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Abstract: In addition to helping develop products that aid the disabled, brain–computer interface
(BCI) technology can also become a modality of entertainment for all people. However, most BCI
games cannot be widely promoted due to the poor control performance or because they easily cause
fatigue. In this paper, we propose a P300 brain–computer-interface game (MindGomoku) to explore
a feasible and natural way to play games by using electroencephalogram (EEG) signals in a practical
environment. The novelty of this research is reflected in integrating the characteristics of game rules
and the BCI system when designing BCI games and paradigms. Moreover, a simplified Bayesian
convolutional neural network (SBCNN) algorithm is introduced to achieve high accuracy on limited
training samples. To prove the reliability of the proposed algorithm and system control, 10 subjects
were selected to participate in two online control experiments. The experimental results showed that
all subjects successfully completed the game control with an average accuracy of 90.7% and played
the MindGomoku an average of more than 11 min. These findings fully demonstrate the stability
and effectiveness of the proposed system. This BCI system not only provides a form of entertainment
for users, particularly the disabled, but also provides more possibilities for games.

Keywords: brain–computer interface (BCI); electroencephalogram (EEG); P300; BCI game; Bayesian
deep learning

1. Introduction

The brain–computer interface (BCI) is an unconventional communication method
that builds a communication path between the human and the peripheral without any
muscular activities [1,2]. Motivated by the demands of people with physical disabilities,
researchers initially applied BCI technology to the clinical field to help patients regain
their ability to interact with the outside world by sending commands directly from the
brain to the computer [3,4]. Apart from clinical applications, BCI technology has also
been experimented with and applied in entertainment games [5,6]. Over the past decade,
researchers have developed several BCI-based video games, in which BCI technology is
generally used to provide input for games so as to get rid of complete dependence on
intermediate devices (mouse, keyboard, gamepad, and game controllers) [7]. BCI games
constitute a platform that may satisfy the interests of both healthy users and disabled users.
For healthy users, BCI games are mysterious and technical, which increases the charm of
the games and is very conducive to the promotion of the games. For users with disabilities,
BCI games provide them with a fair gaming platform that not only allows them to play
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games with healthy users in the same way but also can be used as a functional rehabilitation
system to help patients with rehabilitation training [8]. Furthermore, gaming can be an
excellent motivation to spend time with a BCI system in order to achieve better control [9],
and applying BCI technology to entertainment games is an important link to promote BCI
technology from the scientific research stage to the practical application market stage [10].

In recent years, the application of BCI technology to game interaction has become
increasingly popular, and plenty of research has been done in the past decade [11]. Among
the BCI games in previous studies, P300 potential, steady-state visually evoked potentials
(SSVEPs), and motor imagery (MI) are the most common games using electroencephalo-
gram (EEG) signals [12]. Table 1 summarizes related works on BCI games. Martinez et al.
presented a new SSVEP-based BCI system that allows a BCI user to navigate a small car on
the computer screen in real time, in any of the four directions, and to stop it, if necessary.
Finally, the average online accuracy of the low-frequency (LF) range (5, 6, 7, 8 Hz) reached
93%, and the average online accuracy of the intermediate-frequency (MF) range (12, 13.3, 15,
17 Hz) reached 96.5% [13]. Bonnet et al. created a multiuser videogame called BrainArena,
in which two users can play a simple football game by means of two BCIs. The mean classi-
fication accuracy in single-player mode was 71.25% and that in two-player mode 73.9% [14].
Martišius et al. developed an online shooting game based on the SSVEP paradigm using
the Emotiv EPOC headset. The system uses wave atom transform for feature extraction,
achieving an average accuracy of 78.2% using a linear discriminant analysis classifier, 79.3%
using a support vector machine classifier with a linear kernel, and 80.5% using a support
vector machine classifier with a radial basis function kernel [15]. Wang et al. combined
MI and SSVEP to generate multiple commands to jointly control Tetris. The classification
accuracy of MI and SSVEP reached 87.01% and 90.26, respectively [10]. Finke et al. pro-
posed the P300-based MindGame, and the classification rate of a single trial during the
online operation reached 66% [16]. Angeloni et al. proposed a memory game based on a
P300 BCI and achieved an average overall accuracy of 88.47% [17]. A BCI game based on
motor imagination usually has high requirements for the subjects, and it takes a training
course of some duration to be well in control of the game [18]. BCI games based on SSVEP
have a higher accuracy rate. However, the band of easily detectable frequencies is very
limited, so the number of controls that are coded by different frequencies is also limited [7].
In addition, SSVEP-based BCIs require concentration on a stimulus flickering at a constant
rate, which may cause fatigue and, in certain settings, even epileptic seizures [19]. In the
commonly used paradigms, P300 is stable, is less prone to inducing fatigue, and does not
require users with special training. The performance of the earlier P300 BCI game, however,
has generally been poor. There is still room for improvement in the accuracy of BCI games
based on P300. Therefore, in this study, we design a high-performance and stable P300
BCI game. Furthermore, previous studies have primarily focused on applying existing BCI
technology to games directly, while ignoring the essence of games. Generally, a mature
game requires that the operation process be as simple as possible, the user interface be
simple, and the user’s commands get a quick response. In addition, the game should run
normally in an uncontrolled environment and a wider user group [20]. With the aim of
making BCI games more humane and user friendly, the strategy of combining control
methods and games still needs to be further improved.

