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Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through

the release of soluble factors and/or by cell-to-cell interactions suppress both innate and

adaptive immune effector cells. In pathological conditions, characterized by the presence

of inflammation, a partial block in the differentiation potential of myeloid precursors

causes an accumulation of these immunosuppressive cell subsets both in peripheral

blood and in tissues. On the contrary, NK cells represent a major player of innate immunity

able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related

to their cytolytic potential and to the secretion of soluble factors or cytokines that may

act on tumors either directly or indirectly upon the recruitment of other cell types. NK

cells have been shown to play a fundamental role in haploidentical hemopoietic stem

cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis

of MDSC functional effects demonstrated that these cells are capable, through several

mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable

that, in this transplantation setting, the MDSC-removal or -inactivation may represent

a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a

better knowledge of the cellular interactions occurring in the tumor microenvironment

could promote the development of novel therapeutic strategies for the treatment of solid

and hematological malignances.

Keywords: natural killer cells, myeloid-derived suppressor cells, hematopoietic stem cell transplantation, tumor

microenvironment, hematological malignancies

INTRODUCTION

Tumor microenvironment (TME) consists of an assortment of tumor and non-tumor cells
(including mesenchymal stromal cells, endothelial cells, regulatory T-cells, and myeloid-derived
suppressor cells), as well as soluble components. Tumor associated (TA)-cells may favor neoplastic
transformation, tumor growth, and metastasis thus contributing to tumor escape from host
immunity. In addition to TA-cells, TME also contains immune cells including innate and
adaptive lymphocytes. A growing body of evidences has revealed the existence of a close
relationship between tumor and immune components. Many of the interactions between TME and
tumor infiltrating (TI) immune cells are already well-known (1). Consistent positive prognostic
correlations have been reported for T-cells, especially cytotoxic T-cells, in different tumor types
(2). In particular, TI-lymphocyte density can influence prognosis within each tumor, lymph
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node, and metastasis (TNM) stage, complementing or even
outperforming pathological criteria alone, as shown in colorectal
and lung cancers (3–5). In order to develop strategies to
overcome immunosuppression and tumor escape it is important
to further unravel the cellular interactions occurring in TME.
This contribution is focalized on the polymorphonuclear (PMN)-
MDSC, an important, strongly immunosuppressive myeloid
component, which may greatly impair the anti-tumor defenses
in particular those mediated by NK cells.

MDSC in Physiological and Pathological
Condition
One important cellular subset present in TME is represented
by MDSC. These cells were first identified in 1970 as a
heterogeneous group of immune cells with immature
features derived from a common myeloid progenitor
(CMP) (6). They possess high immunosuppressive and
pro-tumorigenic capabilities and actively cooperate with other
myeloid regulatory cells as tumor-associated neutrophils
(TANs), tumor-associated macrophages (TAMs), and
regulatory dendritic cells to favor cancer development
(7). MDSC are usually classified in two or three classes
in mice and humans, respectively. In mice, MDSC are
classified into monocytic (M-MDSC) (CD11b+Ly6ChiLy6G−)
and PMN-MDSC (CD11b+Ly6CloLy6G+ cells) subsets.
In humans, the granulocytic and the monocytic
subsets are classified as Lin−(CD3, CD19, CD56),
CD11b+CD33+CD15+CD66b+CD14−HLA-DRlow/− and
Lin−CD11b+CD33+CD15−CD14+HLA-DRlow/−cells,
respectively. A new subset of immature and early-stage
MDSC (e-MDSC) has been found in humans and classified as
Lin− HLA-DRlow/− CD11b+ CD14− CD15− CD33+. Recently,
the lectin-type oxidized LDL receptor-1 (LOX-1) molecule has
been suggested as novel marker to discriminate MDSC from
neutrophils (8–10).

In physiological condition, the CMP differentiate into
neutrophils or monocytes. In pathological conditions such as
cancer or infection the inflammatory milieu (e.g., GM-CSF,
TNF-α, VEGF, and PGE2) induces the CMP differentiation
into M-MDSC, and subsequently TAM, or PMN-MDSC that
can differentiate into TAN. In addition, chronic inflammatory
conditions induce release of soluble mediators that are
responsible for MDSC accumulation due to their reduced
susceptibility to Fas-mediated apoptosis (11). In this setting,
MDSC can help to control excessive inflammation, by reducing
both innate and adaptive immune responses (12, 13), while their
reduction normally occurs following inflammation resolution.
Conversely, if MDSC numbers do not decrease, they can be
associated to disease progression. Indeed, a continuous inhibitory
effect of immune response can interfere with tissue homeostasis,
energy metabolism, and dead cell removal.

