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Abstract
The scaffold protein Par-3 (  Bazooka) is a central organizer of cellDrosophila
polarity across animals. This review focuses on how the clustering of Par-3
contributes to cell polarity. It begins with the Par-3 homo-oligomerization
mechanism and its regulation by Par-1 phosphorylation. The role of polarized
cytoskeletal networks in distributing Par-3 clusters to one end of the cell is then
discussed, as is the subsequent maintenance of polarized Par-3 clusters
through hindered mobility and inhibition from the opposite pole. Finally, specific
roles of Par-3 clusters are reviewed, including the bundling of microtubules, the
cortical docking of centrosomes, the growth and positioning of
cadherin–catenin clusters, and the inhibition of the Par-6–aPKC kinase
cassette. Examples are drawn from  ,Drosophila, Caenorhabditis elegans
mammalian cell culture, and biochemical studies.
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Introduction
As a scaffold protein central to the polarization of many animal  
cell types, Par-3 binds numerous molecules both for its recruit-
ment to one pole of the cell and for downstream contributions to  
polarized cell function1–3. Par-3 contains many interaction sites, 
including an N-terminal oligomerization domain and three  
central PDZ domains, as well as binding motifs in its N- and  
C-terminal tails (Figure 1). At the heart of Par-3 organization is 

Par-3 homo-oligomerization, clustering that is inhibited by Par-1,  
a kinase that typically localizes to the opposite pole of the cell. 
Additionally, Par-3 binds the Par-6–aPKC cassette to form the 
Par complex, although these players also function separately. 
Through these interactions and others, Par-3 helps polarize the 
cell cortex for the structure and function of cells and cell popu-
lations. For example, the polarization of epithelial cells into  
distinct apical, lateral, and basal cortices is essential for  

Figure 1. The organization and polarization of Par-3 clusters. The oligomerization domain of a Par-3 monomer mediates the formation of a 
helical fiber from which the linker regions and PDZ domains of Par-3 would emanate like branches of a tree. The space-filling structural model 
is a Cn3D view of the model of Zhang et al. (PDB: 3ZEE)14. Somehow these fibers are organized into local Par-3 clusters scattered across 
the cell cortex. In the Caenorhabditis elegans one-cell embryo, a polarized actomyosin flow sweeps the Par-3 puncta to one pole, forming 
the anterior end of the embryo. In the cellularizing Drosophila embryo, a polarized microtubule array positions the Par-3 puncta to one end 
of each cell, forming the apicolateral domain. Once the polarity of Par-3 clusters is established, it can be maintained by avid interactions 
between the clusters and the cell cortex combined with inhibition of Par-3 complex formation at the opposite pole by Par-1 phosphorylation. 
See main text for further details.
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epithelia to act as selective barriers. Another significant example 
is cortical polarization for asymmetric cell division and cell type 
diversification.

This review focuses on the clustering of Par-3 and how this  
clustering contributes to cell polarity. Clustering provides a mes-
oscale organization important for molecules to transcend scales 
and impact cells. Many proteins cluster, or polymerize, for their  
roles in cells. For example, polarity proteins cluster to form  
plasma membrane landmarks in bacteria, yeast, and multicel-
lular organisms4–6. Similarly, actin and microtubule polymers 
form networks that shape eukaryotic cells and form subcellular  
domains7,8, and cadherin–catenin clusters adhere cells together 
and organize multi-component cortical complexes9. Similar to  
cytoskeletal and adhesion complexes, a Par-3 oligomerization 
mechanism has been defined structurally and is subject to regula-
tion. Moreover, the polarization and effects of Par-3 clusters are 
intimately associated with cytoskeletal networks and adherens 
junctions. In this way, Par-3 clusters integrate with other mesos-
cale complexes to form large-scale networks for the structure and  
function of polarized cells.

The Par-3 homo-oligomerization mechanism
In 2003, the labs of Shigeo Ohno and Daniel St Johnston  
independently reported the homo-oligomerization of the con-
served N-terminal domain of Par-3, termed conserved region 1  
(CR1)10,11. The Ohno lab noticed the co-localization and co- 
immunoprecipitation of distinct isoforms of mammalian Par-3  
and discovered that these interactions required CR1. The suf-
ficiency of CR1 for dimerization was demonstrated by the yeast  
two-hybrid protein interaction assay as well as by chemical  
cross-linking of purified CR1 into apparent dimers and additional 
higher-molecular-weight species. The St Johnston lab discovered 
a structural alignment of Drosophila CR1 with a bacterial protein 
that was known to oligomerize. The ability of the CR1 domain to  
dimerize was demonstrated by yeast two-hybrid assay, and  
interactions between larger portions of Drosophila Par-3, 
each including CR1, were shown for purified proteins and by  
co-immunoprecipitation from Drosophila extracts. Subsequently,  
CR1 of Caenorhabditis elegans Par-3 was also shown to  
dimerize12.