Most current technologies in BCIs use traditional machine learning algorithms for
decoding. Numerous classification approaches have been introduced in previous stud-
ies [21–24], such as linear discriminant analysis (LDA) and support vector machine (SVM).
The past decade has seen the rapid development of deep learning in many fields, such as
computer vision, natural language processing, and speech processing [25]. Researchers
have proposed some novel deep architectures, such as AlexNet [26], VGGNet [27], and
GoogleNet [28], which have achieved high accuracy in image classification. In recent years,
the convolutional neural network (CNN) has been used for P300 detection, which shows
comparable performance with the traditional machine learning techniques. Cecotti and
Graser took the lead in using a CNN to identify and classify P300 EEG signals, finally
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achieving good results [29]. Liu and Wu developed a five-layer CNN with batch normaliza-
tion and dropout to improve the generalization of the model and achieved state-of-the-art
P300 signal classification and character recognition [30]. As a CNN requires a large data
set to train for nonlinear data, overfitting will occur on small data sets. However, it is
very difficult to collect a large amount of training data in actual applications. Thus, we
propose a novel architecture based on a Bayesian convolutional neural network (BCNN)
to achieve state-of-the-art P300 signal classification and character recognition on a small
training data set.

Table 1. The summary of related works on brain–computer interface (BCI) games.

BCI Game Studies Subjects Electrodes Modality Online Result
(for N Subjects)

Martinez et al. [13] N = 5 6 Steady-state visually evoked
potential (SSVEP)

96.5% (medium frequency)
93% (low frequency)

Martišius et al. [15] N = 2 4 SSVEP

78.2% (linear discriminant
analysis (LDA))

79.3% (support vector machine
(SVM), linear kernel))

80.5% (SVM, radial basis
function kernel)

Bonnet et al. [14] N = 20 8 Motor imagery (MI) 71.25% (single-player mode)
73.9% (two-player mode)

Wang et al. [10] N = 10 20 SSVEP
MI

90.26%
87.01%

Finke et al. [16] N = 11 NA P300 66%

Angeloni et al. [17] N = 5 8 P300 88.47%

Previous research on P300 BCI technology mainly focused on data processing algo-
rithms and paradigm optimization. The optimization study of the experimental paradigm
is a key issue in improving the performance of BCI systems that considers both accuracy
and speed [31–33]. Farwell and Donchin designed the first P300-based speller in 1988
and proposed a visual oddball paradigm [34]. Although this paradigm has been most
commonly used and tested with various configurations, it remains subject to adjacency
distraction and double-flash errors [35]. After that, researchers proposed various other
paradigms. Guan proposed the single-cell paradigm (SCP), in which each character is
flashed randomly and individually [36]. Fazel-Rezai proposed the region-based paradigm
(RBP), in which character recognition is done at two levels [37]. In this study, we introduced
a game interactive paradigm for the proposed system to improve efficiency.

In this study, we design a P300 BCI game based on a BCNN, called the MindGomoku,
which is based on the classic two-player pure strategy chess game Gomoku. In the Mind-
Gomoku system, the players alternately place the Go pieces (black and white) on an empty
intersection. In each turn, the player should choose one position to lay down a piece
through the proposed BCI system, which can effectively prevent the player from having to
continuously select the target position on the Go board and does not easily cause visual
fatigue. In addition, we propose an algorithm based on Bayesian deep learning, which
solves the overfitting problem when training on small data sets. The experimental results
in this study will prove the successful application of not only P300-based BCI games but
also the deep learning algorithm that can be applied to online BCI systems.

The contributions of our work can be summarized in four points:

(1) A new BCI video game based on P300 called the MindGomoku: We propose and
implement this game.

(2) The introduction of a P300 interactive visual stimulation paradigm for BCI applica-
tions: We present a paradigm based on BCI user feedback.
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(3) A novel simplified Bayesian convolutional neural network (SBCNN) architecture for
P300 detection.

(4) An evaluation of our system on 10 naive subjects.

This article is organized as follows: Section 2 describes the system framework,
paradigm design, data acquisition, algorithm, and game design. The experiments and re-
sults are provided in Section 3, and Section 4 provides a further discussion and explanation
of the experimental results.

2. Methods
2.1. System Framework

The system framework contains three subsystems, the data acquisition section, the
data processing section, and the visual and game terminal, as shown in Figure 1. In the
data acquisition section, multi-channel scalp EEG signals are recorded using electrode caps
and amplifiers. After the signal is preprocessed, the data processing part can be divided
into two steps, off-line training and online classification testing. Finally, the classification
results are converted into operation commands and sent to the visual and game terminal.
The details of the classifier are described in Section 2.4. The visual and gaming terminal
includes two sub-steps: (1) provide visual stimulation to the user after the stimulation
strategy is updated and (2) provide the user with visual feedback (output coordinates).

Figure 1. The framework of the BCI game, which contains three subsystems as follows: (a) data
acquisition, (b) data processing, and (c) visual and game terminal. The data acquisition part records
the electroencephalogram (EEG) signal. After the signal is preprocessed, the data processing part
can be divided into two steps, off-line classifier training and online classifier testing. The visual
and game terminal provides users visual stimuli after updating the stimulus strategy and provides
corresponding visual feedback (output coordinates).