In cancer, MDSC activity is mainly regulated by three key
events: myelopoiesis impairment, MDSC migration to tumor
site and subsequent activation. Thus, deregulated myelopoiesis
leads to accumulation of immature MDSC in bone marrow
that are subsequently recruited to primary and metastatic

tumor sites by tumor-released chemokines. Due to their potent
immunosuppressive and pro-tumorigenic potential, high levels
of MDSC, especially PMN-MDSC, have been observed in high
grade cancers and are correlated with poor prognosis, treatment
resistance and reduced overall survival in solid cancers (14–
18). Breast, ovarian and gastric cancer cells secrete CCL2 that
recruits MDSC and sustains tumor growth (19). In addition,
CCR2+MDSC can support tumor growth in colon-rectal-cancer
(CRC)-bearing mice (20). CXCL1 is another cytokine, highly
expressed in CRC that exerts chemoattractant activity on
CXCR2+MDSC. Moreover, MDSC also express CCR5 that has
been suggested to be involved in MDSC migration to tumor site
(21, 22). RegardingMDSC recruitment, it has been demonstrated
that the hematopoietic 5-lipoxygenase (5LO), a metabolite of
the arachidonic acid implied in colon carcinogenesis, is involved
into MDSC migration (23). In addition, MDSC can regulate
and induce their recruitment by a positive feedback. Indeed,
Reactive Nitrogen Species produced byMDSC lead to chemokine
nitration that in turn recruit MDSC (24).

Following recruitment, MDSC are activated through
many mechanisms. In particular, PGE2 can induce STAT3
phosphorylation that mediates both MDSC activation (25)
and inhibition of their physiological differentiation toward
neutrophils or monocytes (26, 27). Histamine can modulate the
expression of Arginase-1 (ARG-1) and Nitric oxide synthase
(iNOS) in M-MDSCs and PMN-MDSC, respectively (28, 29).
Hypoxia can induce the Hypoxia-inducible Factor 1 alpha
(HIF-1α) that in turn increases ARG-1 and iNOS activation in
MDSC (30).

While many studies on the involvement of MDSC in
hematological disorders have been performed, their actual role
is still debated. High numbers of PMN-MDSC were reported
in chronic myeloid leukemia (CML), possibly playing a role in
CML cell immune escape (31–33). The increased numbers of
PMN-MDSC, evaluated at diagnosis of CML, return to normal
levels after treatment with Imatinib. In acute leukemia, the role of
MDSC is not fully defined. Patients with acute myeloid leukemia
(AML) display increased numbers of MDSC in PB and BM as
compared to patients with acute lymphoblastic leukemia (ALL)
and a significant correlation exists with conventional prognostic
factors at diagnosis (34). Moreover, a significant decrease of
MDSCwas observed only in those patients in complete remission
after treatment. In pediatric patients, the frequency and the
strength of the immunosuppressive function correlated with
classical prognostic markers such as MRD and CD20+ blast
cell counts and with response to therapy. In addition, patients
in remission have been reported to lose MDSC suppressive
function further corroborating the effect of these cells in favoring
immune evasion mechanisms (35, 36). In diffuse large B-cell
lymphoma (37), indolent lymphoma (38), chronic lymphocytic
leukemia (39), and Hodgkin lymphoma (40), the frequency of
circulating MDSC has been correlated with poor prognosis.
Recent studies, in the S100A9 knockout transgenic mice, revealed
that MDSC are also involved in the pathogenesis and progression
of Multiple myeloma (MM) (41). MDSC isolated from the PB of
patients with MM display an inhibitory effect on T-cells which
could be abrogated by drugs inhibiting arginase-1 and iNOS
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activity (42). Available data would suggest that MDSC represent
a sizable subset present in MM patients that may play a role
in the pathophysiology of the disease by favoring survival and
proliferation of malignant plasma cells as a consequence of their
suppressive activity on anti-tumor immune response. Finally,
recent evidence suggests that MDSC have also a predominant
role in the pathophysiology of Immune Thrombocytopenia and
Chronic Idiopathic Neutropenia (43–45).

