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Abstract: Rational utilization of water resources is one of the major methods of water conservation.
There are significant differences in the irrigation needs of different agricultural fields because of their
spatial variability. Therefore, a decision support system for variable rate irrigation (DSS-VRI) by
center pivot was developed. This system can process multi-spectral images taken by unmanned
aerial vehicles (UAVs) and obtain the vegetation index (VI). The crop evapotranspiration model
(ET.) and crop water stress index (CWSI) were obtained from their established relationships with the
VIs. The inputs to the fuzzy inference system were constituted with ET., CWSI and precipitation.
To provide guidance for users, the duty-cycle control map was outputted using ambiguity resolution.
The control command contained in the map adjusted the duty cycle of the solenoid valve, and then
changed the irrigation amount. A water stress experiment was designed to verify the rationality of
the DSS-VRI. The results showed that the more severe water stress is, the more irrigation is obtained,
consistent with the expected results. Meanwhile, a user-friendly software interface was developed to
implement the DSS-VRI function.

Keywords: decision support system (DSS); variable rate irrigation (VRI); fuzzy logic system; UAV
multi-spectral image; duty-cycle control map

1. Introduction

China is a country with a water shortage, especially in its northwest regions. The shortage of
water resources restricts agricultural development in many provinces, while the need for food has
dramatically increased with the growth of the population. Agriculture is facing more serious challenges
and requires effective ways for water-saving irrigation. Variable rate irrigation (VRI) is distinguished
from traditional precision irrigation and provides such a solution. Previous VRI research has focused
on quantitative decision-making models, partition management, decision support systems (DSS) and
variable outputs [1]. There among, the quantitative decision-making model and partition management
are key parts of VRI, variable output plays the role of executor, and DSS connected all parts of VRI.

The DSS has been discussed as a popular topic in the VRI system. Navarro [2] developed
a DSS for estimating weekly irrigation needs on the basis of soil measurements and climatic variables
which were gathered by several autonomous nodes deployed in farmland. Nain [3] used a DSS to
generate suitable decision outputs for irrigation and fertilization in hilly regions. Miller [4] developed
a DSS, which uses the Natural Resources Conservation Service Gridded Soil Survey Geographic
Database to estimate water capacity available for root zone, and determines irrigation amount based
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on the estimates. Besides, AgroClimate is a DSS tool for improving the efficiency of irrigation
water usage (http://mz.agroclimate.org/) with its irrigation decision made on the basis of daily crop
evapotranspiration calculated by the Hargreaves equation and crop coefficients [5]. Most DSSs are
generally designed for specific crops or farmlands; it is difficult to apply them in other crops or the
same crop planted in different districts. In view of this, Yang [6] developed a decision support system
for flexible irrigation scheduling (DSS-FIS), in which users can modify its input parameters through
a software interface to adapt it to various environments.

The use of DSSs for irrigation ties in implementing a reliable decision method and using decision
data sources. Weather forecast information can be a way to estimate the water requirements of the
crops [7]. However, this method is unilateral, since it ignores the impact of crop characteristics and
spatial variability. Some studies have used sensors and the global positioning system (GPS) to collect
information about specific soil and plant conditions for irrigation scheduling. Sui [8] built a wireless
sensor network to monitor soil water content and collect weather data. O’Shaughnessy [9] used
infrared temperature (IRT) sensor nodes mounted on masts at the edge of each concentric treatment
area to measure crop canopy temperature. Morari [10] used time domain transmissometry (TDT)
sensors to measure soil moisture content. Since these sensors are immobile, the irrigation decision
accuracy depends on the number of sensors in the large-scale planting area or on the truss of the
sprinkle irrigation machine, and large-scale deployment of these sensors is not economical for a moving
sprinkler irrigation system. Also, the sensors mounted in the field are harmful to the farmland
soil ecosystem.