Four years later, the lab of Mingjie Zhang published the struc-
ture of mammalian CR113. For this structural determination, the 
group first confirmed homo-oligomerization of purified CR1 using  
gel filtration and chemical cross-linking assays that each 
revealed high-molecular-weight species expected for oligomers. 
High salt concentrations disrupted the oligomerization, impli-
cating electrostatic interactions. Thus, charged residues were 
mutated and assayed for effects on oligomerization in vitro. Two  
mutated CR1 domains were pursued because they failed to  
oligomerize but seemed to maintain their individual structure: one 
converted an uncharged valine into a negatively charged aspar-
tic acid residue (V13D), and the other converted a negatively  
charged aspartic acid into a positively charged lysine residue 
(D70K). With a monomeric form of CR1 in hand, the group  
pursued its 3D structure by NMR spectroscopy without the  
complications of oligomeric species. This CR1 structure, five  

β-strands forming a half β-barrel closed on its open side by two  
α-helices, was shown to be structurally similar to ubiquitin and  
PB1 domains, including those that mediate the interaction  
between Par-6 and aPKC. Strikingly, this structure had two nega-
tively charged patches on one side and two positively charged 
patches on the other, implicating a head-to-tail oligomeriza-
tion mechanism. This mechanism explained the loss of homo-
oligomerization for the mutated domains with added or altered 
charges (V13D and D70K) and also predicted hetero-dimerization 
between the two mutated domains that was observed. Modeling 
of oligomerization predicted a helical filament with six units of  
CR1 per complete turn and a cross-sectional diameter of approx-
imately 7 nm. By electron microscopy, CR1 was shown to form 
filaments with this diameter. Moreover, a larger fragment of  
Par-3, containing CR1 plus the three PDZ domains, formed fila-
ments that were abolished with the manipulation of the charged 
residues of CR1. Subsequent analyses of the wild-type CR1 domain 
by crystallography, cryo-electron microscopy, and atomic force 
microscopy confirmed the head-to-tail oligomerization mechanism 
and showed that it mediated lateral interactions for 8.2 units of  
CR1 per turn in a left-handed, approximately 10 nm diameter  
helix involving additional interactions between each of its  
longitudinal layers14 (Figure 1). These data placed the Par-3  
oligomerization mechanism on strong structural footing (hereafter 
CR1 is described as the Par-3 oligomerization domain).

Deletion of the Par-3 oligomerization domain in either mammalian 
or Drosophila model systems revealed its critical role in concen-
trating Par-3 at specific sites of the cell cortex, such as cell–cell 
junctions or non-junctional puncta, and in promoting Par-3 function 
in epithelial organization10,11. Two approaches revealed additionally 
that the homo-oligomerization of the domain, rather than any alter-
nate interactions, was central to Par-3 localization in mammalian 
cell culture13. First, both amino acid residue changes that disrupted 
oligomerization in vitro also abrogated cortical Par-3 concentration 
in cells. Second, replacement of the Par-3 oligomerization domain 
with oligomerization domains of other proteins conveyed effective 
Par-3 localization. These molecular approaches have revealed the 
importance of Par-3 oligomerization for complex formation inside 
cells, but the exact structure of these oligomers remains unknown 
in vivo.

Following these pioneering studies, further structure–function 
analyses revealed requirements for the oligomerization domain in 
other tissues and animals, but these same studies also identified 
contexts where the oligomerization domain was not essential for 
cortical accumulations12,15,16. In such situations, molecular interac-
tions with other domains and regions of Par-3 seem to suffice for 
Par-3 recruitment. Thus, Par-3 clustering can be based on Par-3 
homo-oligomerization and/or Par-3 piggybacking on aggregates of 
interaction partners.

