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DNA methylation differs extensively 
between strains of the same geographical origin 
and changes with age in Daphnia magna
Jack Hearn1*  , Fiona Plenderleith2,3 and Tom J. Little4

Abstract 

Background:  Patterns of methylation influence lifespan, but methylation and lifespan may also depend on diet, 
or differ between genotypes. Prior to this study, interactions between diet and genotype have not been explored 
together to determine their influence on methylation. The invertebrate Daphnia magna is an excellent choice for 
testing the epigenetic response to the environment: parthenogenetic offspring are identical to their siblings (making 
for powerful genetic comparisons), they are relatively short lived and have well-characterised inter-strain life-history 
trait differences. We performed a survival analysis in response to caloric restriction and then undertook a 47-replicate 
experiment testing the DNA methylation response to ageing and caloric restriction of two strains of D. magna.

Results:  Methylated cytosines (CpGs) were most prevalent in exons two to five of gene bodies. One strain exhibited a 
significantly increased lifespan in response to caloric restriction, but there was no effect of food-level CpG methylation 
status. Inter-strain differences dominated the methylation experiment with over 15,000 differently methylated CpGs. 
One gene, Me31b, was hypermethylated extensively in one strain and is a key regulator of embryonic expression. 
Sixty-one CpGs were differentially methylated between young and old individuals, including multiple CpGs within the 
histone H3 gene, which were hypermethylated in old individuals. Across all age-related CpGs, we identified a set that 
are highly correlated with chronological age.

Conclusions:  Methylated cytosines are concentrated in early exons of gene sequences indicative of a directed, non-
random, process despite the low overall DNA methylation percentage in this species. We identify no effect of caloric 
restriction on DNA methylation, contrary to our previous results, and established impacts of caloric restriction on 
phenotype and gene expression. We propose our approach here is more robust in invertebrates given genome-wide 
CpG distributions. For both strain and ageing, a single gene emerges as differentially methylated that for each factor 
could have widespread phenotypic effects. Our data showed the potential for an epigenetic clock at a subset of age 
positions, which is exciting but requires confirmation.

Keywords:  DNA methylation, Life-history traits, Variation, Daphnia, Ageing, Epigenetic

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Many progressive diseases of ageing in humans are 
associated with epigenetic modifications, the structural 
modifications on DNA that influence gene regulation. 
The relationship between epigenetic control and lifespan 
in humans (and many model systems) is complicated by 
variation in ageing rates between diet and genotype. The 
clonally reproducing invertebrate Daphnia magna is a 

Open Access

Epigenetics & Chromatin

*Correspondence:  Jack.Hearn@lstmed.ac.uk
1 Department of Vector Biology, Liverpool School of Tropical Medicine, 
Liverpool, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3358-4949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13072-020-00379-z&domain=pdf


Page 2 of 14Hearn et al. Epigenetics & Chromatin            (2021) 14:4 

tractable model for disentangling these effects. Daphnia 
have lifespans that can be studied within a reasonable 
time frame (~ 50 to 100  days in the laboratory), differ-
ent strains are known to show natural variation in lon-
gevity, and in response to caloric restriction [1]. We can 
separate genetic from environmental effects in this spe-
cies through genetically identical sister-clone replicates. 
Daphnia magna therefore enables experiments that 
assess the response of DNA methylation to ageing and 
known lifespan-extending treatments, such as caloric 
restriction (CR) [2, 3]. Prior to this study, these interac-
tions have not been explored together to determine their 
influence on DNA methylation.

Arthropod DNA methylation and inter‑genotype diversity
DNA methylation is enriched in exon sequences of vari-
ous arthropods, including members of holometabolous 
insect orders Lepidoptera and Hymenoptera [4–7] and 
species of the Crustacea genus Daphnia [8, 9]. Exon-
enriched DNA methylation has been shown to occur in 
genes expressed across multiple tissues [6, 7, 10, 11]. This 
is not the only pattern of DNA methylation observed in 
arthropods, however. Hemimetabolous insects, such 
as cockroaches and termites, and the Crustacean Cras-
sostrea gigas have higher genome-wide levels of DNA 
methylation that do not show exon bias to the extent of 
holometabolous insects and Daphnia [7, 12, 13]. The 
effect of genetic diversity on patterns of DNA variation 
has not been assessed in previous arthropod methylation 
studies. Knowledge of this has come from mammalian 
studies: in mice, for example, thousands of methylated 
cytosines (CpGs) have been found to differ between 
strains [14, 15], which was associated with proximity to 
DNA polymorphisms [14, 16]. Inter-individual polymor-
phism in DNA methylation has also been observed in 
humans [17, 18].

DNA methylation and ageing
Mammals have high levels of CpG methylation genome 
wide (~ 70%), and degradation of methylation mecha-
nisms are associated with cancers, diabetes and other 
conditions [19]. Furthermore, it is well established that 
CpG methylation status can be used to accurately pre-
dict chronological age in mammals [20, 21]. This was first 
discovered in humans, but markers have been developed 
for a variety of mammals and a bird species [22–26]. 
Such ‘epigenetic clocks’ can be used to predict accelera-
tion in the ageing process due to smoking or other factors 
with negative health effects. Dissecting the interactions 
between ageing and methylation regulation in Arthro-
pods has lagged by comparison to mammals, although 
pharmacological inhibition (by RG108) of DNA meth-
yltransferase activity was shown to increase lifespan in 

honeybees [27]. DNA methylation has been correlated to 
phenotypes in several insect orders: it shows sex-specific 
patterns in the Hemipteran aphids and mealybugs [28, 
29], nurse and forage caste-specificity in honeybees [30], 
and is essential to larval development in the almost negli-
gibly methylated mosquito species Anopheles albimanus 
[31]. Despite these correlations, causative links between 
phenotype and DNA methylation have yet to be estab-
lished in arthropods [7].