2.2. Paradigm Design

The graphical user interface (GUI) of the MindGomoku is presented in Figure 2a
and consists of three parts: Go board (bottom right), textbox (upper right), and visual
stimulation panel (left). There are 15 × 15 points on the board, which are divided into
25 areas. The center of each area is marked with a character, which contains 9 points.
The board and the textbox are used for feedback on each selection to help users determine
whether they have made a wrong selection. The visual stimulation panel is used to provide
stimulation by flashing different buttons, 25 buttons in the first interface and 10 buttons in
the second interface.
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Figure 2. An illustration of the MindGomoku. (a) The graphical user interface of the MindGomoku.
(b) The online interactive paradigm of the MindGomoku. It takes two steps to select the coordinate of
the red star. According to its location, the user should select the character M in the first-level interface
and then select the character 6 in the second-level interface. The two selections can determine
a coordinate, at which the system will present a piece in the Go board as feedback.

We designed a visual stimulation paradigm for the MindGomoku game based on its
own characteristics. In this paradigm, the user needs to make two choices through a dual
interface for each piece played. For example, it takes two steps to select the coordinate of
the red star, as shown in Figure 2b. Since it is located in the area represented by M, the first
step is to select the character M in the first-level interface. The result of the first selection
will be the output in the textbox, and the stimulation panel will automatically switch to the
second-level interface. In the second step, the user should select character 6 in the second-
level interface according to the location of the red star. The result of this selection will also
be displayed in the textbox. Furthermore, the two selections can determine a coordinate, at
which the system will present a piece. As in the traditional human–computer Gomoku, the
MindGomoku game will automatically play with the user to achieve a man–machine battle
when the user successfully selects a board coordinate to place the piece. Meanwhile, the
content of the textbox will be cleared. Finally, the side that first connects five pieces will
win, and the system will issue an audible congratulatory note.

In addition, we call the procedure of output of a coordinate as a trial and the required
two selection processes as two sub-trials. In the first-level interface, there are 25 buttons
in the visual stimulation panel, representing the 25 areas on the board. In the first sub-
trial, all 25 character buttons are successively flashed randomly in each round, repeating
10 rounds. In each flash, the character button is intensified for 100 ms. The inter-stimulus
interval (ISI) is 40 ms [31], and there is no time gap between successive rounds. In the
second-level interface, there are 9 digital buttons to represent further locations of the piece
and a character button R to give the user the regret option and allow the user to return
to the first-level interface. In the second sub-trial, the system adopts an optimization
paradigm called the game interactive sequence shortening (GI-SS) method. In this method,
we use a dynamic flashing sequence to shorten the flashing time, which is generated by
removing the valid buttons representing the occupied positions from all buttons. With
the purpose of detecting the P300 potential reliably, the shortening should stop when the
dynamic queue is reduced to a certain length and the minimum sequence length is set to
6 in this study. The dynamic flashing sequence is generated or updated at the beginning of
the second sub-trial. The same as the first sub-trial, the buttons in the dynamic flashing
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sequence are successively flashed randomly in each of 10 rounds. The other parameters of
the second-level interface are the same as the first-level interface.

2.3. EEG Data Acquisition and Preprocessing

EEG data are non-invasively recorded using 32-channel caps (Electro-Cap Interna-
tional, Inc., Eaton, OH, USA) and SynAmps2 amplifiers (Compumedics, Neuroscan, Inc.,
Charlotte, NC, USA), digitized at 1000 Hz and filtered using a 50 Hz notch filter. Data are
collected from all electrodes except A1 and A2. All electrode impedances are maintained
below 5 kΩ.

To reduce the influence of the filter edge effect, the recorded data are filtered first [38].
Band-pass filtering is used for the EEG signal from each channel, with a cutoff frequency of
0.1–20 Hz. We take the time window of 600 ms after a character flashing as an epoch, which
is used to capture the necessary information about the P300 signal after stimulation. Then,
the data from an epoch are downsampled with a rate of 4. This results in EEG data built in
a matrix of 150 × 30. We superimpose and average the data matrices of the same character
flashing to reduce the signal-to-noise ratio. Due to the design of the proposed paradigm,
the sample sizes of P300 and non-P300 data are unbalanced. To solve this problem, we
artificially copy the positive training samples to achieve the same positive and negative
training samples.

2.4. SBCNN Architecture

After the signal is preprocessed, the data processing part can be divided into two
steps, off-line training and online classification. In this paper, we propose the SBCNN
algorithm. The SBCNN is based on Bayes by Backprop (BBB), which is a variational
inference method to learn the posterior distribution of the weights of a neural network
from which weights can be sampled in backpropagation. For example, if a Gaussian
distribution is used to represent each weight parameter, the original weight value can
be expressed as the parameters of the Gaussian distribution, that is, the mean and the
standard deviation. Then the posterior is calculated by variational reasoning [39].

The weight w ∼ p(w | D) of the Bayesian neural networks (BNNs) can be sampled
from the weight w in the backpropagation. However, the true posterior is usually difficult
to solve, so an approximate distribution qθ(w | D) is defined and the approximate distri-
bution is used to approximate the real distribution p(w | D), where the specific shape is
represented by parameters that can be calculated by minimizing the Kullback–Leibler (KL)
divergence. The optimization parameters θopt are defined as:

θopt = argmin
θ

KL[qθ(w | D) ‖ p(w | D)]

|= argmin
θ

KL[qθ(w | D) ‖ p(w)]−Eq(w|θ)[log p(D | w)] + log p(D)

|= argmin
θ

∫
qθ(w | D) log qθ(w|D)

p(w)
dw−Eq(w|θ)[log p(D | w)] + log p(D)

(1)

where the term log p(D) is constant, so it can be omitted in the optimization. The KL
divergence is also intractable to compute exactly. Gal and Ghahramani used Monte Carlo
integrals on network weights to approximate integrals in KL divergence, and the pro-
cess of minimizing the KL divergence is equivalent to performing Monte Carlo dropout
training [39].