Immunosuppressive Mechanisms Exerted
by MDSC
Several studies described different mechanisms adopted by
MDSC to exert their immunomodulatory function either by
mechanisms that require cell-to-cell contact or by the release
of soluble factors. They can directly inhibit the innate or
adaptive immune system or indirectly contribute to tumor
progression through regulation of angiogenesis or cell motility.
In particular, MDSC-derived Nitric oxide (NO) can suppress
proliferation of T-cells by inhibiting the Jak/STAT5 pathway
and inducing T-cell apoptosis (46). MDSC-derived NO can
also impair T-cell migration by reducing E-selectin expression
on endothelial cells (47). In addition, oxygen reactive species
(ROS) produced by MDSC can induce apoptosis in T-cells by
decreasing expression of the T-cell receptor (TCR) ζ-chain (48,
49). Immunosuppression of T-cell response by MDSC may be
accomplished through cleavage of L-selectin on CD4+ and CD8+

T-cells by ADAM metallopeptidase domain 17 (ADAM17) and
disintegrin thus impairing T-cell trafficking to tumor sites (50).
Moreover, via the ARG-1 or IDO enzymes, MDSC can deprive
TME of the amminoacids required by T-cells for proliferation
(51–53). Secretion of IL-10 and TGF-β by MDSC represents
another mechanism to induce immunosuppression trough Treg
induction (54). In lung cancer, IL-10 secreted by M-MDSC has
been reported to be in part responsible for Treg induction in
vitro (55).

Notably, TGF-β and IL-10 can also mediate
immunosuppression indirectly, by inducing CD39 and CD73
expression on MDSC that are receptors involved in ATP/ADP
hydrolysis and AMP cleavage, respectively, therefore MDSC
affect T and NK cell response also by interfering with the
adenosine metabolism (56, 57).

Huang B and colleagues showed that IFN-γ secreted by T-
cells leads MDSC to release IL-10 and TGF-β that in turn
induce Treg (54). In addition to IL-10 and TGF-β, it has been
demonstrated that cell-to-cell contact and the CD40 expression
on MDSC surface are also required for Treg expansion (58).
Contact-dependent mechanism has been demonstrated also in
hepatocellular carcinoma where MDSC induce Treg expansion
(59). Different factors present in TME (transmembrane TNF-α,
TGF-β, lipopolysaccharide, Semaphorin 4D, NKG2D ligands and
extracellular vesicles) and hypoxia, can upregulate the secretion
of IL-10 by MDSC (60–63). In addition, other factor such as
HIF-1α increases the immunosuppressive activity of MDSC by
inducing Programmed Cell Death 1 (PD-1) expression and by
upregulating the V-domain of Ig suppressor of T-cell activation
(VISTA) (64, 65).

Notably, angiogenesis represents another immunosuppressive
mechanisms used by MDSC and it is mediated by VEGF
upregulation. It has been demonstrated that MDSC, previously
activated with VEGF, have a more potent inhibitory activity (66).
MDSC can also secrete proangiogenic factors asMetalloproteases
(MMP2, MMP8, MMP9, MMP13, and MMP14) that
can disrupt the extracellular matrix thus facilitating the
extravasation (67).

Another mechanism able to induce immunosuppression is
represented by the release of protumorigenic mediators such
as S100A8/A9 by MDSC and tumor cells. These factors are
capable to induce M2-macrophage polarization and MDSC
chemotaxis in TME that results in immunosuppression of
effector cells (68, 69).

NK Cells in Tumors
Natural killer (NK) cells belong to the innate lymphoid cell
(ILC) family. ILCs have recently been classified into five different
subsets: NK cells that represent killer ILC, and ILC1, ILC2
ILC3, and Lymphoid tissue-inducer cells (LTi) that belong to
helper-ILC. Unlike NK cells, the other ILC subpopulations were
discovered only recently because they are relatively infrequent
and are prevalently located in mucosal tissues and secondary
lymphoid organs (70).

NK cells are present primarily in the PB, spleen and bone
marrow, but they can infiltrate tissues and are also found in the
liver, lungs, gut, lymph nodes and uterus (71–73). Two major
subsets of PB-NK cells were identified on the basis of the surface
density of CD56 antigen (CD56bright and CD56dim). CD56dim

NK cells are predominant in PB, display a potent cytolytic
activity and release cytokines shortly after receptor-mediated
signaling. CD56bright predominate in tissues and secondary
lymphoid organs, are poorly cytolytic, while they produce
cytokines (74, 75).