The regulation of Par-3 homo-oligomerization
Approximately 60–70 amino acids downstream of the oligomeri-
zation domain, both mammalian and Drosophila Par-3 can be  
phosphorylated to create binding sites for 14-3-3 proteins17,18. For 
Drosophila Par-3, the kinase Par-1 catalyzes the phosphorylation17, 
and for the mammalian Par-3, protein phosphatase 1 removes the 
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phosphate group19. Several pieces of data indicate that this phosphoryla-
tion, and 14-3-3 protein binding, inhibits Par-3 oligomerization. By 
yeast two-hybrid assay, an interaction was detected between the N-
terminal 308 amino acid residues of Drosophila Par-3 (containing 
both the oligomerization domain and the Par-1 phosphorylation site 
but ending prior to the PDZ domains) and full-length Par-3, and 
this interaction was inhibited by the additional overexpression of 
14-3-3ε17. Implicating the Par-1 phosphorylation site, its conver-
sion from serine to alanine eliminated the inhibitory effect of  
14-3-3ε, and the authors assumed that yeast kinases  
phosphorylated the site in this assay17. The same serine to alanine 
conversion led to mislocalization of Par-3 in clusters along the 
lateral membrane of Drosophila epithelial cells where Par-1  
is enriched17. Over-expression of mammalian Par-3 with the  
equivalent mutation disrupted the structure of epithelial cysts in 
culture, suggesting a dominant negative effect through interac-
tion with endogenous Par-318. However, the sequence between 
the oligomerization domain and the Par-1 phosphorylation site  
has no predicted structure and could thus extend a relatively long 
distance (Figure 1). The structural basis for Par-3 oligomerization 
inhibition by 14-3-3 protein binding remains unclear.

Further evidence for the phospho-regulation of Par-3 oligomeri-
zation is confounded by two complexities. First, a distinct Par-1  
phosphorylation site in the C-terminal end of Par-3 also recruits 
14-3-3 proteins but inhibits interaction with aPKC17. This  
C-terminal site seems to be the only one phosphorylated by Par-1 
and bound by 14-3-3 proteins for C. elegans Par-317,20. Also, this 
second site plays a specific role in the polarization of Drosophila  
neuroblasts21. However, for other assessments of Par-3 follow-
ing perturbations of Par-1, phosphatases, or both phosphorylation  
sites, it is unclear whether responses are due to altered Par-3  
oligomerization, to disrupted aPKC interactions, to both effects, 
or possibly to other effects19,22–24. A second confounding issue is  
that the inhibition of Par-3 complexes by Par-1 and 14-3-3  
proteins is often coupled with distinct, semi-redundant localization 
mechanisms17,20,22.

The polarization of Par-3 clusters across the cell
The regulated oligomerization of Par-3 offers a mechanism for 
forming molecular domains within the cell cortex. However, this 
mechanism may not be sufficient for establishing a large, single  
Par-3 domain capable of covering the anterior cortex of the one-
cell C. elegans embryo, the apical cortex of a Drosophila neurob-
last, or the apical circumference of an epithelial cell. Specifically,  
subunits with low valency form small chain-like clusters, rather 
than large-scale phase separations25. Intriguingly, however, over-
expression of the N-terminal 311 amino acid residues of Par-3 in 
the Drosophila oocyte produces large spherical aggregates of the  
construct in the center of the cell11. The size and shape of these 
aggregates are hallmarks of phase separation25,26. Since the construct 
contains the oligomerization domain plus a substantial amount of 
additional sequence, other direct or indirect oligomerization sites 
might reside in this portion of Par-3 to convey higher valency 
interactions, although such sites have not been reported. This  
aggregation potential is not fulfilled, however, for the full-length 
protein which typically forms numerous foci at the cell cortex  
(Figure 1). Thus, the addition of the three PDZ domains and the 

C-terminal tail restricts Par-3 to the cortex where its clustering is 
limited. Here, additional mechanisms are needed to polarize Par-3 
clusters to one end of the cell.

For the whole-cell polarization of full-length Par-3, cytoskeletal 
networks have been shown to draw Par-3 clusters to one end of 
the cell (Figure 1). In the one-cell C. elegans embryo, a whole-cell 
flow of cortical actomyosin draws Par-3 clusters together to form 
the anterior end of the embryo27. In the cellularizing Drosophila 
embryo, a whole-cell microtubule array and the minus-end directed 
motor dynein draw Par-3 clusters to the apico-lateral domain next 
to centrosomes28. In each case, the whole-cell cytoskeletal polarity 
arises independently of the Par-3 clusters, and in the absence of the 
cytoskeletal network, Par-3 clusters display wide dispersal over the 
full cell cortex.

