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A protein interaction network describes a set of physical associations that can occur between
proteins. However, within any particular cell or tissue only a subset of proteins is expressed and so
only a subset of interactions can occur. Integrating interaction and expression data, we analyze here
this interplay between protein expression and physical interactions in humans. Proteins only
expressed in restricted cell types, like recently evolved proteins, make few physical interactions.
Most tissue-specific proteins do, however, bind to universally expressed proteins, and so can
function by recruiting or modifying core cellular processes. Conversely, most ‘housekeeping’
proteins that are expressed in all cells also make highly tissue-specific protein interactions. These
results suggest a model for the evolution of tissue-specific biology, and show that most, and possibly
all, ‘housekeeping’ proteins actually have important tissue-specific molecular interactions.
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Introduction

Nearly all processes in biology are dependent on the precise
physical interactions among many individual proteins. These
range from the maintenance of cellular architecture and the
propagation of the genetic material, to the ability of cells to
process and respond to environmental information. Defining a
near-complete map of the physical interactions that can occur
between human proteins—the human protein ‘interactome’—
is an important ambition of current research. Similar to the
sequence of the human genome, the human interactome
serves as a resource for researchers and can be used to
understand how proteins are organized to perform functions
within a cell (Bork et al, 2004; Cusick et al, 2005).

Protein interactome mapping projects were pioneered in
model organisms (Uetz et al, 2000; Walhout et al, 2000; Ito
et al, 2001; Ho et al, 2002; Li et al, 2004; Gavin et al, 2006;
Krogan et al, 2006), with initial efforts in humans focused on
particular pathways or genomic regions (Bouwmeester et al,
2004; Lehner and Sanderson, 2004; Lehner et al, 2004;
Jeronimo et al, 2007). More recently, the cloning of large sets
of human open reading frames and improvements in interac-
tion assays have allowed these efforts to be expanded by an

order of magnitude to the scale of the human proteome (Rual
et al, 2005; Stelzl et al, 2005; Ewing et al, 2007). These data,
combined with extensive efforts to collate known interactions
from the scientific literature (Bader et al, 2001; Xenarios et al,
2002; Pagel et al, 2005; Persico et al, 2005; Stark et al, 2006;
Kerrien et al, 2007; Vastrik et al, 2007; Ruepp et al, 2008), mean
that there is now a reasonably extensive resource of known
human protein interactions (Hart et al, 2006).

A global interactome network provides an overview of all of
the physical interactions that can occur between human
proteins. However, very little is known about when and where
each of these interactions can occur. Within any particular cell
or tissue of the human body not all protein interactions can
occur. Most simply, if two genes are not expressed in a cell,
then an interaction between their protein products cannot
occur.

In unicellular organisms, one approach that has been used
to investigate the dynamics of interaction networks between
cellular states has been to integrate interactome data with
expression data. This approach has been used to identify
co-regulated interaction modules (Ihmels et al, 2002; Komurov
and White, 2007) or to investigate the relationships
between interaction network topology and gene co-expression
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(Han et al, 2004). Additional studies have used gene
expression (Luscombe et al, 2004; de Lichtenberg et al,
2005) or functional information (Rachlin et al, 2006) to
investigate the cellular conditions (or ‘context’) under which
interactions can occur, and to distinguish between condition-
dependent and condition-independent interactions.

In the present study, we apply a similar approach to the
human protein interaction network, using global gene expres-
sion data to identify the human cells and tissues in which each
interaction can or cannot occur. By performing this analysis,
we are able to investigate the relationship between the tissue
specificity of a protein and its number of interaction partners.
Moreover, and strikingly, we find extensive communication
between universally expressed proteins and those with tissue-
specific expression. Even the most tissue-specific proteins
normally interact directly with components of the core cellular
machinery. Conversely, nearly all universally expressed
‘housekeeping’ proteins have protein interactions that can
only occur in a restricted subset of cells. Our results suggest a
model for the evolution of tissue-specific functions through the
modification and re-use of core cellular processes, and that
most ‘housekeeping’ proteins should probably be considered
as important for tissue-specific processes.

Results

Construction of a global human protein interaction
network

To construct a global human physical protein interaction
network, we integrated data from 21 different sources to define
a network of 80 922 physical interactions that can occur
between 10 229 human proteins. We only included interactions
supported by at least one piece of direct experimental evidence
demonstrating physical association between two human
proteins (see Materials and methods; Supplementary Table
1). Moreover, to account for differences in interaction assay
reliability, throughout this work, we also consider a high-

confidence subset of this global network that consists of
interactions reported in at least two independent primary
research publications. There are a total of 13102 of these
multiple publication-supported interactions that connect 4750
human proteins.

Determining the tissue specificity of human
protein interactions

We then used gene expression data (Su et al, 2004) to
determine the cells and tissues of the human body in which
each of these interactions can occur (Figure 1A). If two genes
are co-expressed in a cell, then under some condition their
products can physically interact in that cell. However, if two
proteins are not expressed in a tissue, then the interaction
cannot occur in this tissue. The complete set of interactions,
their supporting evidence, and the cells and tissues in which
each interaction can occur are provided as Supplementary
Table 1 as a resource for researchers interested in the biology of
any particular human cell or tissue.