In recent years, irrigation scheduling could be obtained from some schemes based on various
remote sensing imagery platforms. Remote sensing technology has the advantages of good real-time
performance and wide coverage on cropland, and makes up for the defects of immobile sensors.
The development of aerospace technology makes it possible for irrigation scheduling to use remote
sensing imagery platforms, with unmanned aerial vehicles (UAVs) and satellites as common tools.
However, satellites can be inhibited by clouds and/or may not be in orbital position during crop
development stages [11]. Zhang [12] suggested that canopy temperature from UAV thermal infrared
images could be a way to evaluate the crop water stress state. The thermal infrared sensors currently
mounted are mostly lightweight and uncooled thermal infrared cameras. Compared to multispectral
remote-sensing systems, thermal imagery has the advantage of higher reliability, but the multispectral
remote-sensing system has better performance in terms of information acquisition stability and mosaic
technology maturity. Meanwhile, canopy temperature measured by thermal infrared camera is easily
affected by air temperature and human activity [13]. Recently, many studies use UAV spectral images
to mark crop water status through the optimization of the vegetation index (VI) and crop water stress
index (CWSI) model [14]. The VI-CWSI model, as the main index of the DSS, is usually used as
evidence for irrigation dispatching. Zhang [15] used high-resolution UAV multispectral imagery to
map maize water stress status. The crop evapotranspiration model (ET,) is also used as evidence for
irrigation dispatching. Calera [16] reviewed the crop evapotranspiration model (ET.) on optical remote
sensing for the assessment of crop water requirements, and demonstrated that ET can be a reliable
indicator for irrigation assessment. This approach is based on the Food and Agriculture Organization’s
(FAO) method for estimating crop evapotranspiration, in which reference evapotranspiration values
are multiplied by crop coefficients (Kc). The coefficient may be derived from multispectral VI.
Some approaches have employed signals in the thermal band obtained from remote sensors as inputs
for energy balance equations that are solved to estimate ET. [17]. The multispectral VI approach for
estimating crop evapotranspiration requires fewer inputs and theoretical background knowledge,
and is thus simpler than the energy balance equations approach. In this paper, multispectral VIs were
used to calculate crop coefficients.

Water stressed crops manifest symptoms such as leaf wilting, stunted growth, and leaf area
reduction [18]. VI can be used to monitor surface vegetation conditions. The structure indices
based on visible, near infrared and red-edge bands are more widely used, such as the normalized
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difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index
(EVI), simple ratio (SR) and green normalized difference vegetation index (GNDVI), and visible
atmospherically resistant index (VARI). The NDVI is the most often used, partly due to its “ratio”
properties, which enable the NDVI to cancel out a large proportion of the noise caused by changing
sun angles, topography, clouds or shadow, and atmospheric conditions [19]. The SAVI was established
to improve the sensitivity of the NDVI to soil backgrounds [14]. The EVI has thus been considered
a modified NDVI with improved sensitivity to high biomass regions and improved vegetation
monitoring capability through a de-coupling of the canopy background signal and a reduction in
atmospheric influences [19]. The SR can monitor changes in vegetation cover and works best when
vegetation is densely covered [20]. The GNDVI s sensitive to crop pigment changes [21]. The VARI can
reduce the effects of illumination and atmospheric conditions [22]. This paper measured reflectance
indices within multispectral ranges (NDVI, SAVI, EVI, SR, GNDVI, VARI) to indicate canopy changes
due to water stress.

The DSS has been used in many cases. The constraints of some kinds of DSSs widely used
in agricultural applications have not been eliminated. Firstly, the output of the DSS is the input
information of the control system. The actual amount of irrigation is based on the crop’s water
requirement, which is not the only factor in practical irrigation scheduling. The DSS should be
combined with a VRI control system. Common methods of control systems include zone control and
speed control [23]. Speed control varies the moving speed of the center pivot to accomplish the desired
irrigation depth, while the duty-cycle control changes the on-off time of individual sprinklers or groups
of sprinklers to achieve the desired irrigation depth. Generally, the VRI control system provides
opportunities to apply water to management zones by different moving rates or different solenoid
valve duty-cycles. Secondly, the CWSI/K, inversion model (VI-Kc¢/VI-CWSI) is built for specific districts
and crops. Different crops have different optimization VI-Kc¢/VI-CWSI model [24,25]. Different districts
with the same crop also have different VI-Kc¢/VI-CWSI [26]. The DSS based on the fixed model is
unsuitable for other applications. Third, the irrigation amount is the result of a multifactorial decision.
Actually, precise measurement of the irrigation requirement is complicated, whose implementation
needs a lot of funds and time.