Caloric restriction and DNA methylation
Caloric restriction (CR) is the reduction of dietary intake 
without malnutrition or loss of micronutrients. It can 
increase lifespan in many animals, including D. magna 
[32–38]. CR acts through several molecular mechanisms 
which are possibly master regulated by the mechanistic 
target of rapamycin (mTOR) pathway [39]. CR in mice 
causes genome-wide remodelling DNA methylation that 
delays age-related changes [40]. However, in honeybees 
lifespan increases were observed on inhibition of DNA 
methyltransferase, but this was shown to occur in a CR-
independent manner [27].

An epigenomic model invertebrate—Daphnia magna
Under favourable ecological conditions [41], Daph-
nia species reproduce clonally. Over time this results 
in high within-population genetic variation, as multi-
ple non-recombining lineages are maintained [42–45]. 
Life-history experiments have exploited this variation 
to explore how distinct genotypes (or strains) of a vari-
ety of Daphnia species respond to environmental stress-
ors [1, 46–52]. D. magna has more recently emerged as 
an epigenetic model organism. A variety of life-history 
and ecotoxicological stimuli have been shown to modify 
methylated cytosines (CpGs), histones and small RNA 
expression [1, 3, 9, 53–60]. In this role, Daphnia species 
have an advantage over the model invertebrate Drosoph-
ila melanogaster. D. melanogaster has negligible levels 
of adult DNA methylation and lacks the essential DNA 
methyltransferase genes (DNMT1 and DNMT3A/B), 
although this is subject to continuing debate (discussed 
in [61]). D. magna encodes a full complement of DNMTs 
and gene-body DNA methylation has been shown to 
correlate with increased gene expression in male versus 
female D. pulex [9]. This is despite low levels of overall 
cytosine (CpG) methylation of 0.25–0.8% estimated in 
D. magna [8, 53–59], which is sparsely distributed across 
Daphnia genomes [8, 9, 53, 55, 56, 58, 59]. Hence, DNA 
methylation is likely a directed and non-random pro-
cess in Daphnia that has a role in the regulation of gene 
expression.
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A multi‑factor experimental design
We have previously shown that CR causes differential 
methylation, gene and miRNA expression in D. magna [1, 
3, 59]. However, we found no correlation between differ-
entially methylated regions and gene expression resulting 
from CR [1], which necessitated confirmation of any link 
between CR and CpG methylation in this study. This lack 
of correlation also informed our choice to take a differ-
ent approach to identifying strain, age and CR changes 
in CpG methylation here. Firstly, smoothing-based 
approaches to identify changes in methylation status (as 
we applied before [59]) combine methylated cytosines 
in close proximity, were developed with the high levels 
of DNA methylation in vertebrates as a basis. Secondly, 
our experimental design is complex incorporating two 

strains, abundant versus calorically restricted food lev-
els and young versus old individuals (detailed in Fig. 1a). 
We therefore applied a generalised-linear modelling 
approach to identify individually differentially methyl-
ated CpGs [62]. The advantage of this approach over 
alternatives (discussed in [54]) is that no assumptions 
were made about the underlying distribution of DNA 
methylation, and we were able to assess all experimental 
factors in one model.

We first conducted a survival analysis of CR on our two 
strains, which showed that one strain has increased lon-
gevity in response to CR but the other does not. Then we 
tested if genome-wide methylation status varies by Age, 
CR and Strain. Strain is by far the strongest factor in the 
experiment accounting for the majority of significant 

a

b

Fig. 1  Ageing and response to caloric restriction in strains C32 and KA53. a Experimental design for each strain, half of replicates were sampled 
at 10 days and half at 50 days and half of replicates were submitted to normal food (NF) and half to caloric restriction (CR). This resulted in eight 
combinations of factors (two strains x two ages x two food levels), each of which consisted of six replicates. b Survival curves for C32 and KA53 
in response to caloric restriction and normal food levels. NF = normal food; CR = caloric restriction X-axis = time in days; orange line = survival 
probability for normal food; orange shading = 95% confidence interval of the normal food survival probability; blue dashed line = 95% confidence 
interval of the caloric restriction survival probability; CR = caloric restriction; red dashed vertical lines indicate sampling points for young replicates 
at 10 days, and old replicates at 50 days
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differentially methylated CpGs. Age was significant at 
much fewer CpGs, but these positions predict epigenetic 
ages that are highly correlated with chronological age, 
hinting at the potential for defining an epigenetic clock in 
Daphnia. In contrast to our previous research, CR had no 
consistent effect on methylation.

Results
Strain lifespan and response to CR
The two strains, known to us as strain C32 and KA53, 
respond differently to caloric restriction (survival curves: 
Fig.  1b). Median survival time in strain KA53 changed 
from 89  days (95% confidence interval: 80–98  days) to 
112 (95% CI 104–147) with a likelihood ratio test p-value 
of 2 × 10–4 in response to CR. For C32, median survival 
increased from 96  days (95% CI 58–117) to 105  days 
(95% CI 90–125), but this difference was not significant 
(p-value 0.4, likelihood ratio test).