Tissue specific and recently evolved proteins
make few protein interactions

We first examined the relationship between the tissue
specificity of a protein and the number of interactions that it
makes (a protein’s interaction degree). We find that more
tissue-specific proteins make fewer interactions than widely
expressed proteins (Figure 1B, Spearman’s rho¼0.19,
Po2.2e�16). This is true both for the complete and for the
multiple-support interaction dataset (Supplementary Figure
1A), and when excluding all protein complexes (Supplemen-
tary Figure 1B). It has been shown earlier that tissue-specific
proteins are more likely to be recent evolutionary innovations
than universally expressed proteins (Lehner and Fraser,
2004b). We find that more-recently evolved proteins have
fewer interactions than ancient proteins, but that the relation-
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Figure 1 Tissue-specific and recently evolved proteins make few protein interactions. (A) Integrating protein interaction and expression data to construct ‘local’
interactomes for human cells and tissues. (B, C) The relationship between protein interaction degree and protein expression breadth (the number of tissues in which a
protein is expressed) for the complete human protein interaction network (B), and (C) for ancestral (pre-metazoan) proteins (blue) and for metazoan-specific proteins
(red). Po10e�15 in all cases, Kolmogorov–Smirnov test. Bars indicate one standard error. Interaction degree is the maximum number of co-expressed interaction
partners. The same analysis is performed for the multiple-support network and for a network without protein complex-derived interactions in Supplementary Figure 1.
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ship between tissue specificity and interaction degree is seen
for both sets of proteins (Figure 1C). That is, the older a protein
is, and the more tissues in which it is expressed, the more
protein interactions it is likely to have.

The most tissue-specific proteins normally
interact with core cellular components

We next analyzed the extent to which tissue-specific proteins
interact with the most widely expressed proteins. We find that
even when only considering the most tissue-restricted proteins
(proteins expressed in p10/79 tissues), most of them are
known to interact directly with universally expressed human
proteins (Figure 2A). The same result is seen when only
considering high-confidence human protein interactions
(Supplementary Figure 2A), and when using diverse defini-
tions of universally expressed proteins (Figure 2A). Thus, most
tissue-specific proteins can function by directly contacting
components of the core cellular machinery.

Most universally expressed proteins have
tissue-specific protein interactions

Constitutively expressed proteins are often considered as
important for ‘housekeeping’ biological processes that are
required in all cells. However, nearly all of the most widely
expressed proteins have interactions with other proteins that
are not themselves universally expressed (Figure 2B). That is,
most universally expressed proteins have physical interactions
that can only occur in a restricted subset of cells and tissues.
The same result is seen when using the complete interaction
dataset, when only considering high-confidence interactions
described in multiple independent publications (Supple-
mentary Figure 2B), or when using diverse definitions of
universally expressed proteins (Figure 2B). Thus most, and
possibly all, universally expressed proteins have tissue-
specific molecular interactions.

Proteins that themselves have restricted expression patterns
also have many interactions that can only occur in a subset of
the tissues in which they are expressed (Figure 2C). That is, as
a consequence of interactions between more and less widely
expressed proteins, human protein interactions are often more
tissue specific than proteins (Po10�16).

Extensive re-use of housekeeping proteins for
tissue-specific biological processes

To further illustrate how housekeeping proteins are widely re-
used for tissue-specific biological processes, we considered
neuronal protein complexes that function in synaptic trans-
mission, learning, and memory. The subunits of these
complexes have been identified by extensive proteomic
approaches, and the importance of individual subunits for
learning and memory have been validated by genetic studies in
mice and by clinical studies in humans (Pocklington et al,
2006). We estimate that B20–60% of the subunits of
these neuronal-specific complexes are actually universally
expressed housekeeping proteins (Figure 3A and B). More-
over, in B30% of cases, these housekeeping subunits have
genetically verified roles in learning and memory (Figure 3C).
Thus, universally expressed proteins, through their tissue-
specific interactions, can be re-used and essential for highly
tissue-specific biological processes.