The concept of a fuzzy system has been used for a realistic decision support model. For the
irrigation mission, the interaction between the crop water requirement and irrigation amount is not
always accurately defined. Therefore, the fuzzy model can be a viable alternative [27]. The fuzzy
system has the characteristics of simple rules and wide applicability [28], and can analyze the inaccurate
information and receive irrigation guidance from complex farming sites [29]. So it is easier for users to
accept DSSs based on fuzzy logic.

This study developed a DSS for variable rate irrigation (DSS-VRI) that serviced a center-pivot
irrigation system. The function of the DSS integrated image processing and data analysis for UAV
remote sensing. By using the DSS, users can easily process the image and obtain a duty-cycle control
map of variable irrigation. The specific objectives of this research were:

(i) To develop a widely applicable DSS-VRI, which mainly embodies the user to change some
conditional parameters and to construct a partial decision model to work in different cases.

(ii) To achieve expected irrigation amounts in different management areas, by using the duty-cycle
control map generated from the DSS-VRI, which combines the UAV multispectral remote sensing
system and fuzzy inference system.

2. System Description and Operation

In this study, a DSS-VRI was designed to make an irrigation scheduling map. The main structure
of the DSS-VRI is shown in Figure 1.
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Figure 1. Schematic representation of the decision support system for variable rate irrigation (DSS-VRI).
The DSS-VRI operational procedures include four parts. Their functions are as follows. Part 1 is to
provide unmanned aerial vehicle (UAV) multispectral image and meteorological data as input. Part 2
processes and selects data from Part 1, figures out the crop evapotranspiration model (ETc), crop water
stress index (CWSI) and precipitation. The data input to the fuzzy system. Part 3 shows the work flow
of the fuzzy system. Part 4 depicts the duty-cycle control map for a partial management zone.

2.1. UAV Data Collection and Image Mosaic

In this study, the UAV multispectral system was built by the Northwest Agriculture and Forestry
University [30]. Asshownin Figure 2, this system composed of an unmanned aircraft system, a RedEdge
multispectral camera (Micasense, Inc., Washington, USA) and Mission Planner. The unmanned aircraft
system included M600 rack and Pixhawk (CUAV, Guangzhou, China) which is an open resource
flight control autopilot. It had good performance to take-off and land in different terrain. The UAV
takeoff weight, flight time and speed were 6 kg, 18 min and 5 m/s. There were many elements on
the unmanned aircraft, such as a gyroscope, accelerometer, magnetometer brushless controllers, etc.
Pixhawk integrated all the elements together. Mission Planner is a virtual ground control station for the
unmanned aircraft. It connected to Pixhawk by telemetry radios. Users could access the initial setup
function to configure the waypoint and the degree of overlap. The technical parameters of RedEdge
multispectral camera are shown in Table 1.

Pix4DMapper software was used for image mosaic. Pix4DMapper could stitch image collected
from UAV multispectral system and generate five kinds of band image. Pictures spliced by Pix4DMapper
could be set to different pixels according to the needs of the user.

Special attention is the arrangement of UAV flight mission. The UAV collected data once a week
or twice a week according to actual needs. A UAV flight was conducted between 11:30-12:00 with
the multispectral camera. The lens was facing vertically when shooting. The flight height, ground
resolution, heading and side overlap were 70 m, 0.05 m/pixel, 80%. Pix4dDMapper software platform
was used for geometric correction, Gaussian means filtering and multispectral image mosaicking from
RedEdge. The entire stitching process took about six hours. The processing period was related to
computer performance. Four images (red band, NIR band, blue band, green band) were the input data
of DSS-VRI.