WGBS metrics
MultiQC collated mapping, conversion rates and other 
metrics per replicate are given in Additional files 1 and 
2 for the two filtering methods: (1) to control for incom-
plete bisulphite conversion, reads with three or more 
consecutive unconverted CH cytosines were removed 
(‘3xuCH’) as recommended by Ref. [63], and (2) all reads 
containing CH methylated cytosines were removed ( 
‘No-CH’) in line with our previous DNA methylation 
study Daphnia [59]. Mapping rates were highly corre-
lated between the reference genome [64] and D. magna 
version 2.4 genome assembly [65], with a Spearman’s rho 
of 0.997 (p-value 2.2 × 10–16). The low mapping rates of 
some replicates (lowest 29.8% reads aligned; highest 66%) 
do not result from a different alignment reference from 
our previous study [59]. Average percentage CpG methyl-
ation was 1.26% and 1.33% for the ‘No-CH’ and ‘3xuCH’ 
datasets, respectively, (column: ‘% mCpG’, Additional 
files 1 and 2), while cytosine coverages varied from 8 to 
28 reads for both filtered datasets (column: ‘C Coverage’ 
Additional files 1 and 2).

Replicates separated clearly by Strain
During Initial data exploration, we discovered that one 
sample of strain C32 clustered with KA53 (Sample 5, 
Additional file  3: Figure S1), which we believe to have 
been a contamination or mislabelling error. This repli-
cate, a strain C32—age Old—food level Normal Food, 
was removed from the analysis, and all results described 
were based on analysis of the remaining 47 replicates.

PCA and hierarchical clustering of the 10,000 most 
variable methylated CpG sites both show separation of 
replicates by Strain (Fig. 2a, b). The first PCA component 
explained 75.4% of the variance and the second 1.2%, and 

the hierarchical clustering separated replicates by strain 
with 100% support from approximately unbiased p-value 
and bootstrap probabilities. CpGs with greater than 5% 
methylation were concentrated in coding sequences, with 
2.2 CpGs per kilobase versus untranslated regions (1.0 
CpGs per kb), introns (0.8 per kb) and transcription start 
(0.8 per kb) and end sites (0.8 per kb) (Fig.  2c, Tabular 
results: Additional file  4: Table  S1), and there is no dif-
ference in these distributions between strains (Additional 
file  5: Figure S2). When broken down by exon, CpGs 
occurred more frequently in exons two to five, with the 
highest frequency in exon two at 3.6 CpGs per kb (Fig. 2 
part D, tabular results: Additional file  6: Table  S2), and 
the distribution across exons was not different between 
strains (Additional file 5: Figure S2).

Strain explains most significant CpGs
A total of 4,141,957 and 4,095,469 CpGs were input to 
DSS for the ‘3xuCH’ and ‘No-CH’ datasets, respectively. 
For the ‘3xuCH’ dataset, 15,139 significant CpGs were 
associated with Strain, and 61 CpGs were significant 
for Age. There were fewer significant sites for the ‘No-
CH’ dataset for both factors (Table  1, Additional file  7: 
Table S3 for significant CpGs per filtering level and fac-
tor). No sites were significant for food level, nor were any 
interaction terms in the ‘3xuCH’, ‘No-CH’ and unfiltered 
datasets. Strikingly, 87% (13,229/15,139 CpGs) of dif-
ferentially methylated CpGs for Strain in this ‘3xuCH’ 
dataset occur in gene bodies (exons + introns) versus 
inter-genic sequence. To place this number into con-
text, 49% of the genome assembly (60,352,426 bp out of 
122,952,669) is covered by gene body sequence. This was 
also true for the ‘No-CH’ dataset at 88% (12,282/14,011 
CpGs) (list of significant CpGs: Additional file  8: 
Table S4). Compared to the unfiltered dataset, the results 
for Strain were very similar to the ‘3xuCH’ dataset at 
15,139 versus 15,150, but not for Age: 6,978 CpGs were 
significant in the unfiltered versus the 61 for the ‘3xuCH’ 
dataset (Additional file 7: Table S3).

Overlap between the two filtering approaches is high 
for Strain significant CpGs with 13,834 CpGs in com-
mon (Euler diagram, Additional file  9: Figure S3). For 
Age, all four significant ‘No-CH’ CpG sites were present 
in the ‘3xuCH’ significant CpGs. Despite the strong dif-
ferentiation between strains, there are very few genes 
that contain CpGs exclusive to either C32 or KA53, and 
in most cases this is only 1–5 CpG sites. An exception to 
this is gene LOC116934226, encoding an ATP-dependent 
RNA helicase me31b-like protein, which had 18 sites 
hypermethylated in strain KA53 versus C32; 12 in exon 
three, four in exon four and two in exon five: Of these 
significant CpGs, only one from exon, four and two from 
exon, and five occurred within protein coding sequence 



Page 5 of 14Hearn et al. Epigenetics & Chromatin            (2021) 14:4 	

(Additional file 10: Table S5) with the rest present in the 
5′ UTR.

BS-SNPer predicted 317,986 and 424,261 single-nucle-
otide polymorphisms (SNPs) from the WGBS data in 
strains C32 and KA53, respectively; of these 30,817 SNPs 
were exclusive to C32 and 137,092 to KA53. Compared 
against the reference assembly of South Korean origin, 

287,169 SNPs were shared by both United Kingdom 
collected strains, a further 100,085 of which were fixed 
in both. Numbers of predicted SNPs were highly simi-
lar for the ‘No-CH’ BS-SNPer results (Additional file  7: 
Table S3).