The convolutional layer of a CNN needs to use a convolutional kernel with a fixed
weight value for the convolutional operation. However, each weight parameter in the
convolutional kernel of a Bayesian convolutional neural network (BCNN) is expressed
in the form of a Gaussian distribution. To obtain a certain weight value, it is necessary
for a Gaussian distribution to be used for sampling. However, the sampling process
is not derivative in the forward propagation, and in the training process, the network
cannot be trained using the backpropagation method. Therefore, in the sampling process,
the reparameterization technique is used to put the sampling process in front so that the
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forward propagation of the network becomes derivative and the weights are updated in the
backpropagation process. A certain weight value is sampled from the weight distribution
of the convolutional kernel, and the weight value obtained in this way is formed into a
convolution kernel, and a convolution operation is performed on the receiving field. This
procedure can be defined as follows:

sampleconv = convmean + εconvstd (2)

S = R ∗ sampleconv (3)

The reparameterization method is used in the fully connected layer, and the weight
parameters are sampled. µ represents the expectation of the distribution, and σ represents
the standard deviation of the distribution. ε is the sampling of the standard Gaussian
distribution. For each weight parameter, it is defined as a function according to the
following formula:

f (ε) = w = µ + ε ∗ σ, ε ∈ N (0, 1) (4)

This parameter update procedure can be defined as follows:

∆µ =
∂ f
∂w

+
∂ f
∂µ

(5)

∆σ =
∂ f
∂w

ε

σ
+

∂ f
∂σ

(6)

µ← µ− α∆µ (7)

σ← σ− α∆σ (8)

θ∗ = (µ∗, σ∗) (9)

where θ∗ is the updated parameter.
In a BCNN, because the Gaussian distribution is used to make the prior probability

distribution for each weight parameter, the single-point estimation in a traditional CNN
is expanded into a Gaussian distribution form composed of the mean and variance. The
parameters in the BCNN can be expressed as θ =

{
µ, σ2}. A BCNN model with a complex

structure will be difficult to converge, and the generalization ability of the model will also
be reduced. The SBCNN is proposed to detect P300. In this work, we implemented a
six-layered SBCNN for the detection of the targeted and non-targeted P300 components
shown in Figure 3. In this architecture, we introduced three batch normalization (BN) [40]
layers, at L0, L1, and L3, to reduce the saturation of the gradient during covariate shift
as it normalizes input features in a batch, and the rectified linear unit (ReLU) activation
function is used at each convolutional layer. The network topology is described as follows:
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Figure 3. Architecture of a simplified Bayesian convolutional neural network (SBCNN) for feature
extraction and classification.

L0 (input and BN layer): Ii,j with 0 ≤ i < Nelec and 0 ≤ j < Nt. In this work,
Nelec = 30, Nt = 150, and the batch size for stochastic gradient descent is set to 85.

I = BN(X) (10)

L1 (convolution and BN layer): Spatial filters of size (1 × Nelec) are convolved with
the input normalized batch over the length of the signal to extract hierarchical features
from the input, and the BN layer is used after the convolutional layer. The mathematical
expression is as follows:

C1(j) = f

(
N

∑
i=1

Ii(j) ∗W(1)
s (j) + b(1)s (j)

)
(11)

where C1(j) is output data for L1, f (x) is the ReLU activation function, and W(1)
s and b(1)s

are the weights and biases of the spatial filter, respectively.
L2: The pooling layer consists of a pooling filter of size (2 × 1) and a stride size of 2.

The output of this layer is defined as M1.
L3: (convolution and BN layer): Temporal filters of size (1 × 20) are used to extract

temporal features. The mathematical expression is as follows:

C2(j) = f (BN(
s≤Ns

∑
s=1

t≤Nt

∑
t=1

(M1(t·20 + j)·W(2)
s (j) + b(2)s (j)))) (12)

where C2(j) is the output data for L3, Ns = 10, f (x) is the ReLU activation function, and
W(2)

s and b(2)s are the weights and biases of the filter, respectively.
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L4 and L5: These two layers are fully connected layers. The calculation formula is as
follows:

F1(j) = σ(
i≤100

∑
i=1

(C2(j)·w(1) + b(1))) (13)

F2(j) =
i≤2

∑
i=1

(F1(j)·w(2) + b(2)) (14)

where F1(j) is the output data for L4, σ(x) is the Softmax function, and w and b are the
weights and biases, respectively, from which the location of the maximum probability value
can be selected to determine the target character. The formula is as follows:

R = argimaxp(K, i) (1 ≤ i ≤ C) (15)

where R represents the final selected target, p denotes the probability value, i denotes the
position number, and C denotes the number of optional characters.

The recorded EEG signals are input into the proposed SBCNN algorithm after prepro-
cessing. Let X denote the N × 150 × 30 input tensor and N denote the number of target
characters in the paradigm we proposed (in the first sub-trial, N = 25, and in the second
sub-trial, N depends on the actual situation of the game (6 ≤ N ≤ 10)). After normalizing
the input with batch normalization, spatial filtering is used to extract spatial features and
ReLU is used to perform nonlinear mapping on the output of the convolutional layer. Then,
after pooling the spatial feature map, the temporal filter is used to extract the temporal
features and ReLU is used to perform nonlinear mapping. The fully connected layer is
used for classification to get the probability of P300 and non-P300. Finally, we take the
largest P300 probability corresponding to N characters as the prediction result output. The
algorithm process is summarized in Algorithm 1.