The early C. elegans and Drosophila embryos differ in their 
initial plasma membrane identity, a difference that influences 
how Par-3 clusters are positioned. Prior to polarization of the  
C. elegans zygote, the plasma membrane is fully covered by  
Par-3 puncta and actomyosin networks, and Par-1 is cytosolic. 
Sperm entry induces the anterior flow of the actomyosin networks, 
and posterior loading of Par-1 then occurs29. As the plasma mem-
brane first forms in Drosophila, it is fully covered by Par-122, 
and Par-3 clusters assemble in what would seem to be an inhibi-
tory context. Providing an explanation for how such assembly 
occurs, Par-1 was shown to not only inhibit cortical Par-3 complex 
assembly but also promote Par-3 interactions with centrosomal  
microtubules30. These interactions seem to promote Par-3  
clustering, and the associations of Par-3 clusters and centrosomal 
microtubules are self-reinforcing30,31. This positive feedback can 
lead to extreme co-recruitment of Par-3 clusters and centrosomes 
into single, large cortical patches, and Par-1 inhibition by aPKC 
normally prevents this runaway assembly so that Par-3 clus-
ters are distributed more evenly for the positioning of adherens  
junctions30,31. Interestingly, a self-reinforcing loop is also evident 
in the C. elegans embryo, as Par-3 promotes the actomyosin flow  
that displaces the Par-3 clusters27. Whether this C. elegans loop 
has the same co-clustering potential as the Drosophila loop, and 
whether it is also counter-regulated, is unknown.

For both the C. elegans and the Drosophila embryos, the cytoskel-
etal networks responsible for polarizing Par-3 clusters are  
re-configured shortly thereafter. In C. elegans, the actomyosin  
re-configuration is associated with entry into the polarity mainte-
nance phase as the cell begins mitosis27, and in Drosophila aPKC 
initiates the down-regulation of centrosomal microtubules typi-
cal of epithelial cells31,32. As these large-scale cytoskeletal assem-
blies are diminished, other mechanisms become responsible for 
maintaining the established Par protein polarity33. In C. elegans,  
individual Par proteins can diffuse across the equatorial bound-
ary, but as whole populations they remain restricted to separate  
poles33. One form of stabilization comes from the decreased  
mobility of Par-3 clusters34. Further confinement of Par-3 is  
provided by Par-1 inhibition of Par-3 complex formation at 
the opposite pole34. In fact, for C. elegans mutants lacking the  
actomyosin flow altogether, Par-3 can polarize anteriorly owing  
to posterior Par-1 inhibitory activity concentrated by a local  
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microtubule array20. Modeling of C. elegans polarization indi-
cates that Par-3 polarity maintenance can indeed be explained 
by the persistence of anterior Par-3 clusters through avid cortical 
interaction and the repulsion of Par-3 from the posterior cortex by  
Par-135. In Drosophila, analogous effects occur and a more molecu-
larly robust framework has been discovered. As the Par-3 clusters 
are positioned, they additionally engage a network of circumfer-
ential cadherin–catenin clusters36 and actin filaments organized 
by Canoe/Afadin37, and multiple redundant cortical associa-
tion mechanisms later arise15. Just following the establishment  
of Par-3 cluster polarity, basolateral proteins such as Par-1, 
Lgl, and Dlg are displaced from the apical domain22,38,39 and act  
basally to inhibit ectopic assembly of apical proteins22,39–41.  
Thus, homo-oligomerization and engagement with other mesos-
cale structures seem to maintain Par-3 polarity in combination with  
inhibition from the opposite pole (Figure 1).