There were few enriched GO terms relative to the num-
ber of genes containing exons with hypermethylated 

a b

c d

Fig. 2  Methylation status correlates with Strain. a PCA plot of replicates for principal components one and two for the top 10,000 most variably 
methylated CpGs by beta value; C32 = yellow, KA53 = blue. b Hierarchical clustering of replicates with colouring as for a), replicates split by strain 
with 100% approximately unbiased p-value (red) and bootstrap probabilities (black). c CpGs with greater than 5% methylation combined across 
replicates are enriched in the coding regions of exons versus the rest of gene bodies. d CpGs with greater than 5% methylation combined across 
replicates are concentrated in exons two to five in line with previous studies investigating DNA methylation in D. magna [8]
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CpGs (Table  2). The category with most GO terms 
enriched was ‘One or more hypermethylated CpGs’ for 
biological process (BP) for C32 and KA53 at 21 terms 
for both (enriched GO terms for the eight comparisons 
made: Additional file 11: Table S6).

CpGs associated with age and a potential epigenetic clock
Genes overlapping CpG sites significant for Age are given 
in Additional file  12: Table  S7. For the 53 CpGs hyper-
methylated in Young Daphnia in the 3xuCH dataset, 35 
overlap with gene bodies. All eight CpGs hypermeth-
ylated in Old replicates overlap a gene, five of which 
occur in the coding sequence of a single gene—his-
tone H3 (LOC116920166). For the CpGs hypermethyl-
ated in Young individuals, one uncharacterised gene 
(LOC116933951) is overlapped by three significant 
CpGs, and nine further genes are overlapped by two sig-
nificant CpGs, including prefoldin RPB5 interactor-like, 
homeobox protein Hox-B1a-like, innexin shaking-B-like, 
and an uncharacterised locus.

After filtering for CpGs with zero read coverage in any 
replicate, only one position was removed from the ‘3xuCH’ 
Age significant CpGs (leaving 60 in total), which were ana-
lysed by PCA of beta values (the methylated proportion 
of cytosines at a single CpG, Fig.  3a). Young individuals 

of strain C32 separated clearly along PC1 which explains 
66% of the variance in the data, while PC2 explained 8% of 
the variance. These 60 positions were input to the penal-
ised lasso regression model, which revealed 12 sites that 
contributed significantly to the model (Additional file  13: 
Table  S8). The relationship between epigenetic age and 
chronological age has a Spearman’s rho of 0.87 (p-value 
3.9 × 10–15) per replicate as predicted by these 12 CpGs 
as shown in Fig.  3b. Strain KA53 had average epigenetic 
ages of 18.8 and 40.6 days at chronological ages of 10 and 
50  days, respectively, whereas for C32 epigenetic ages 
increased from 11.6 to 49.0  days over the experiment. A 
GLM of the predicted ages per replicate extracted from the 
penalised regression indicated that Age explained 81% of 
the variance in the model, with clone explaining only 0.02% 
of the variance. However, the Strain by Age interaction 
explained a moderate amount of variation, 5.7%. (results: 
Additional file  14: Table  S9) in line with Fig.  3a in which 
Young replicates of C32 appeared distinct from the rest of 
the experiment. This was also true when only the twelve 
penalised regression selected CpGs are selected (Addi-
tional file 15: Figure S4, part A). The distinction between 
strains was greater when considering the four Age signifi-
cant CpGs for the ‘No-CH’ filtered dataset, all of which 
contributed to the penalised regression (Additional file 13: 
Table S8). For that regression Strain explained 17% of the 
variance and was highly significant, as was Age at 34%, and 
their interaction at 23% (Additional file  13: Table  S8 and 
Additional file 14: Table S9). The effect of strain can be seen 
in the correlation between chronological and epigenetic 
age, in which C32 replicates were all younger epigenetically 
than KA53 replicates at day 10 chronological age (Addi-
tional file 15: Figure S4, part B).

Table 1  Numbers of  CpG sites hypermethylated in  each strain relative to  the  other for  Strain and  Age factors 
in the ‘3xuCH’ and No-CH’ filtered datasets

Strain

Dataset Hypermethylated in C32 Hypermethylated 
in KA53

3xuCH 7787 7352

No-CH 7198 6813

Age

Dataset Hypermethylated in Young Hypermethylated 
in Old

3xuCH 53 8

No-CH 3 1

Table 2  Number of  genes overlapped by  significant CpG 
sites in  exonic, coding sequence and  intronic regions 
for all sites and genes with five or more hypermethylated 
CpGs