Algorithm 1 The proposed character recognition algorithm

Input: EEG Data, X with the size of (N × 150 × 30)
Output: Predict Result C

Initialize: i← 0, P(N)← 0
for each i ∈ [1, N] do

Normalized Data: Ii ← BN(Xi)
Extract spatial feature, filter size of (1 × 30): Cli ← ReLU(BN((Ii ·Ws + bs))
Pooling, apply with stride(2 × 1): Mi ← maxpooling (C1i)
Extract temporal feature, filter size of (20 × 1): C2i ← ReLU(BN((Mi ·Ws + bs))
Fully connected:

F1i ← fully connected(C2i), Fli ← Softmax(Fli)
F2i ← fully connected(F2i)
P(i)← F2i[1]

end for
C←max(P)

3. Experiment and Result
3.1. Subjects

In this study, 10 healthy volunteers (5 males and 5 females) participated in our experi-
ment after signing informed consent. The age of the subjects ranged from 22 to 27 years
(mean age 23.8 years); SD 1.16 years. All of the subjects had normal or corrected-to-normal
vision. They all had experience in playing the common Gomoku and had never used a BCI
system before.

3.2. Experiment and Result

Prior to the experiment, the subjects were first instructed to read the participant
information instructions to ensure that they understood the scene and purpose of the BCI
game. We used a laptop with a bright 15.4 Liquid Crystal Display (LCD) screen with



Sensors 2021, 21, 1613 10 of 18

a 60 Hz refresh rate and 1080-pixel resolution. After ensuring that the subjects were in
good condition, the experiment was conducted at about 10:00 a.m. In addition, a brief
familiarization session was conducted before the experiment to ensure that subjects could
adapt to the platform environment. The total experiment consisted of two parts: a training
session and an online session (experiment I and experiment II). During the experiment, the
subjects sat in a chair 0.5 m in front of the computer screen running the game in a quiet
and comfortable room. At the same time, they were asked to relax and try not to produce
unnecessary physical activity.

3.2.1. Training Session

To prevent the constantly changing GUI from affecting the user’s attention, we only
used the first-level paradigm to collect training data. In this session, the subjects used the
first-level interface to continuously collect 40 items of training data. The subjects were
asked to focus on the target character button on the stimulation panel displayed in the
textbox and mentally count the number of flashes during the training session. The collected
training data were preprocessed and then entered into the SBCNN algorithm for training.

3.2.2. Experiment I

In experiment I, the subjects selected the target coordinates that were randomly given
by the system and displayed in the textbox at the upper right of the GUI. Each subject was
to perform 20 complete trials in experiment I, each of which consisted of two sub-trials.
During the first sub-trial, the subject chose the region where the target coordinates were
located in the first-level interface. Then the subjects chose the specific position in the
second-level interface during the second sub-trial. In each sub-trial, all the valid characters
in the interface randomly flashed in one round. After 10 rounds, the most possible target
was selected based on real-time signal processing and presented in the textbox as feedback.
Thus, the system outputted one coordinate in a complete trial through two selections.
If the target coordinates were correctly selected, the pieces were placed on the board;
otherwise not.

Table 2 lists the online target recognition accuracy rate of the first sub-trial, the second
sub-trial, and the complete trial for the 10 subjects in experiment I. The online accuracy of
all subjects in the first sub-trial was between 92% and 100%, with an average accuracy of
97.2%. The online accuracy of the second sub-trial was between 84% and 100%, and the
average accuracy was 92.9%. The online accuracy of the complete trial is between 80% and
100%, with an average accuracy of 90.7%. There was no significant gender difference in
the experiment through analysis of variance (first sub-trial: F(1,8) = 0.1, p = 0.7599; second
sub-trial: F(1,8) = 0.58, p = 0.4695; complete sub-trial: F(1,8) = 0.87, p = 0.3792; ANOVA).
These results confirm that P300 signals can be well evoked and recognized by our proposed
system. Figure 4 presents the off-line average recognition accuracy rate and each subject’s
accuracy rate in the first sub-trial, the second sub-trial, and the trial on different repeats.
The different color lines in the figure record the results in the first sub-trial, the second
sub-trial and the complete trial on each repeat. The average accuracy of all subjects reached
82% in the seventh repeat and finally reached 90.7% in the tenth repeat in the complete
trial. In the first sub-trial, the average accuracy reached 80% in the fourth repeat and
finally reached 97.2% in the tenth repeat. In the second sub-trial, the average recognition
accuracy reached 80% in the fifth repeat and finally reached 92.9%. Each subject except S3
achieved an accuracy higher than 80% after the eighth repeat in the complete trial. In the
first sub-trial, all subjects except S5 reached an accuracy higher than 80% after the fourth
repeat. All subjects except S7 in the second sub-trials reached an accuracy rate of 80% or
more after the seventh repeat. These results indicate that the proposed SBCNN algorithm
could classify the P300 signal well and that our proposed system is stable and feasible.
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Table 2. The online accuracy rate of the first sub-trial, the second sub-trial, and the complete trial for all 10 subjects in
experiment I.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg.

Gender M F M M F F M M F F /
First sub-trial 100% 100% 100% 96% 92% 100% 100% 92% 100% 92% 97.2%

Second sub-trial 92% 100% 85% 96% 100% 92% 96% 88% 96% 84% 92.9%
Complete trial 92% 100% 85% 92% 90% 92% 96% 80% 96% 84% 90.7%

Figure 4. Each subject’s off-line accuracies and all subjects’ average accuracies in different repeats in
experiment I. The vertical axis corresponds to the accuracy rate, and the horizontal axis corresponds
to the number of repeats. The color curves represent classification accuracy rates in the first sub-trial,
the second sub-trial, and the complete trial.

