).

Cell lines are available upon request by emailing the corresponding 
authors.

The datasets generated and analysed during the current 
study are available in the Figshare repository https://doi.org/ 
10.6084/m9.figshare.13013492 (Bresson et al., 2020a).

An earlier version of this article can be found on bioRxiv  
(doi: https://doi.org/10.1101/2020.07.20.211623).

Data availability
Underlying data
Mass spectrometry proteomics data have been deposited to 
the ProteomeXchange Consortium via the PRIDE partner  
repository (Perez-Riverol et al., 2019), Accession number 
PXD020339: https://identifiers.org/pride.project:PXD020339.

Figshare: Data on integrative vectors for the regulated expres-
sion of SARS-CoV-2 proteins implicated in RNA metabolism. 
https://doi.org/10.6084/m9.figshare.13013492 (Bresson et al.,  
2020a).

This project contains the following underlying data:
-   �Table 3.xlsx (Raw data for Figures 3C and 5)

-   �Table 4.xlsx (Mass-spectrometry data for N expression)
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-   �Table 5.xlsx (Oligonucleotides used in this work)

-   �Table 6.xlsx (Sequences of fusion protein ORFs)

-   �Parental vectors Sanger sequencing (folder): original 
Sanger sequencing files for confirming the parental tagging  
vectors. Files in AB1 and SEQ formats.

-   �C terminal constructs Sanger sequencing (folder): origi-
nal Sanger sequencing files for confirming C terminally 
tagged constructs, provided embedded in SnapGene files as  
well as original files. Files in DNA, AB1 and SEQ formats.

-   �Untagged and N terminal constructs Sanger sequencing 
(folder): original Sanger sequencing files for confirm-
ing untagged and N-terminally tagged constructs. Files in  
DNA, AB1 and SEQ formats.

-   �Licor imaging (folder): original scan of the western  
blot performed. Files in TIF, JPG and TXT formats.

Extended data
Figshare: Data on integrative vectors for the regulated expression 
of SARS-CoV-2 proteins implicated in RNA metabolism. https:// 
doi.org/10.6084/m9.figshare.13013492 (Bresson et al., 2020a).

This project contains the following extended data:

-   �Cloning FH and HF containing-vectors.docx (protocol 
and lab notes for cloning and screening colonies for the  
parental tagging vectors)

-   �C terminal tagged and eGFP construct cloning.docx (pro-
tocol and original gel images for cloning and screening 
colonies for C terminally tagged constructs. Untagged, FH  
and HF eGFP constructs gel images are also included in  
this file)

-   �Untagged and N-terminal tagged construct cloning.
docx (protocol and original gel images for cloning and  
screening colonies for constructs)

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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The manuscript is well written with the development of the methodology clearly stated and 
presented to allow maximum impact for the scientific community. The etiological agent of the 
COVID-19 pandemic is the Severe Acute Respiratory Syndrome (SARS) coronavirus (CoV) 2. 
Unfortunately, the specific pathways and host-pathogen interactions that facilitate the viral 
lifecycle for this novel virus are largely not understood. The authors of this manuscript have 
selected 14 SARS-CoV-2 proteins that are expected to interact with RNA or RNA binding proteins 
for construction of reagents that can be used for analyzing their role in the coronavirus lifecycle. 
Briefly, numerous cell lines were established that express various forms (e.g. amino tagged, 
carboxyl tagged, etc) of each of the viral proteins. Furthermore, the expression of the viral 
proteins can be tuned to their relative expression levels during viral replication using different 
concentrations of doxycycline or incubation time. 
 
The rationale for the development of these reagents is sound in that they could be used for future 
research to understand how these viral proteins affect the host cell. The description of the 
synthesis of the reagents is clear and provided at a level of details that would allow the replication 
of the method by other labs. The conclusions about the method and their relevance for future 
deployment in other research programs are more than adequately supported by the data 
presented in the manuscript.
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
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If any results are presented, are all the source data underlying the results available to 
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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This is a methods paper that creates, and experimentally assesses, 54 inducible expression 
constructs encoding SARS-CoV2 (SCV2) proteins which are predicted to bind RNA. Bresson et al. 
carefully describe generation of this important resource, which will facilitate studies into how the 
host RNA proteome is affected by SCV2 infection and how viral proteins might alter RNA-protein 
interactions. Such a resource is essential for any thorough analysis of the SCV2 life cycle. 
 
In this method, an important innovation was a fix to get around use of RT-PCR, which uses an 
error-prone polymerase, to produce mutation-free constructs. Expression plasmids were designed 
to be multifunctional. They are suitable for transient expression, or hygromycin-selectable stable 
expression, following flippase integration into the genome of cells engineered to contain a 
flippase recombination target sequence. Finally, the constructs express proteins that are tandem 
affinity-tagged (untagged, or N- or C-terminally tagged) in order to facilitate purification. 
Importantly, the constructs were also codon optimised to ensure optimal expression levels. 
 
The well-thought out cloning strategy is well illustrated in Figure 2 allowing the method to be 
easily replicated. Quantification of expression levels as a percentage of total cellular protein is 
shown using a mass spectroscopy approach while western blots show the quality of expression 
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and a time course of tetracycline induction. This is important to allow the reader to assess 
usefulness of the constructs. 
 
The article is scientifically sound. However, it would be helpful if the authors could suggest the 
nature of the cross reacting protein that they have used as a loading control in many of the 
western blots. They do not state the antibody used for the western blots in the figure legend. I 
imagine it is an anti-FLAG antibody? 
 
It would be good to be clear about the FH/HF nomenclature in the text and in Table 2 and the 
figure legends. Also correcting the misspelled “cloning” in the Figure would be good. 
 
It is a pity that Nsp12, encoding the catalytic subunit of the viral RdRp, a key RNA binding viral 
protein, was relatively poorly expressed, especially the C-terminal-tagged version. Can the authors 
give any information on their attempts to improve expression of this or any other viral proteins?
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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