Strain Exonic CDS Intronic

C32 2625 1701 1495

KA53 2469 1603 1364

5 or more hypermethylated CpGs

 C32 276 182 94

 KA53 292 185 100
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Discussion
Methylated CpGs were enriched in exons
Methylated CpGs were concentrated in gene bodies with 
a preference for exons 2 to 5 (Fig. 2d), adding to the evi-
dence that methylation is a directed process in Daph-
nia [8, 9]. We report an average CpG methylation of 
1.2–3%, which is higher than our previous estimate for 
strain C32 of 0.7% [59]. This earlier estimate is more in 
line with those reported for other strains of D. magna 
at 0.25–0.85% [8, 9, 55–57]. The current higher estimate 
may result from incomplete bisulphite conversion during 
library preparation, as the percentage was elevated when 
filtering out all methylated CHG/CHH sites (the ‘No-
CH’ dataset) which occur negligibly in D. magna [56]. 
The CpG methylation rate of the mitochondrial genome 
has been used as a method of estimating non-conversion 
rate for D. magna before [58], as no mitochondrial DNA 
methylation occurs in the crustacean C. gigas [13]. Our 
data had a mitochondrial CpG average methylation rate 
of 0.8% for the ‘3xuCH’ and 0.65% for the ‘No-CH’ data-
sets, which when subtracted from the global CpG per-
centages (‘3xuCH’ dataset: 1.3–0.8% = 0.5%) were in the 
range of other estimates derived from D. magna. This 
lack of mitochondrial DNA methylation has not been 
confirmed in D. magna or any invertebrates beyond C. 
gigas [13], so the mitochondria method should be inter-
preted with caution (see [66] for mitochondrial CpG 
distributions in animals). We argue that by performing a 
well-replicated experiment in which there are 24 versus 
23 replicates for each level of factor tested (Age/Strain/
Food), the effect of false-positive CpGs resulting from 
non-conversion of cytosines was minimised.

CpG methylation did not respond to caloric restriction
No CpGs were significant for CR at any filtering thresh-
old despite this treatment having an effect on lifespan 
for KA53 (Fig.  1b) and other phenotypic effects on 
strain C32 [1–3, 59, 67]. This contrasts with our pre-
vious results for a CR-only CpG methylation experi-
ment using C32 [59]. There was no association between 
median lifespan and CR for the survival analysis in this 
strain, but it does show previously established mater-
nal effects in response to CR [67]. We believe this 
experiment to be a more robust test of CR than the 
previous research for two reasons: (1) our experiment 
includes more replicates of each food level (24 and 23 
in total) and includes two strains; (2) the method used 
here to identify differentially methylated CpGs makes 
no assumptions about the underlying distribution of 
CpGs genome wide. Hearn et  al. applied smoothing 
across linked CpGs to identify differentially methyl-
ated regions, an approach which was developed with 
much higher levels of methylation as a basis [68]. As a 
result, we recommend DSS-like methods that test sig-
nificance of an individual CpG for arthropod studies 
until smoothing approaches that better model underly-
ing CpG distributions in arthropods become available.

The lack of significant CpGs for food is at vari-
ance with previous miRNA and protein-coding gene 
expression experiments exploring responses to CR 
[1, 3]. Greater than 6000 genes significantly differen-
tially expressed in response to CR in C32 [1], but we 
found no overlap between gene expression response to 
CR and the previously identified differentially meth-
ylated regions in Ref. [1]. Given this very strong gene 

a b

Fig. 3  Epigenetic age correlates with chronological age. a PCA analysis of beta values for 60 Age significant CpGs (one position was removed 
as it contained N/A values for certain replicates due to no read coverage) showing that C32 Young individuals cluster separately on PC1. b The 
relationship between predicted epigenetic age and chronological age for all replicates for the ‘3xuCH’ dataset, coloured by strain and calculated 
from the 12 CpGs that contributed most to the penalised lasso regression model
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expression response, if changes in CpG methylation 
also formed part of the downstream response to CR in 
D. magna, we might expect to see differential methyla-
tion [69]. We conclude that the downstream responses 
to CR in D. magna do not cause changes in DNA 
methylation.

Strain‑dependent methylation differences were 
widespread
We showed that two strains of D. magna that 
have > 15,000 differently methylated CpGs for the 
‘3xuCH’ dataset. This is perhaps not surprising if genetic 
variability correlates with epigenomic differences as for 
vertebrates [14, 16]. The maintenance of high-genetic 
diversity within natural Daphnia populations due to 
clonal lineages that result from extended periods asex-
ual reproduction [42–44] could therefore amplify poly-
morphism at the sequence and methylation level versus 
sexually recombining species. We see support for this 
in the 30,817 and 137,092 SNPs exclusive to strains C32 
and KA53, respectively. Both strains are distant from 
the South Korea-derived reference sequence as shown 
by the 287,169 SNPs shared between strains. These SNP 
numbers must be considered with care, however, as vari-
ant predictions derived from WGBS data are likely to be 
inflated by false positives from methylation polymor-
phisms [70, 71]. Strain-specific CpGs are concentrated in 
gene bodies across thousands of genes (Table 2), and the 
functional effects of such widespread differential meth-
ylation resulting from genetic variation are unknown.

One gene, LOC116934226, hypermethylated strongly 
at multiple CpGs in strain KA53 exclusively encode ATP-
dependent RNA helicase me31B-like protein. Me31B 
is an RNA-binding protein that represses thousands of 
maternal mRNAs during Drosophila maternal-to-zygotic 
(MZT) transition [72, 73]. MZT is the process by which 
development comes under zygotic genome control over 
stored maternal genetic material in animals [74]. It is an 
essential gene for successful oogenesis and embryogen-
esis in Drosophila [74], with other mRNA-related decay 
functions that include antiviral activity in mosquitoes 
[75]. A methylation-dependent difference in embryonic 
expression levels of me31b could change developmental 
trajectories of embryos of each strain with phenotypic 
effect. The intergenerational stability of methylation 
at this locus will be a target of future work, by crossing 
these strains in future experiments will confirm whether 
CpG methylation in D. magna inheritance is linked to 
polymorphism.