Although Par-3 clusters have a higher-order organization that 
engages other complexes across the cell cortex, they have not been 
tied exclusively to any other network. For example, Par-3 clusters 
are important for positioning cadherin–catenin clusters in the early 
Drosophila embryo38,42, but the Par-3 clusters engage these adher-
ens junction precursors with substoichiometry and distinct cluster 
dynamics36. Moreover, the Par-3 clusters can form with major deple-
tion of the cadherin–catenin clusters38, and vice versa36. A second 
example comes from the apical constriction of amnioserosa cells of 
the later Drosophila embryo. Here, Par-3 regulates the assembly–
disassembly cycles of apical actomyosin networks43. Par-3 clusters 
depend on myosin to be recruited to the apical domain44 and coa-
lesce in the apical domain with the assembly and contraction of 
an apical actomyosin network43. However, the Par-3 clusters lack 
specific colocalization with the actomyosin networks, and when 
the networks periodically disassemble the Par-3 clusters disperse 
in the apical domain but retain their membrane association43. In 
the one-cell C. elegans embryo, Par-3 clusters similarly lack clear 
colocalization with the actomyosin networks that polarize them but 
intermingle amongst the cables and foci of the networks27. Par-3 
cluster turnover rates may be slow enough for them to translocate 
across the cell as part of an advective flow driven by actomyosin, as 
shown for Par-645 (also see Note added in proof).

Specific roles of Par-3 clusters
Besides affecting the localization of Par-3, what effect does  
Par-3 clustering have? Assigning function to a specific pool of a 
protein is challenging. As discussed, compromising the oligomeri-
zation domain of Par-3 can lead to downstream effects but can  
also decrease the cortical localization of Par-3. Thus, it can be dif-
ficult to discern whether Par-3 clustering has a role beyond Par-3 
localization.

One additional role of the Par-3 oligomerization domain has 
been identified biochemically46. The oligomerization domain was 
shown to promote the bundling of microtubules by Par-3 in vitro. 
This effect was indirect. The homo-oligomerization of Par-3 out- 
competed an interaction between the C-terminal and N-terminal 
ends of Par-3 that otherwise inhibited a microtubule binding site 
involving the second and third PDZ domains of Par-3. Additionally, 
the homo-oligomerization seems to cross-link microtubule-bound 

Par-3 for the bundling of microtubules. These interactions were 
shown to affect the polarization and microtubule organization of 
cultured mammalian neurons.

Additionally, colocalization studies have implicated three activi-
ties of Par-3 clusters. First, Par-3 clusters closely colocalize with  
centrosomes during intestinal development in C. elegans47,  
asymmetric male germline stem cell division in Drosophila48, 
and without normal down-regulation of the positive feedback 
loop between Par-3 and centrosomal microtubules in the early 
Drosophila ectoderm30,31. These examples suggest Par-3 clusters 
aggregate to form cortical docking sites for centrosomes, sites 
that may involve local cortical dynein recruitment28,31,49. Second,  
Par-3 clusters colocalize closely with cadherin–catenin clusters 
as they merge and grow in a Par-3-dependent way in the early  
Drosophila embryo36,38,50. Thus, Par-3 clusters seem to act as 
scaffolds for the assembly of adherens junctions. Moreover, the  
Par-3 clusters seem to trap the cadherin–catenin clusters to posi-
tion them around the apicolateral domain36. This role in adherens 
junction positioning has also been linked to a Par-1-regulated  
shift in the position of both Par-3 clusters and cadherin–catenin 
clusters for Drosophila embryo epithelial folding24. Finally, the 
association of Par-3 clusters with Par-6–aPKC may inhibit the  
adaptor-kinase cassette by sequestration. A non-phosphorylatable 
form of Par-3 makes the Par-3–Par-6–aPKC interaction highly  
stable and extreme co-clustering results51. Moreover, sequences 
flanking the aPKC phosphorylation site of Par-3 can inhibit  
aPKC52. During internalization of the Drosophila amnioserosa,  
apical Par-6–aPKC activity initially antagonizes actomyosin  
networks to promote their assembly–disassembly cycles43, but 
aPKC-dependent accumulation of apical Par-3 leads to Par-3  
clustering, colocalization with Par-6–aPKC, and a loss of acto-
myosin inhibition, three effects expedited by expressing the form  
of Par-3 with strengthened aPKC interaction44.

Concluding remarks
Since the discovery of Par-3 homo-oligomerization, much has 
been learned about Par-3 clusters, but many questions remain.  
For example, the exact structure of individual Par-3 clusters 
observed by light microscopy remains unclear, as does their 
relationship with the helical filaments formed by the oligomeri-
zation domain in vitro. Amino acid residues important for oli-
gomerization in vitro impact Par-3 assembly in vivo12,13, and about  
200 Par-3 monomers have been detected per cluster in vivo36, 
but the arrangement of these monomers within a cluster 
remains unknown. Also, the structural basis for inhibiting Par-3  
oligomerization by Par-1 phosphorylation and 14-3-3 protein  
binding remains ill-defined and potentially involves a relatively 
long-distance effect.