Sensors 2019, 19, 2880 50f 15

(b) Red-Edge

(c) Mission Planner

Figure 2. The main elements of the UAV multispectral remote sensing system. (a) UAV platform (b)
RedEdge multispectral camera, and (c) the software, Mission Planner.

Table 1. Parameters of RedEdge multispectral camera.

Parameter Value

Blue (475 nm), Green (560 nm), Red (668 nm), Near

Bands infrared (Nir) (840 nm), Red-edge (717 nm)
Focal length 5.5 mm (fixed lens)
Angle of view 47.2°
Weight 150 g
Image resolution 1280 x 960 mm

2.2. Irrigation Decision Model Selected

This work aimed at exhibiting the feasibility of the DSS-VRI to properly manage farmland
irrigation. The system is based on the prediction of the crop evapotranspiration and rainfall to obtain
fuzzy crop water consumption and replenishment. The crop water stress index (CWSI) was selected
to represent the state of water stress. CWSI = 0 indicates no water stress, while CWSI = 1 indicates
the most severe stress. The evapotranspiration, rainfall and CWSI were used as three input variables
for the fuzzy system to infer the duty-cycle for the central pivot to be reached in order to change the
irrigation level within the crop area. The duty cycle is the ratio of the ‘on” time to the ‘on-off’ period for
solenoid valve. Lower duty cycle represents the less amount of water application.

Fuzzy logic can express qualitative knowledge and experience unclear boundaries. It uses the
concept of membership function to distinguish fuzzy sets, handle fuzzy relations, and simulate human
brains to implement rule-based reasoning. Irrigation problems do not need a high accuracy for
water requirement measurement. The integration of fuzzy logic with irrigation planning issues in
the field is very effective [31]. Therefore, the method of evapotranspiration, CWSI and precipitation
working together through fuzzy inference system can make better decisions for irrigation decision
than traditional methods.

2.2.1. Crop Water Evapotranspiration Model (ET.) and Crop Water Stress Index (CWSI)
The water requirements were obtained by the FAO suggested relation as follows:

ETc = KceET, 1)

where ET) is the reference evapotranspiration estimated by FAO Penman-Monteith method that uses
data including altitude, latitude, maximum temperature, minimum temperature, mean temperature,
average relative humidity, wind speed and sunshine hours. K¢ is a crop coefficient obtained by utilizing
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the VI-Kc model with optimal performance. The CWSI was also obtained from the relational model
(VI-CWESI). The models are shown in Figure 3.

CWSI Vis

he optimization of VI-Kc and CWSI
model

Kc

Figure 3. The calculation of the CWSI and ET.. The relational formula with the highest correlation
coefficient is selected from the established CWSI/Kc inversion model (VI-Kc/VI-CWSI) model, and the
optimal model is further established.

To establish a VI-Kc and VI-CWSI model, six VIs (NDVI, EVI, SR, SAVI, GNDVI and VARI) were
selected. These VIs were obtained from the UAV based multispectral imagery. Their calculation
formulas are shown as follows [14,19-22]:

Ryiy — R
NDVI = H @)
SAVI = 1.5% RNfAj’R_RZRf N ®)
EVI=25%2""% xlliizd_—lél.zgdx Rt + 1 @

Re
SR = KN; @)
Rereen — R

GNDVI = % (6)
VARI = —RGreen = Rped @)

RGreen + RRed - RBlue

where Ryjir, Rred, Rpe and Reyee,, are reflectance values of the ground objects in near-infrared, red, blue
and green band, respectively.