Figure 5 shows the average accuracy comparison between our proposed SBCNN
algorithm and other classification methods in the literature, including CNN algorithms
BN3 [30], EEGNET [41], CNN-1 [29] and E-SVM [42]. In the complete trial, the average
accuracy of the SBCNN was higher than that of the other four algorithms from the first
repeat and finally reached an accuracy of 90.7% in the tenth repeat. A repeated measures
analysis of variance (ANOVA) was applied in the accuracy comparison in the tenth repeat
between the proposed SBCNN and the other four algorithms. The result shows that the
average accuracy of the SBCNN is significantly higher than that of the other four algorithms
in a complete trial (F(4,45) = 4.65, p < 0.005, Bonferroni correction). Furthermore, after the
fifth repeat, the standard deviation of the accuracy using SBCNN was lower than that of
the other four algorithms. In the first sub-trial, for all subjects, from the first repeat, the
average accuracy of the proposed algorithm was higher than that of the other algorithms.
In the tenth repeat, we achieved an average accuracy rate of 96.4%, which is not statistically
different from that of other algorithms (F(4,45) = 2.14, p = 0.0908, Bonferroni correction).
Moreover, from the second repeat, the standard deviation of the average accuracy of
SBCNN was smaller than that of the other four algorithms. In the second sub-trial, the
average accuracy of SBCNN for all subjects finally reached an accuracy rate of 92.9%
in the tenth repeat and was significantly higher than that of the other four algorithms
(F(4,45) = 4.36, p < 0.005, Bonferroni correction). In addition, the standard deviation of the
average SBCNN accuracy was less than that of the other four algorithms.
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Figure 5. The mean ± standard classification accuracies of all 10 subjects in different repeats during
experiment I: (a) in the first sub-trial, (b) in the second sub-trial, and (c) in the complete trial.
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3.2.3. Experiment II

To verify the feasibility of the proposed approach for the MindGomoku, experiment II
was conducted. The online session was used to study the real-environment performance of
the subjects’ approach to playing the MindGomoku. The subjects were required to play
the MindGomoku with the end goal of winning the game. There are 5 s breaks between
two successive trials, and the interval between two sub-trials is still 2.5 s. This means that
after each coordinate is selected, the subject has 5 s to consider the next target coordinate.
During experiment II, if the selection in the first sub-trial was wrong, the subject could
choose R in the second sub-trial to return to the first-level interface and reselect. In this
case, this trial would be recorded as an invalid trial.

In this paper, we also evaluated some online statistical results in experiment II, such
as the number of complete trials, the number of valid pieces, the control accuracy, the total
time of experiment II, the time per trial, and the result of the game, as shown in Table 3. The
number of valid pieces is equal to the total number of complete trials minus the number of
invalid trials. The accuracy rate is obtained by dividing the number of valid trials by the
total number of trials. The total time represents the duration of the entire experiment II. It
can be seen from Table 3 that the online average accuracy of the 10 subjects was as high as
97% using the proposed system in the actual game during experiment II. The average time
of playing the game for all subjects was 13.73 min (the longest was 16.46 min), and four of
them finally won in the human–computer battle.

Table 3. Each subject’s online results in experiment II.

Subject Trials Valid Trials Accuracy (%) Total Time
(min)

Time per Trial
(s) Win the Game

S1 18 14 94.4 11.8 25.3 Yes
S2 18 18 100 12.83 28.6 No
S3 17 14 100 11.61 26.9 No
S4 22 18 88.9 16.08 29.8 No
S5 20 20 100 13.1 25.3 No
S6 26 25 100 16.46 24.0 Yes
S7 21 19 100 13.11 23.5 No
S8 22 19 95.4 13.43 22.7 Yes
S9 26 24 100 15.65 22.1 No

S10 21 20 100 13.23 23.8 Yes
Avg 21.1 19.1 97.8 13.73 22.9 /

4. Discussion and Conclusions

In this paper, we propose a P300 BCI game named the MindGomoku and a game
interaction paradigm based on the characteristics of the MindGomoku. Moreover, this
study introduces a P300 detecting algorithm based on Bayesian deep learning. This
system can handle EEG signal processing and feedback in real time. Online and off-line
experiments were conducted on 10 subjects with normal cognitive function for evaluating
the performance of the proposed BCI system. The experimental results show that the mean
game control accuracy achieved is 90.7% and the averaged game duration for all users is
above 11 min. Therefore, these results also demonstrate the stability and effectiveness of
the proposed algorithm and system.

Prior to this study, researchers have proposed several BCI games. Finke et al. proposed
the P300-based MindGame, and the classification rate of a single trial during the online
operation reached 66% [43]. Bonnet et al. created a multiuser videogame called BrainArena,
in which two users can play a simple football game by means of two BCIs. The mean
classification accuracy in single-player mode was 71.25% and that in two-player mode
was 73.9% [14]. Wang et al. combined MI and SSVEP to generate multiple commands to
jointly control Tetris. The classification accuracy of MI and SSVEP reached 87.01% and
90.26, respectively [10]. Our proposed BCI game MindGomoku does not require users to
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send commands continuously and quickly. Thus, sufficient buffer time can be provided
for users to avoid discomfort and interference caused by long-term continuous visual
stimulation, which may lead to poor user experience. Compared with other games, several
characteristics of our game itself, such as turn-based and invalid operation at the same
coordinate, can help the player avoid watching the stimulation panel for a long time and
reduces the probability of visual fatigue. The online results of experiment II in Table 3
show that the accuracy of all subjects in the actual control can be higher than 85% and the
average accuracy can reach 90.7%. This indicates that all subjects could use this system
to play the MindGomoku for human–computer battles and the system runs stably for an
average of 13 min. In this method, we use a dynamic flashing sequence to shorten the
flashing time, which is generated by removing the valid buttons representing the occupied
positions from all buttons.