The higher-order organization of Par-3 clusters is also unclear.  
Par-3 has multiple sites for binding different lipid head  
groups53–55 and, together with homo-oligomerization, these interac-
tions would be enough to explain the formation of a single cortical 
Par-3 cluster. There are three non-mutually exclusive organization 
mechanisms that could connect individual Par-3 clusters into larger 
networks: (1) the oligomerization of Par-3 could generate both 
clusters and extended filaments to interconnect the clusters; (2) a 
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single dedicated network of non-Par-3 filaments could intercon-
nect the Par-3 clusters; and/or (3) various networks could engage  
Par-3 clusters in a loose, non-dedicated, and potentially competi-
tive way. No evidence exists for mechanisms one or two in vivo. 
In contrast, mechanism three is consistent with the striking  
ability of Par-3 clusters to retain autonomy while engaging with 
cytoskeletal networks or adherens junction precursors. There 
are clearly close associations between Par-3 clusters and these  
other mesoscale complexes, but perhaps a single definition of  
a Par-3 network does not exist. Rather, the integration of Par-3  
clusters across a cellular domain seems to depend on various  
separate networks with specific networks dominating in particular 
contexts.

What is the best analogy for Par-3 clusters? It can be useful to  
think of cytoskeletal polymers as ropes or poles, or adhesion 
complexes as Velcro patches. What everyday material can give us  
a sense of what Par-3 clusters do? Like caulking, Par-3 clusters 
can connect various components together into useful conglomer-
ates. Like mucous, Par-3 clusters can sequester factors to prevent  
their activity elsewhere. Similar to either material, Par-3 clusters 
don’t move much on their own, are positioned by outside mech-
anisms, and tend to stay put once moved. Caulking and mucous 
are not very exciting, but Par-3 clusters have added properties  
including their continual turnover and chemical regulation, as 
well as the specificity of their molecular interactions conveyed 
by the binding pockets of their PDZ domains and other sites. A 
dynamic and chemically regulated caulking coated with specific  
binding pockets is not something I have seen at the hardware  
store. A material with these properties seems ideal for organizing 
various complexes across large regions of a cell. It could also be 
useful for nanotechnology.

Note added in proof
As this review was finalized, three highly significant papers were 
published by the labs of Goehring56, Goldstein57, and Motegi58. 
Through various approaches, all three studies demonstrated that 
Par-3 oligomerization promotes the formation and cortical stabi-
lization of Par-3–Par-6–aPKC clusters, as well as the advective 
transport of these clusters by the anterior flow of actomyosin that 

establishes anterior–posterior polarity in the C. elegans embryo. 
By single-molecule pull-down of the complexes from single 
embryos and the counting of photo-bleaching steps, the Goldstein 
group demonstrated that the clusters observed in vivo are indeed  
composed of Par protein multimers and that changes to clus-
ter size observed in vivo corresponded to the degree of protein  
multimerization. Each group found that the cluster sizes were 
maximal as the actomyosin flow established polarity. The Motegi 
paper demonstrated that cortical tension enhances the clustering  
of Par-3. Data from both the Goehring and the Motegi studies 
showed that the Par-3 clusters and separate Cdc-42-enriched plasma 
membrane domains compete for the Par-6–aPKC complexes, and 
with a synthetic biology approach the Goehring group found evi-
dence for Par-6–aPKC being inhibited by Par-3 and activated by 
Cdc-42. Together, these studies suggest that actomyosin contraction 
increases Par-3 clustering which, in turn, physically enhances the 
advective transport of Par-3 together with inhibited Par-6–aPKC. 
The subsequent release of Par-6–aPKC from the Par-3 clusters 
seems to allow Par-6–aPKC association with Cdc-42 domains, 
in which Par-6–aPKC has greater activity and a more dispersed  
distribution for the control of membrane identity. The Goldstein 
group demonstrated that Polo-like kinase 1 phosphorylates one or 
more residues in the oligomerization domain of Par-3 to reduce 
Par-3 clustering after polarity establishment by the contractile  
actomyosin flow. This regulated reduction in Par-3 clustering  
would presumably allow the release and local dispersion of  
Par-6–aPKC for the maintenance of anterior–posterior polarity in 
the C. elegans embryo.
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