2.2.2. Fuzzy Logic Model

ET., CWSI and precipitation were used to infer the duty-cycle. Mamdani method was used to
implement a fuzzy inference machine. The fuzzy rule of Mamdani can be expressed as follow:

Ri: if(x; is Xy ) and if(y; is Y; ) and if( z is Z; ) then n; = Duty—cycle;,
i=1,...,n

®)

where X;, Y;, Z; and Duty -cycle are time-invariant fuzzy sets, whose membership functions would
be defined as a part of system application. Common membership functions are of the follow types:
triangular function, ladder function, Gaussian function, bell function, Sigmoid function and Z-type
function [32]. This study chose the triangular function and ladder function, because the two functions
were simple to use and calculate. Fuzzy inputs were ET., CWSI, precipitation. Fuzzy output was the
solenoid valve duty-cycle, which was obtained by defuzzification. In this study, the defuzzification
method was centroid.

Fuzzy inputs were defined as three linguistic variables and fuzzy outputs were defined as five
linguistic variables: very low (ML), low (L), normal (N), high (H), and very high (MH). According
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to the basic knowledge of irrigation, 27 fuzzy rules were set for the duty-cycle of the solenoid valve
(Table 2).

Table 2. The DSS-VRI fuzzy rule for duty-cycle of solenoid valve.

n Rule

1 (ETc==Low) & (Precipitation==Low) & (CWSI==F) => (Duty-cycle=ML)

2 (ETc==Low) & (Precipitation==Low) & (CWSI==S) => (Duty-cycle=N)

3 (ETc==Low) & (Precipitation==Low) & (CWSI==ES) => (Duty-cycle=MH)

13 (ETc==average) & (Precipitation==Normal) & (CWSI==F) => (Duty-cycle=ML)
14 (ETc==average) & (Precipitation==Normal) & (CWSI==S) => (Duty-cycle=N)
15 (ETc==average) & (Precipitation==Normal) & (CWSI==ES) => (Duty-cycle=MH)
25 (ETc==High) & (Precipitation==Normal) & (CWSI==ES) => (Duty-cycle=MH)
26 (ETc==High) & (Precipitation==High) & (CWSI==S) => (Duty-cycle=L)

27 (ETc==High) & (Precipitation==High) & (CWSI==ES) => (Duty-cycle=N)

Note: “Low” is interpreted as less rainfall or evapotranspiration in the coming week, “average” and “Normal” as
normal rainfall and evapotranspiration in the next week, “High” as rainy or high evapotranspiration in the coming
week, F as crop water stress in the current state. S as mild water stress, and ES as most severe stress.

These rules were represented with logical operator ‘&’. For example, the first rule is expressed as
‘(ETc==Low) & (Precipitation==Low) & (CWSI==F)=>(Duty-cycle=ML)’, and is interpreted as less
rainfall and less evapotranspiration in the coming week, low crop water stress in the current state,
so implies lower duty cycle. The duty cycle is the ratio of the ‘on’ time to the ‘on-off” period. Lower
duty cycles represent lower amounts of water application.

2.3. DSS-VRI Software Design and Operation

A software was designed to implement the proposed methodology. The application system was
programmed in Python (python 3.6.2). The DSS-VRI software generally needs about five minutes
to get duty-cycle control map, depending on the input data scale. The user interface was designed
and organized into several frames. Figure 4a gives the data input interface, which allow the users
to input multispectral image and to set some basic parameters, including geographic coordinates
and Moving rate of sprinkler irrigation machine, parameters of zone management, application depth
under the 100% moving rate, saving path of duty-cycle control command. Among all parameters,
geographic coordinates can be used to find the center position of the machine in remote sensing image.
Zone management parameters are used to set the number of electromagnetic valve groups and the
distance between the sprinkler center and each management group boundary. Moving speed is related
to the maximum crop water requirement. The relationship can be expressed as ‘the more crop water
is required, the slower the speed is’. After all parameter values are entered, the user can click the
“Update” button to get band information and header file of the image. The interface for calculation of
CWSI, ET. and precipitation is shown in Figure 4b. Users can select the VI-Kc model and VI-CWSI
model, and enter weather forecast data of the next week to calculate ETO and rainfall. Figure 4c shows
the irrigation duty-cycle control map and NDVI map interface. Users click the “Irrigation map” and
“Spectral map” button to get a variable irrigation duty-cycle control map and a NDVI map, respectively.
The NDVI map has the information interaction function, which can display VIs and ET. of the mouse
location. Figure 4d shows the local data analysis interface, which can assist users to observe local
variation of VI by using 3D-bar plot. Figure 4d presents NDVI examples, including the coordinates,
NDVI value and spatial distribution. Users click the “User manual” button to get help page and
“Control system” to open control system software. In addition, the help page of the DSS-VRI can guide
users to learn about the system’s structure and function descriptions.
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Figure 4. DSS-VRI software interface. (a) The basic parameter setting and data input interface. (b) CWSI,
ET. and precipitation calculation interface. (c) The irrigation duty-cycle control map interactive interface.
(d) The local data analysis interface.