To prevent a playing from paying the MindGomoku too slowly, we propose a game
interactive paradigm that uses the GI-SS method to reduce stimulus interference and
improve speed. In this method, a dynamic flashing sequence is applied to shorten the
flashing time. To verify the performance of the GI-SS method, we respectively calculated
the time per trial in experiments I and II. In experiment I, the time per trial for each subject
was fixed, which was 30.2 s. As shown in Table 3, the time per trial for each subject is lower
than 30.2 s. This indicates that GI-SS improves the timeliness of the system. However, as the
ISI in the system is only 40 ms, a too-short stimulation sequence will cause severe repeated
blindness [44,45]. In addition, GI-SS is just applied in the second-level interface because it
is difficult for a region to be completely occupied, represented by a character button in the
first-level interface. In short, system efficiency can be improved by reducing the stimulus
sequence and the game interaction paradigm optimizes speed while ensuring accuracy.

Figure 4 presents the off-line average recognition accuracy rate and each subject’s
accuracy rate in the first sub-trial, the second sub-trial, and the trial in different repeats. As
shown in Figure 4, the average accuracy of the complete trial is lower than the accuracy of
the first and second sub-trials. Because only the first sub-trial and the second sub-trial are
correct, the complete experiment is correct, for all subjects except S5, as well as the average
results of 10 subjects. The accuracy in the first sub-trial is higher than that in the second
sub-trial. In addition, the average accuracy of all 10 subjects in the first sub-trial is higher
than that in the second sub-trial. These findings may relate to task difficulty and fatigue.
It is necessary for the P300 BCI to run many repeats to distinguish target and non-target
stimuli that will cause user fatigue. In this study, the second sub-trial was always carried
out after the first sub-trial. User fatigue may have caused the accuracy in the second
sub-trial to be lower than that in the first sub-trial. In addition, in the first sub-trial, the
subjects needed to choose a target character from 25 characters and in the second sub-trial
from 10 optional characters. According to a previous report, the P300 amplitude increases
as the probability of event-related stimuli decreases [46]. The difficulty of the task will also
affect P300. If the task is difficult, the P300 wave is obvious, and vice versa [47]. In this
study, the difficulty in the first sub-trial was higher than that in the second sub-trial. These
reasons ultimately led to the above results.

Deep learning has achieved excellent results on large data sets in many research fields.
However, in BCI applications, it is very difficult to obtain large amounts of data. In this
paper, we propose a novel SBCNN algorithm based on a Bayesian convolutional neural
network (BCNN) to detect a P300 signal. The BCNN offers good robustness to overfitting
on small data by placing a probability distribution over the CNN kernels [39,48]. As shown
in Figure 5, for the training set used in our experiment, the SBCNN had higher accuracy
than the traditional algorithms and other CNN algorithms. In addition, the standard
deviation of accuracies using the proposed algorithm in the first sub-trial, the second
sub-trial, and the complete trial from the fifth repeat was lower than that using the other
four algorithms. This also reveals that our SBCNN model is more stable than the other
four methods. To further verify the superiority of the SBCNN algorithm on small data sets,
we used half of the training sets in experiment I to train the classifier. The comparison
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results with three deep learning algorithms are shown in Figure 6. The different color lines
in the figure record the results of all subjects that used different methods in each repeat.
The accuracy of the SBCNN was obviously higher than that of the other methods from the
second repeat in the first sub-trial, the second sub-trial, and the complete trial. Furthermore,
all four algorithms worked better in the first sub-trial than in the second sub-trial. It may
be due to the larger number of samples in the first sub-trial. In addition, the accuracy
of SBCNN could reach as high as 80% in the complete trial. These experimental results
show that the SBCNN is superior to the other two algorithms in small training sets and can
achieve good results with small samples under the proposed paradigm.

Figure 6. The average target recognition accuracy of all 10 subjects in different repeats trained on half
training sets. The color curves represent classification accuracy rates in the SBCNN, BN3, EEGNET
and CNN-1. (a) in the first sub-trial, (b) in the second sub-trial, and (c) in the complete trial.
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This paper proposes an online BCI game based on a novel simplified Bayesian convolu-
tional neural network, which can achieve good accuracy on a small training set and provide
effective control of the game. Compared with some arcade games, the response time of
the MindGomoku does not directly affect the progress of the game, and the turn-based
mechanism avoids long-lasting visual stimulation. In the traditional the MindGomoku, the
board coordinates of board games cannot be repeatedly selected. Therefore, in the proposed
MindGomoku, we introduce the GI-SS method to reduce the control difficulty and improve
the user experience. Online and off-line results show that our proposed MindGomoku
is very stable in game function and operation accuracy. The motivation of this study
is not only to prove the successful application of a P300-based BCI in computer games
but also to prove the feasibility of turning disadvantages into advantages by combining
gameplay and the characteristics of P300 BCI instructions. Finally, our experiments are
currently only validated on healthy subjects. In the future, we will conduct experiments on
subjects with disabilities. In addition, our experiments and data processing did not involve
cross-subjects. Our next step will be to study a brain–computer interface system based on
transfer learning.