GO term enrichment was less enlightening, possibly 
because strain can be considered a random effect within 
our experiment, albeit with only two levels. This means 
we do not know if the strains differ ecologically in their 

original environment, which makes it difficult to corre-
late general GO terms with phenotype in a biologically 
meaningful manner.

Age resulted in DNA methylation changes
For both filtering methods, there were significant CpGs 
for Age, although a ten-fold difference is observed 
between the ‘3xuCH’ (61 CpGs) and ‘No-CH’ (4 CpGs) 
datasets. PCA of the ‘3xuCH’ Age significant CpGs 
reveals that Young replicates of strain C32 separate on 
PCA1 (Fig. 3a), suggesting that Strain can contribute to 
the Age effect. This is despite the lack of significant Strain 
by Age interaction CpGs from the DSS results, which 
may reflect a lack of power to detect such interactions 
under our experimental design and read coverage levels.

Five of the eight significant CpGs hypermethylated in 
Old individuals occurred in the histone H3 gene towards 
the 3′ end of coding sequence. This is the first observa-
tion of differential methylation along a histone gene in 
Daphnia as far as we are aware. Histone H3 is one of 
the five highly conserved histone genes that pack DNA 
into nucleosomes, and are of fundamental importance to 
organismal function [7]. It has several post-translational 
associations with heterochromatin (H3K9me3), activated 
transcription (H3K4me3/H3K36me3/H3K27ac), gene 
downregulation (H3K27me3) or a context-dependent 
effect (H3K4me1) [7]. Post-translational modifications 
of histones have been shown to differ between sexes in 
D. pulex [9]. Histone modifications are associated with 
behavioural transitions in ants and are important in 
head development of lepidoterans [7, 76–78]. From these 
observations, we predict that Increased methylation of 
histone H3 may increase this gene’s expression with age 
with potentially organism-wide functional consequences. 
In support of this, increased DNA methylation has been 
shown to increase gene expression in D. magna and D. 
pulex [8, 9]. However, this positive relationship between 
methylation and expression has not been shown to occur 
within an organism due to a treatment (where ‘age-
ing’ is the treatment). DNA methylation is not the only 
regulatory mechanism to differ with age in D. magna, as 
micro-RNA expression differs between young and old 
individuals and the eggs of young and old, respectively, 
in strain C32 [3]. Any interactions between miRNAs and 
constituents of chromatin, like histone H3, in arthropods 
have not yet been elucidated [7, 79] in contrast to the 
piwi-interacting RNAs [80], class of small RNAs.

Although more sites are significantly hypermethyl-
ated in young individuals, no gene or genes emerge with 
potentially large effects according to their function. Only 
uncharacterised gene ‘LOC116933951′ has more than 
two overlapping significant CpGs; it encodes an inte-
grase domain and is present on a short contig of 5139 bp 
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length. This gene is likely a repetitive element that may 
have multiple genomic copies, which is supported by an 
average read coverage of 2426 for CpGs for data from 
all replicates combined (‘3xuCH’ dataset) versus 661 for 
CpGs placed onto chromosomes. The lack of pattern 
in sites losing methylation with age could result from 
reduced efficiency of methylation maintenance protein 
DNMT1 [81], which is associated with lower expres-
sion with increasing age in humans [82]. Our sampling 
point of 50 days for Old replicates was constrained by a 
requirement for enough individuals to obtain sufficient 
DNA input for whole-genome bisulphite sequencing 
(WGBS). D. magna individuals can survive for longer [1, 
83], and if DNMT becomes less efficient through lowered 
expression with age, we predict more hypomethylation at 
the same, and possibly more, CpG sites. Such studies are 
becoming feasible with newer methods exploring DNA 
methylation, especially when candidate CpG sites are tar-
geted [26].

Potential for an epigenetic clock in a model invertebrate
In an exploratory analysis, we applied penalised lasso 
regression to the Age significant CpGs of the ‘3xuCH’ 
dataset which identified 12 CpGs contributing signifi-
cantly to the model specified. The interaction between 
Age and Strain was significant, but modest (6%) com-
pared to that of Age alone (81%) at these CpGs Predicted 
or ‘epigenetic ages’ based on these twelve sites that were 
highly correlated with chronological age for replicates of 
both strains. (Fig. 3b). All 4 sites significant for the ‘No-
CH’ dataset were kept by the model, but these positions 
were more strongly influenced by Strain, as young rep-
licates of each clone had distinct epigenetic ages (Addi-
tional file 15: Figure S4, part B). This is despite the initial 
DSS analysis finding no CpGs with significant interac-
tions between factors, possibly due to low power as mil-
lions of positions were included. Our results are the first, 
tentative, step in exploring clock-like mechanisms in an 
invertebrate. The twelve and 4 sites predicted here by 
the ‘3xuCH’ and ‘No-CH’ datasets, respectively, require 
validation in multiple strains of D. magna for assessing 
whether a species-wide epigenetic clock is feasible. We 
plan to do this in future work, following the approach of 
Little et al. [26] for wild mice. The availability of such epi-
genetic age markers in tandem with the finely controlled 
life-history experiments commonly performed on D. 
magna has great potential for the field.