3. Application and Performance Evaluation for System

A 1.13 ha research field located in Zhaojun Town, Dalate Banner, Ordos, Inner Mongolia, China,
was taken as an example to demonstrate the DSS-VRI's feasibility. The whole running period of the
DSS-VRI was 6.5 h; 2185 images (five bands) were collected during a single flight in 18 min.

3.1. The Study Site Description

The study site is located in the north of China (40°26’0.29”’N, 109°36’25.99”E, Elev. 1010 m)
(Figure 5). Its climate belongs to the warm temperate zone. Maize (Junkai 918) was the main crop
in the study site, planted on 20 May 2017. Maize was planted in east-west oriented rows, spaced
at 0.58 m (between rows) and 0.25 m (between columns). The maize emerged on June 1, headed
on July 20, and was harvested on September 7 (silage) with 110 days’ lifespan. Natural rainfall in
the semi-arid was difficult to meet crop water requirements. The main method of water supply was
sprinkler irrigation. On the experiment day, the weather was sunny and the UAV could fly stably
under the windy conditions.
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(a) China (b) Study district

+ Zhaojun Town.

() Experimental site.
L Water stress area.

F  Full-watered area.

Figure 5. Experimental site description. (a) The location of study district. (b) The location of
experimental site. (c) Division of treatment region, water stress area and full-watered area.

3.2. Experimental Design

3.2.1. Water Stress Treatment for Study Site

As shown in Figure 5¢, the study field was divided into two treatment regions (TR) with differential
irrigation treatment amounts. Water was applied by a center pivot sprinkler (Valmont, NE, USA)
equipped with a variable irrigation control system that was developed by our team. During the
experimental preparation period (8/14-8/27), irrigation amount in TR F was 12 mm and TR L was 0.
Therefore, the TR L maize was in the state of water stress.

3.2.2. Parameter Setting

According to the early experimental results of our team [15,30], the Kc with a different growth
stage and different water stress status was calculated by the double crop coefficient method based
on the data of corn, soil, and meteorology in the field. Meanwhile, canopy temperature, field air
temperature, and relative humidity were used to establish CWSI empirical model. The VI related
to crop water stress was derived from the UAV multispectral imagery and used to establish CWSI
and Kc inversion models under the weather conditions in Ordos, Inner Mongolia, China. The Kc-VIs
relationship (NDVI, SAVI, EVI, SR, GNDVI, VARI) and CWSI-VIs relationship (NDVI, SAVI) were
summarized for the periods of middle to late growth. They are shown in Table 3.

Table 3. Relationships of vegetation indices with Kc and CWSI for maize from its middle to later
growing stages.

Dependent Variable Vegetation Index Fitted Formulas R? RMSE
NDVI Y =6237x — 4534 0.67 0.1695

SAVI y = 6.164x — 3.016 0.57 0.1926

K EVI y =3.500x — 1.681 0.37 0.2338

‘ SR y=0.118x — 0.718 0.85 0.1142

GNDVI ¥ =4.399x — 0.961 0.80 0.1311

VARI y = 4.266x — 0.697 0.71 0.1569

CWSI NDVI y=-1819x + 1.12 0.72 0.046

SAVI y=-1.69x + 0.361 0.81 0.037
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It can be seen from Table 3 that different VIs have different correlations with Kc and CWSI at
different growth periods. From the middle to the later growing states, the relevance of the VI-Kc model
is ordered from large to small as SR, GNDVI, VARI, NDVI, SAVI, and EVI. The SR of maize in different
growth stages had the best correlation with Kc, while SAVI had the best correlation with CWSI than
NDVL. In this study, the SR-Kc and SAVI-CWSI model were used to estimate crop coefficients and crop
water stress index, respectively.