Author Contributions: Conceptualization, M.L. and F.W.; methodology, M.L. and S.Z.; software,
M.L.; validation, J.P., F.L., and F.W.; formal analysis, F.W.; investigation, J.L. and F.W.; resources, M.L.;
data curation, M.L. and F.W.; writing—original draft preparation, M.L.; writing—review and editing,
J.P. and D.Z.; visualization, F.L.; supervision, J.P.; project administration, F.W.; funding acquisition,
F.L. and F.W. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China under
grant 61906019 and 62003312, the Hunan Provincial Natural Science Foundation of China under grant
2019JJ50649 and 2020JJ4626, the Key Realm R&D Program of Guangzhou under grant 202007030005,
the Guangdong General Colleges and Universities Special Projects in Key Areas of Artificial In-
telligence of China under grant 2019KZDZX1033, Scientific Research Fund of Hunan Provincial
Education Department of China under Grant 19B004, and “Double First-Class” International Cooper-
ation and Development Scientific Research Project of Changsha University of Science and Technology
under Grant 2018IC25.

Institutional Review Board Statement: The Scientific Research Ethics Committee of the Changsha
University of Science and Technology which complies with the Code of Ethics of the World Medical
Association (Declaration of Helsinki), approved the experimental procedures.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Birbaumer, N.; Kubler, A.; Ghanayim, N.; Hinterberger, T.; Perelmouter, J.; Kaiser, J.; Iversen, I.; Kotchoubey, B.; Neumann, N.;

Flor, H. The Thought Translation Device (TTD) for Completely Paralyzed Patients. IEEE Trans. Rehab. Eng. 2000, 8, 190–193.
[CrossRef]

2. Allison, B.Z.; Wolpaw, E.W.; Wolpaw, J.R. Brain–Computer Interface Systems: Progress and Prospects. Expert Rev. Med. Devices
2007, 4, 463–474. [CrossRef]

3. Mak, J.N.; Wolpaw, J.R. Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Rev.
Biomed. Eng. 2009, 2, 187–199. [CrossRef] [PubMed]

4. Coyle, S.; Ward, T.; Markham, C. Brain–Computer Interfaces: A Review. Interdiscip. Sci. Rev. 2003, 28, 112–118. [CrossRef]
5. Pfurtscheller, G.; Neuper, C.; Muller, G.R.; Obermaier, B.; Krausz, G.; Schlogl, A.; Scherer, R.; Graimann, B.; Keinrath, C.;

Skliris, D.; et al. Graz-BCI: State of the Art and Clinical Applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 1–4.
[CrossRef] [PubMed]

6. Kennedy, P.R.; Bakay, R.A.E. Restoration of Neural Output from a Paralyzed Patient by a Direct Brain Connection. NeuroReport
1998, 9, 1707–1711. [CrossRef]

7. Kerous, B.; Skola, F.; Liarokapis, F. EEG-Based BCI and Video Games: A Progress Report. Virtual Real. 2018, 22, 119–135.
[CrossRef]

http://doi.org/10.1109/86.847812
http://doi.org/10.1586/17434440.4.4.463
http://doi.org/10.1109/RBME.2009.2035356
http://www.ncbi.nlm.nih.gov/pubmed/20442804
http://doi.org/10.1179/030801803225005102
http://doi.org/10.1109/TNSRE.2003.814454
http://www.ncbi.nlm.nih.gov/pubmed/12899267
http://doi.org/10.1097/00001756-199806010-00007
http://doi.org/10.1007/s10055-017-0328-x


Sensors 2021, 21, 1613 17 of 18

8. Bos, D.P.-O.; Reuderink, B.; van de Laar, B.; Gurkok, H.; Muhl, C.; Poel, M.; Heylen, D.; Nijholt, A. Human-Computer Interaction
for BCI Games: Usability and User Experience. In Proceedings of the 2010 International Conference on Cyberworlds, Singapore,
20–22 October 2010; pp. 277–281.

9. Blankertz, B.; Tangermann, M.; Vidaurre, C.; Fazli, S.; Sannelli, C.; Haufe, S.; Maeder, C.; Ramsey, L.; Sturm, I.; Curio, G.; et al.
The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology. Front. Neurosci. 2010, 4. [CrossRef]

10. Wang, Z.; Yu, Y.; Xu, M.; Liu, Y.; Yin, E.; Zhou, Z. Towards a Hybrid BCI Gaming Paradigm Based on Motor Imagery and SSVEP.
Int. J. Hum. Comput. Interact. 2019, 35, 197–205. [CrossRef]

11. Marshall, D.; Coyle, D.; Wilson, S.; Callaghan, M. Games, Gameplay, and BCI: The State of the Art. IEEE Trans. Comput. Intell.
AI Games 2013, 5, 82–99. [CrossRef]

12. Laamarti, F.; Eid, M.; El Saddik, A. An Overview of Serious Games. Int. J. Comput. Games Technol. 2014, 2014, 1–15. [CrossRef]
13. Martinez, P.; Bakardjian, H.; Cichocki, A. Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback

Using SSVEP Paradigm. Comput. Intell. Neurosci. 2007, 2007, 1–9. [CrossRef]
14. Bonnet, L.; Lotte, F.; Lecuyer, A. Two Brains, One Game: Design and Evaluation of a Multiuser BCI Video Game Based on Motor

Imagery. IEEE Trans. Comput. Intell. AI Games 2013, 5, 185–198. [CrossRef]
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