Conclusions
In summary, we found (1) no effect of caloric restriction 
on methylation, in contrast with prior work that used a 
different analysis approach; (2) more than 15,000 CpGs 
differentially methylated between strains sampled from 

the same habitat; and (3) that Age is associated with 61 
differentially methylated CpGs, and some of these sites 
could prove useful for developing an epigenetic clock. 
Functional inferences are limited for the effect of Strain 
and Age on phenotype, but for each of these two fac-
tors, a single-gene emerges that could have a widespread 
phenotypic effect. For Strain, Me31b is a key embryonic 
repressor of maternal mRNAs, differential methylation 
of which leading to changed expression levels is hypoth-
esised to put each strain on modified developmental tra-
jectories. For Age, the hypermethylation of histone H3 
may change expression levels between Young and Old 
individuals very broadly, as we have seen before for miR-
NAs. It is also a point of regulation between two epige-
netic mechanisms, DNA methylation and chromatin, 
that has not been reported previously in Daphnia. Future 
work will focus for (2) on incorporating more strains 
from different locations to test whether epigenetic varia-
tion is more diverse within, or between, habitats. For (3) 
we now have a target set of CpG sites that we will test 
for clock-like behaviour in other strains of D. magna. The 
potential for an epigenetic clock in an easily manipulated, 
relatively short-lived, life-history trait model invertebrate 
for ageing research is very exciting.

Methods
D. magna ageing and caloric restriction survival analysis
Both strains originate from Kaimes pond near Leitholm, 
Scottish Borders, United Kingdom [84]. The experimen-
tal conditions specified below were the same as for the 
survival analysis presented in Ref. [1], and the results for 
strain C32 were first published in that study and repro-
duced here for comparison with KA53. Prior to the 
experiments, replicates of each strain were put through 
three generations of acclimation to harmonize envi-
ronmental effects. During this period, each individual 
was maintained in a 60‐ml glass jar filled with artificial 
pond medium [85] which was changed twice a week 
and after the birth of a clutch. Each individual was fed 
~ 6.25 × 106 Chlorella vulgaris cells daily and was main-
tained on a 12:12 h Light:Dark cycle at 20  °C. Offspring 
from the second clutch initiated each generation and the 
experimental generation. We define Caloric restriction 
as approximately 20% of normal food levels. From accli-
mated females of each strain, two offspring were taken, 
and one replicate was given normal food of ~ 6.25 × 106 
cells and the other given a calorically restricted ~ 1.4 × 106 
cells. Each food treatment and genotype combination 
were replicated 24 times and date of birth and date of 
death of all individuals in the experiment were recorded.

CR-induced differences in lifespan difference within 
each strain were tested by a Cox’s proportional hazards 
model using the survival package (R code, Additional 
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file  16, strain longevity data: Additional file  17) [86]. 
Between strain differences were not tested as the experi-
ments were run separately, but under identical con-
ditions. The response variable was days alive and the 
explanatory variable was food level. We extracted the 
median day of survival at each food level, and associated 
p-value from a likelihood ratio test of food levels.

D. magna Ageing and CR experiments for WGBS
Maternal lines of each strain were acclimatised iden-
tically to the survival analysis above. Following three 
generations of acclimatisation, 20 offspring from each 
mother were isolated to form a biological replicate. We 
generated six replicates per age and food level for both 
clones, resulting in 24 replicates per clone and 48 repli-
cates in the experiment in total (summarised in Fig.  1 
b). Twelve replicates per clone were fed a normal diet of 
5 × 106 algal cells/day and twelve were fed a CR diet of 
1 × 106 algal cells/day (as for [3, 59], but differing slightly 
from the survival analysis). Each replicate was split and 
reared in four sub-replicate jars of five animals, which 
were subsequently pooled for DNA extraction. Six rep-
licates of the twelve at each food level and clone were 
harvested after the first clutch at approximately 10 days 
(forming ‘Young’ replicates) and the other six after the 
fifth clutch at approximately 50 days (‘Old’ replicates). D. 
magna were ground by motorised pestle in Digsol and 
proteinase K and incubated overnight at 37 °C and stored 
at − 70  °C until DNA extraction. DNA was extracted 
from pooled D. magna per replicate by phenol–chlo-
roform followed by a Riboshredder RNA digestion step 
and repeat of the phenol–chloroform extraction (follow-
ing [59]). DNA was eluted into 100  μl of TE buffer and 
quantified by Qubit fluorimeter by dsDNA HS Assay Kit. 
Sample purity was checked by Nanodrop 260:280 and 
260:230 and DNA integrity was examined by running 
approximately 35 ng DNA on a 0.8% agarose gel stained 
with ethidium bromide.

Methylated CpG and variant prediction
Bisulphite libraries for WGBS were prepared using EpiG-
nome/TruSeq DNA methylation kits and 150 bp paired-
end sequenced on Illumina HiSeq 4000 by the Centre for 
Genomic Research (Liverpool, United Kingdom), and 
raw data deposited in the European Nucleotide Archive 
(PRJEB34509). Reads were provided by CGR post-trim-
ming with Cutadapt  v1.2.1 and Sickle v1.200 for adapt-
ers and read quality. Cutadapt option-O 3 was used to 
trim the 3′ end of any reads which matched the adapter 
sequence for 3  bp, and Sickle removed read windows 
with an average phred-scaled quality score below 20. 
Reads shorter than 20 bp after trimming were removed.