The setting of input membership functions was related to the experimental site. The following
threshold was adopted to indicate the water stress severity imposed by the irrigation treatments:
CWSI < 0.3 for little to no water stress, 0.3 < CWSI < 0.5 for mild to moderate water stress and
CWESI > 0.5 for severe water stress. In the Dalate Banner, the average ETj in the growing season was
2.39 mm/d, and the maximum was 4.83 mm/d [33]. The ET. linguistic variable and membership
function were shown in Figure 6. Precipitation was a way to replenish water, and its membership
function was the same as ET, in this paper. Its linguistic variables included low precipitation, normal
precipitation, and high precipitation.
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Figure 6. Triangular and ladder membership functions input to the fuzzy system. The linguistic
variables are interpreted as follows: “Low” for less rainfall or evapotranspiration in the coming week,
“Average and Normal” for normal rainfall and evapotranspiration in the coming week, and “High”
for rainy or high evapotranspiration in the coming week. F for crop water sufficient in the current
state, S for mild water stress, ES for the most severe stress. The horizontal scales of ETc, CWSI, and
precipitation represent evapotranspiration (in mm) in the coming week, the water stress index, and the
amount of precipitation (in mm) in the coming week, respectively.

The setting of duty-cycle membership function (Figure 7) was related to the center pivot irrigation
system and irrigation requirement. Irrigation depth was calculated as:

D100%
9
Rate ©)

DRate =
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where Dgg, is the amount of water application under the moving rate of Rate and Do, is under the
moving rate of 100%. Dgge, is shown in Table 3.

0.8

Degree of membership

04 0.5 06 0.7 0.8 0.9 1
Duty-cycle

Figure 7. Member functions output from the fuzzy system to the stage of defuzzification. The outputs
are built from five linguistic variables: very low (ML), low (L), normal (N), high (H), and very high (MH).

The model parameters were obtained from different sources. Necessary parameters are shown in
Table 4, and can be input through the interface shown in Figure 4a,b.

Table 4. Data input and Parameter setting.

Type Value Set time Source
. 109.60718E .

Coordinate 40 43338N Fixed GPS
Treatment zone * 24 (0-15°, ..., 345-360°) Fixed User
Treatment zone ** 6 (4,13,23,32,42,51,60) 2017.8.28 User

Water alz)l:f’li%%t}/on depth 2.05 mm Fixed Sprinkler parameters
o .
Speed rate ' 20% 2017.8.28 Sprinkler parameters
Inout ima red, nir, blue and green Remote sensing ima
p ge bands emote sensing image
SR-Kc y=0.118x - 0.718 Table 3
SAVI-CWSI y=-1.69x + 0.361 Table 3
ETy 16.3 mm 2017.6.11-2017.8.27 Meteorological data
Precipitation 13.6 mm Meteorological data

* Angle counterclockwise direction; ** the radial direction.

3.3. Results and Discussion

The ET. and CWSI map (Figure 8) generated from the DSS-VRI were used as inputs to the fuzzy
logic system.

[ .
H:16. 68 (a) 1.:9.86 H:1 (b) L:0

Figure 8. The ET. and CWSI maps. (a) ET. map. Blue represents a relatively higher ET,, and red lower;
(b) CWSI map. Blue represents a relatively lower CWSI, and red higher.