The anti-tumor activity of NK cells is primarily related to
their cytolytic potential and to the secretion of soluble factors
or cytokines that may act on tumors either directly or indirectly
upon recruitment of other cell types. NK cell cytotoxicity is
induced by surface receptors capable of recognizing ligands
that are primarily expressed by tumor cells, but not by most
normal resting cells (76). These receptors may induce NK cell
activation resulting in tumor cell lysis and secretion of cytokines.
The major activating NK receptors include Natural cytotoxic
receptor (NCR) (i.e., NKp46, NKp44, and NKp30), DNAM-1 and
NKG2D. In addition, NK cells, in most instances, do not kill
normal cells thanks to a fail-safe mechanism involving inhibitory
receptors specific for HLA-class I molecules. These include killer
Ig-like receptors (KIRs) that recognize allotypic determinants
of HLA-cl I molecules shared by different groups of alleles and
CD94/NKG2A that recognizes HLA-E (77).

During cancer progression, the transformed cells display a
decrease or even a loss of the surface expression of MHC-I (78)
while strongly upregulate or acquire the expression of ligands for
activating NK receptors: two events necessary for NK activation
and induction of anti-tumor immune cell responses (79).
However, the frequent downregulation of activating receptor
expression in NK cells may result in decreased activity leading
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to increases in tumor expansion and metastases. Indeed, it is
well-known that tumor cells may create an immunosuppressive
environment through the modulation of inhibitory checkpoints
expression on NK cells in order to evade their cytolytic activity
and to induce tumor immune escape (79–82).

Some tumors are poorly permeable to NK cells, as the TME
may affect their ability to infiltrate the tumor mass. In particular,
colorectal carcinoma and melanoma lesions display poor NK cell
infiltration (83, 84). On the other hand, NK cell infiltration has
been described in other types of tumor and a high number of
NK cells in neoplastic tissues has been associated with better
survival. For example in breast cancers, tumor-infiltrating (TI)
NK cells are used as biomarkers to predict the response to anti-
HER2 mAbs therapy (85–87). In the Head and Neck cancers the
presence of TI-NK cells correlated with a longer survival (88).
Similarly, NK cell infiltration of renal tumors is associated with
a good prognosis (85). On the contrary, NK cell infiltration has
no impact on clinical outcome in non-small-cell lung cancer
(NSCLC) (89, 90).

NK-MDSC Interactions
NK cells may interact with tumor cells and other cells present
in TME through three fundamental pathways, i.e., cell-to cell
contact, secretion of soluble molecules in the extracellular milieu,
and release of extracellular vesicles (EVs) (91). In cancer patients
and tumor mice models, an inverse correlation between the
presence of MDSC and NK cells exists (92).

In mice, the mechanism of NK cell inhibition exerted by
MDSC is mainly related to cell-to-cell contact and it requires
TGF-β (93). Membrane-bound TGF-β onMDSC has been shown
to induce NK cell anergy thus impairing their cytotoxic capability
and reducing NKG2D expression and IFN-γ production (94).
Another study reported IL-33 as a novel player in MDSC-NK
interaction. Following stress or damage, IL-33 is secreted by
endothelial and epithelial cells and recruits both pro-tumorigenic
or anti-tumorigenic immune cells (95, 96).

Furthermore, it has been reported that, in the presence of
IL-1β, a novel subset of Ly6Cneg MDSC with higher inhibitory
properties to NK cells expands in mice (97).

In humans, the inhibition of IFN-γ production by NK cells
is related to a NKp30-dependent mechanism (98). MDSC can
impair NK cell activity also by interfering with NK FcR-mediated
cytotoxicity, as shown in cancer patients NK cells displaying
reduced antibody-dependent cytotoxicity and production of
cytokines (99).

The IFN-γ and other molecules present in the inflammatory
microenvironment are able to promote the expansion of MDSC
that, in turn, release high amount of IL-10. IL-10 is considered
an anti-inflammatory cytokine capable of inhibiting the release
of inflammatory cytokines playing an important role in anti-
tumor immunoresponse. In particular, IL-10 may induce a
pro-tumorigenic microenvironment affecting both NK cell and
CD8+cytotoxic T lymphocyte activation and promoting a switch
toward type 2 immunoresponse. Targeting either MDSC or IL-10
may favor type1 response and improve the anti-tumor activity of
immune cells (100, 101).