Read quality was assessed with FastQC, and the 
first 15  bp of each read trimmed with fastp v0.19.3 
to remove biases introduced by the random-prim-
ing library preparation step, and processed reads re-
assessed with FastQC. We applied the Bismark (v0.22.3) 
pipeline (with options “-N 1 –score_min L,0,-0.6”) to 
generate CpG methylation calls for each replicate using 
the chromosomal Daphnia magna (KIT strain) genome 
assembly version as a reference [64]. Bismark mapping 
rates were compared using Spearman’s Rho (in base 
R 4.0.0) between this reference and D. magna assem-
bly 2.4, which was the reference used in our previous 
work [59]. Aligned reads were then deduplicated in 
Bismark, and we evaluated three filtering methods to 
reduce the effect of bisulphite reaction non-conversion 
on methylation calls. Firstly, all reads with methylation 
at non-CpG sites were removed, this allowed direct 
comparison with Hearn et  al. 2019 and we did this as 
non-CpG methylation (at CHH and CHG positions) 
is considered negligible in D. magna [55]—referred to 
as the ‘No-CH’ dataset throughout. Secondly, we fil-
ter reads with three or more consecutive unconverted 
CH cytosines as recommended for BS datasets by [63], 
which we refer to as the ‘3xuCH’ dataset here. Both of 
these methods were implemented through the ‘filter_
non_conversion’ tool within Bismark, and the results 
for unfiltered methylation calls are presented for com-
parison with the two filtering methods. Finally, CpG 
read coverages for methylated and unmethylated reads 
were combined for the forward and reverse strand data 
per CpG using the Bioconductor package bsseq [68] (R 
code, Additional file 16). Mapping rates and other met-
rics per replicate were generated in multiQC [87]. To 
assess inter-strain genetic differences, SNPs were called 
in BS-SNPer (v1.0) [70] on ‘filter_non_conversion’ out-
put bam files pooled for each strain (minus sample 5 for 
C32) with parameters: ‘–minhetfreq 0.1 –minhomfreq 
0.85 –minquali 15 –mincover 10 –maxcover 1000 –
minread2 2 –errorate 0.02 –mapvalue 20’. SNP calls 
were filtered at phred-scaled quality 20 and intersected 
in bcftools (isec, v1.11).

Clustering of replicates was explored by principal 
components analysis (PCA) in CPGTools [88], and 
hierarchical clustering using the R package pvclust 
[89] of the 10,000 most variable CpG sites (R code, 
Additional file 16) with 10,000 bootstrap re-samplings. 
To do this, methylation status at each position for the 
‘3xuCH’ dataset was converted into a proportion or 
beta value and sites with zero methylated cytosines or 
with no read coverage in a replicate were removed; var-
iances were then ranked per methylated position with 
beta_topN.py of CPGTools. To explore genome-wide 
patters of methylation CpG counts were combined 
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using the ‘3xuCH’ dataset and summarised in CpG_
anno_position of CPGTools for CpG sites with greater 
than 5% methylation (input gene coordinate BED file: 
Additional file 18).

Differential methylation testing
To test the effect of ageing, nutrition, strain and any 
interactions between them on CpG methylation sites, a 
generalised linear modelling approach through the Bio-
conductor package DSS (version 2.36.0 in R version 
4.0.0) was developed. Bismark output coverage per rep-
licate was first converted to DSS input format and fil-
tered so that at least two of the six replicates per category 
(Age × Food × Strain) had a coverage of at least two prior 
to model testing of all factors and their interactions (~ 
Strain + Food + Age + Strain:Food + Strain:Age + Age:F
ood + Strain:Food:Age; DSS R script, Additional file 16). 
CpG sites with an adjusted p-value of less than 0.05 were 
considered significant. Gene ontology (GO) term enrich-
ment was tested for genes with exons (coding sequence 
plus untranslated regions) overlapping hypermethylated 
CpG sites in each strain. Gene ontology annotations were 
assigned by eggNOG (version 2.0.1) with the predicted 
protein sequences of the KIT assembly [64] as input. 
Enrichment was performed in topGO (version 2.40.0) 
for biological process (BP) and molecular function (MF) 
categories (R code, Additional file  16) for genes with at 
least one hypermethylated CpG within exons and the 
subset of genes with least five hypermethylated CpGs per 
exonic sequences. The ‘weight01′ algorithm and a p-value 
threshold of less than 0.01 were applied; p-values were 
not corrected in line with topGO user manual recom-
mendation (see topGO user manual Sect. 6.2: The adjust-
ment of p-values).

Penalised regression of age significant CpG sites
To explore the potential for an epigenetic clock in D. 
magna, we performed a penalised logistic regression 
on the Age significant CpGs on per replicate beta val-
ues implemented using the caret and glmnet R packages 
[90, 91] (R code, Additional file  16). A lasso (or Least 
Absolute Shrinkage and Selection Operator) regression 
was applied to identify coefficients, in this case Age sig-
nificant CpGs, that contribute most significantly to the 
model in which Age is the explanatory variable, leaving 
us with the best CpG candidates for constructing a clock. 
The predicted or ‘epigenetic age’ of each replicate accord-
ing to these CpGs was extracted from the model and 
plotted against chronological age (10 or 50 days). Finally, 
we tested if these epigenetic ages were predicted by Age, 
Strain and their interaction (Predicted Age ~ Strain + Ag
e + Strain:Age) through a generalised linear model (GLM 

code, Additional file  16). We extracted effect sizes for 
Age and Strain by dividing the sum of squares for each 
factor and their interaction by the total sum of squares. 
Effect sizes were multiplied by 100 to give percentage of 
variance explained.
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individual; L = caloric restricted individual. Individuals were changed to 
status ‘2′ on death in line with survival R program requirements. 
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magna genome assembly. Used to calculate CpG rates per kb for each 
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