As shown in the ET. map of Figure 8a, blue represents a relatively higher ET,, and red lower.
If a crop has insufficient water supply, stomata will close in order to limit water loss through
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transpiration [34], resulting in a decreased ET.. Also, the CWSI can be employed to evaluate water
status in plants [35]. When the CWSI is 0, it indicates no water stress; while when the CWSI is 1,
this indicates the most severe stress. According to the CWSI map of Figure 8b, blue represents a
relatively lower CWS], and red higher. In this study, the district of lower ET, and higher CWSI matches
to water stress treatment regions, consistent with the expected results. After data acquisition and by
using preinstalled fuzzy rules, the DSS-VRI fuzzy logic system generates solenoid valve duty-cycle for
sub-region of different management. The lower ET. and higher CWSI exhibited in the water stress
area (Figure 8), implies more water requirements. In this case, the pivot lateral was configured for
six irrigation zone groups. Each irrigation zone was comprised of five sprinkler drop hoses that
were hydraulically connected and actuated by a single electronic solenoid valve. The serial number
of angle zone for the boundary points at 0°, 15°, ..., 345°, and 360°. The distance from each group
boundary to center point were 13-23 m, 23-32 m, 32-42 m, 42-51 m, 51 -60 m and 60-70 m, respectively.
The DSS-VRI combined boundary location information and created a control map with five reference
duty-cycle values, as shown in Figure 9.

Figure 9. Duty-cycle control map. Corresponding relation of range versus duty-cycle values were
rangel to 0.5, range?2 to 0.6, range3 to 0.7, range4 to 0.8, and range5 to 0.9.

Figure 10 is the two-dimensional coordinate exhibition of the control map. Under the fixed
moving rate of 20%, a higher duty-cycle implies the more irrigation amount, and a lower duty-cycle
leads to less irrigation amount. As seen in the Figure, the water stress area was well divided and
irrigated with more water. The amount of water application in all directions of Groups 2 to 6 was in
line with model expectations. However, for Group 1 with a small radius, it was easy to be affected
by adjacent areas’ irrigation, and its stress trait in Figure 10 is not obvious. In addition, its district is
between 165°-210° is the working area of underground submersible pump, so the irrigation amount
has an obvious fluctuation.
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1.0

08 water stress area
061 1
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Figure 10. Duty-cycle curve for each management group. The x-axis represents the serial number of
angle zone for the boundary points at 0°, 15°, ..., 345°, and 360°. The Y-axis is the duty-cycle. Group
1~Group 6 are the management zones in the radial direction, each group had five solenoid valves.

4. Conclusion

This study has proposed a decision support system for variable rate irrigation (DDS-VRI). The data
inputted to the system were derived from UAV multispectral remote sensing images, and the duty-cycle
control map of the solenoid valve was obtained through the fuzzy inference system. To our best
knowledge, there is no similar study reported in the previous literature. Fuzzy logic is the core of
DSS-VRI. The crop water evapotranspiration model (ETc), precipitation, and the real-time crop water
stress index (CWSI) can be used as an effective basis for irrigation management, and they are inputs to
the fuzzy inference system. The water supply changes along with the duty cycle when the moving rate
is fixed, so the duty cycle can be used as the output of the fuzzy inference system. A user-friendly
software interface has been developed to implement the DSS-VRI function. The DSS-VRI output was
verified through experiments with realistic irrigation consistent with the model’s expected results.

The DSS-VRI was successful in providing a duty-cycle control map for a central pivot variable
rate irrigation system. According to the shape of the management area, the DSS-VRI can also be used
for other irrigation systems. For example, for a laterally moving sprinkler system, the DSS-VRI can
process remote sensing data through establishing a two-dimensional coordinate system, and obtain
a duty-cycle map with a square management area. In general, a broader application of the DSS-VRI
primarily depends on the data collection system and fuzzy rules. A multispectral remote sensing
system has been used in many cases. Good correlation was demonstrated between crop water state and
some multispectral vegetation indexes (VIs). However, performance of multispectral remote sensing
on low coverage crops is usually bad. Thus, the reliability of input data sources is the key for future
studies to develop a reliable prescription map or control map.
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