Checkpoint blockade immunotherapy targeting the PD-1/PD-
L1 inhibitory axis produced remarkable results in the treatment
of several types of cancer (102–106). PD-1 is mostly expressed
by T-cells, but NK cells with an activated and more responsive
phenotype can also express PD-1 (107–110). In TME, tumor
cells and their soluble mediators can increase PD-L1 expression
on tumor-infiltrating MDSC (111, 112). Thus, PD-L1 expressed
by MDSC can suppress NK cell activity while PD-L1 blockade
may restore NK and T-cell responses. In different tumor types,
increased PD-L1+MDSC has been observed and, in some
instances, a correlation between the percentage of PD-L1+MDSC
and disease stages or clinical outcome has been reported (113).
In addition, NO produced by MDSC has a potent inhibitory
effect on NK cells by impairing the Fc receptor-mediated
killing, the secretion of IFN-γ, TNF-α, and Granzyme B, as
detected in MDSC-co-cultured NK cells (99). Furthermore, IDO
produced by MDSC can impair development and activation of
NK cells by decreasing expression of NKG2D, NCR, DNAM1,
and IFN-γ secretion (99, 114). IDO production is regulated by
STAT3- induced NF-κB activation. It has been demonstrated that
blockage of STAT3 and TGF-β can revert the MDSC-mediated
inhibition of NK cell function (115, 116).

On the other hand, STAT5 has an opposite effect to that
of STAT3. Indeed, STAT5, induced by Jak3, is responsible for
perforin, granzyme and IFN-γ production in IL-2 –activated NK
cells (117). NK cells co-cultured with MDSC isolated from spleen
of tumor-bearingmice, showed both Jak3-inhibition and reduced
STAT5 activation (98).

Another mechanism occurring in NK-MDSC interaction
involves the TIGIT-CD155 axis. Thus, analysis of patients
with CMV+ myelodysplastic syndrome revealed the presence
of adaptive NK cells with lower TIGIT expression (partially)
resistant to MDSC-mediated immunosuppression (118).
Recently, in NK cells the IL-1R8 has been suggested as a novel
immune check-point that can potentially interact with MDSC
cells (119).

MDSC and NK Cross Talk in HSCT
MDSC were originally described as cells able to inhibit T cell
activation, proliferation, and function. Other studies provided
evidences that MDSC could also interact and interfere with
the function of other cells, including NK cells, B cells, NKT
cells, and DCs. All these observations are in line with the
suppressive effect of MDSC in the context of hematopoietic
stem cell transplantation (HSCT). Notably, HSCT from HLA-
matched donor, either related or unrelated, is extensively used
to cure patients with Acute Leukemia. The HSCT from HLA-
haploidentical relatives (haplo-HSCT) gave the opportunity of
a prompt transplantation in patients with no HLA-matched
donor. Graft-vs.-host disease (GvHD) and post-transplant
lymphoproliferative disease (PTLD) are two life-threatening
effects of un-manipulated HSCT, due to the presence of T
cells and B cells in the graft. In haplo-HSCT, graft of “mega-
doses” of highly purified CD34+ HSC has been applied for
many years. However, the lack in the graft of different mature
lymphoid subsets and of (CD34−) committed hematopoietic
progenitors results in a prolonged lymphopenia and delayed
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immune reconstitution that causes an increased risk of non-
relapse-related mortality (NRM), due primarily to opportunistic
infections. Thus, selective depletion of αβ T lymphocytes, and of
B cells was used more as a novel method of graft manipulation.
This approach allows the infusion in the recipient not only of
hematopoietic progenitors but also of high numbers of donor
mature NK cells, γδ T-cells and myeloid cells. In particular,
NK and γδ T-cells transferred with the graft may contribute
to prevent leukemia relapses and severe viral infections and/or
reactivation before the establishment of adaptive immune
responses thanks to their activity against leukemia blasts
remaining in the patient after the conditioning regimen (120).
Notably, it has been shown that in αβ T- and B-cell depleted
HSCT setting, the contribution of the NK cell alloreactivity to
the 5 years’ survival probability was partially obscured, possibly
by the effect of γδ T-cells (121–123).

Regarding the strategy routinely applied to increase the
number of circulating HSC to be infused, donors receive
G-CSF for 5 days (Figure 1). G-CSF induces a proteolytic
microenvironment and inhibits CXCL12 production, thus
favoring HSC egress from BM. An adequate number of HSC can
be achieved also in “poor mobilizer” donors, who, in addition

to G-CSF, receive Plerixafor (PL), a CXCR4 antagonist, which
inhibits HSC retention in the BM, favoring their collection in the
peripheral blood (PB). The G-CSF mobilization regimen induces
an accumulation in PB of PMN-MDSC (124).

We could demonstrate that PMN-MDSC derived from G-
CSF mobilized donors did not interfere with the differentiation
of donor HSC (124). On the contrary, they could affect the
cytotoxic potential of donor-mature NK cells, which are infused
into the patients during transplantation, compromising their
GvL activity.

PMN-MDSC through the release of IDO metabolites
and PGE2 down modulate the expression of intracellular
polypeptides involved in the signal transduction and of
the major activating NK receptors. In particular, signaling
via activating receptor is mediated intracellularly by
immunoreceptor tyrosine-based activation motifs (ITAM)
and by downstream protein kinases. KARAP/DAP12
and CD3ζ are ITAM-bearing adaptor proteins known to
associate with different activating NK receptors. These
intracellular molecules involved in signal transduction
were down-modulated in NK cells upon interaction
with PMN-MDSC.

FIGURE 1 | αβ T- and B-depleted hematopoietic stem cell transplantation protocol. Donors undergo lymphoapheresis after 5 days G-CSF stimulation for increasing

the number of HSC cells and to induce PMN-MDSC mobilization. Thus, αβ T and B cells are depleted and infusion (enriched in NK cells, γδ T-cells and myeloid cells) is

administered to recipient patients. In this transplant setting, the enrichment of PMN-MDSC helps to reduce NK cell cytotoxic effects against the graft by the release of

IDO2, PGE2, and exosomes thus suggesting a possible involvement of these myeloid cells into the GvL activity mediated by NK cells.
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PMN-MDSC were also shown to affect NK cell degranulation,
cytokine release and cytotoxicity. Indeed, in the presence of
IDO- and PGE2-inhibitors the NK-cell activity can be recovered
suggesting the involvement of IDO catabolites and PGE2 in the
inhibition of the NK-mediated killing of leukemia blasts (124). It
is known that MDSCmay exploit additional immunomodulatory
mechanisms including, for example, the release of exosomes. In
this context, PMN-MDSC were able to release exosomes that are,
in turn, internalized into NK cells and cause an impairment of
their cytolytic activity (125) (Figure 1). Altogether, these data
indicate that PMN-MDSC exert a potent inhibitory effect on anti-
tumor NK cell function suggesting their possible involvement in
the impairment of GvL activity mediated by NK cells.

Based on the in vitro data and on the role of these cells
in hematologic malignancies, it is conceivable that MDSC may
indeed represent a key immunosuppressive cell type induced
in allogeneic HSCT. Further investigation regarding molecular
and functional characteristics of MDSC may help to discover
new strategies/drugs, to either dampen or enhance MDSC
immunosuppressive activity, depending on the therapeutic need
in different clinical contexts.

CONCLUDING REMARKS

A deeper comprehension of the mechanisms and relative
molecular pathways adopted by MDSC present in TME to
impair the anti-tumor function of immune effector cells may
allow to identify novel therapeutic strategies capable to disrupt
these potent inhibitory mechanisms. Thus, in HSCT the large
proportion of PMN-MDSC can counteract the GvL activity
mediated by donor-mature NK cells infused in the recipient,
particularly in the early post-transplant period. Previous reports
revealed that a reduction of the immunosuppressive activity of
MDSC could be achieved by inducing their differentiation. It

has been reported that the combined administration of ATRA
(all-trans-retinoic acid) (126), paclitaxel (ultra-low non-cytotoxic
doses) (127), vitamin D (128), and IL-2 (129) is able to induce
MDSC differentiation by blocking their immunosuppressive
activity and resulting in the recovery of immune response. In
vitro data showed that chemotherapeutic agents (i.e., gemcitabine
or 5-fluorouracil) could be used to selectively deplete MDSCwith
no toxic effects on other leukocyte populations (130, 131).

A better outstanding of interactions occurring between
NK cells and PMN-MDSC, in particular in TME, may
offer an interesting clue to further improve the efficacy of
immunotherapy. In particular, in αβ T- and B cell-depleted
haplo-HSCT setting, removing also PMN-MDSC, could preserve
the NK-cell function with a further positive effect on the
GvL activity and viral protection, obtaining a better patient’s
clinical outcome.
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