Discussion

The evolution of tissue-specific biological
processes

Taken together, our findings suggest the following model for
the evolution of tissue-specific functions. Many (but not all)
tissue-specific proteins are recent evolutionary innovations
(Lehner et al, 2004). In general, these tissue-specific proteins
initially make few interactions, and these interactions are
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Figure 2 Most tissue-specific proteins interact with core cellular components, and most housekeeping proteins have tissue-specific physical interactions. (A) The
proportion of the most tissue-specific proteins (proteins expressed in only 1–10/79 tissues) that interact with universally expressed housekeeping proteins. (B) The
percentage of housekeeping proteins that interact with non-housekeeping proteins. These data are for the complete network. The same analysis is shown for the high-
confidence multiple-support network in Supplementary Figure 2. Housekeeping proteins are defined by 10 criteria: (1) this study 79/79 tissues, (2) this study 71–79
tissues, (3) this study 79/79 tissues with reduced expression stringency, (4) this study 71–79 tissues with reduced stringency, (5) this study 79/79 tissues with increased
stringency, (6) this study 71–79 tissues with increased stringency, (7) Zhu et al microarray data 18/18 tissues, (8) Zhu et al microarray data 16–18 tissues, (9) Zhu et al
EST data 18/18 tissues, (10) Zhu et al EST data 16–18 tissues (Zhu et al, 2008). (C) Many proteins make interactions that can only occur in a subset of the tissues in
which they are expressed. The number of tissues in which the interactions of a protein can occur is compared with the number of tissues in which a protein is expressed
for proteins falling into each of the eight bins of tissue specificity. Data are shown for the complete network. Data for the filtered multiple-support network and reduced and
increased stringency expression thresholds are shown in Supplementary Figure 3.
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frequently with much more widely expressed and ‘house-
keeping’ components of the cell. Thus, many tissue-specific
proteins probably function by directly recruiting or modifying
the activities of core cellular components.

There are, however, exceptions to this trend, with some
tissue-specific proteins acting as ‘local’ hubs in the interaction
network of a particular tissue (our unpublished observation).

Frequent re-use of housekeeping proteins for
tissue-specific biology

Universally expressed ‘housekeeping’ proteins tend to make
many interactions. Many of these interactions (B50–60%,
Supplementary Figure 3) are with other housekeeping
proteins. However, the majority of universally expressed
proteins also make interactions that can only occur in a subset
of the tissues in which they are expressed. Therefore, there
appears to be very frequent, and possibly universal, re-use of
‘housekeeping’ proteins to perform tissue-specific biological
processes. That is, most housekeeping proteins can be
considered to be important for different (or at least modified)
biological processes in different tissues.

In summary, our results suggest that it might be better to
consider the biology of any particular tissue in the terms of the
particular interactions that can occur in that tissue, rather than
simply in the terms of the unique proteins that are expressed
there.

The importance of interaction network dynamics

In unicellular yeast, broadly expressed proteins can have
precisely temporally regulated activities because of their
interactions with proteins with restricted expression profiles
(de Lichtenberg et al, 2005). We show here that a similar
process may be widely used in multicellular organisms to
restrict and modify the activities of a protein to a subset of the
tissues in which it is expressed.

Together with earlier analyses in yeast (Han et al, 2004;
Luscombe et al, 2004; de Lichtenberg et al, 2005), this work
highlights the importance of considering global interaction
networks as having dynamic, not static, structures, and
topologies. Additional work analyzing how the networks of
molecular interactions change between cell types, states, and
conditions should prove a fruitful approach for understanding
living systems.

Materials and methods

Protein interaction data

We compiled human protein interactions from a total of 21 different
databases, as listed in Table I. We required that each interaction be
supported by at least one piece of direct experimental evidence
demonstrating physical association between two human proteins, and
removed all interactions that did not meet these criteria. All
interactions were mapped to common Ensembl gene identifiers. The
complete network (‘CRG-all’), consists of 80 922 interactions between
10 229 human proteins (approximately half the human proteome) and
is available as Supplementary Table S1.

Filtered interaction dataset

In total, 13102 of the interactions in our network between 4750
proteins are supported by experimental evidence of physical binding
reported in at least two different primary research publications. Given
the multiple lines of evidence supporting these interactions, we use
this subset of interactions (‘CRG-filtered’) as high-confidence interac-
tions to confirm that our conclusions are not affected by interaction
data quality or sampling (see Supplementary Figures).

Expression data

To identify which protein interactions can occur in a particular cell or
tissue type, we used global gene expression data. Although interac-
tions can be regulated by localization, phosphorylation, etc, we aim to
distinguish the proteins that can interact under some condition in a
tissue from those that cannot, and mRNA expression is a reasonable
indicator of this potential. We used expression data from the GNFAtlas
project that measured expression across 79 different human cell or
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Figure 3 The re-use of housekeeping proteins for tissue-specific functions. Here we use the example of neurotransmitter receptor protein complexes identified by
affinity purification followed by mass spectrometry (Pocklington et al, 2006). (A) A section of the binary protein interaction network of neurotransmitter receptor
complexes, with subunits marked as universally expressed (housekeeping) proteins (yellow) and non-housekeeping (blue). The housekeeping and non-housekeeping
interaction partners of the housekeeping protein Rac1 are highlighted and labeled as examples. (B) The percentage of subunits of neurotransmitter receptor protein
complexes considered as universally expressed housekeeping proteins is shown for 10 different criteria of housekeeping proteins, as described in Figure 2. Criteria10 is
used in panel A. (C) The proportion of these housekeeping subunits that have been experimentally verified as essential for learning and memory in mouse models or that
are implicated in psychiatric disease in humans is shown for the same 10 criteria of housekeeping proteins. Protein complex subunits, binary protein–protein interactions,
and genetic data are all from Pocklington et al (2006). The network in (A) was visualized using Biolayout Express (3D) (Freeman et al, 2007).
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tissue types (Su et al, 2004). The MAS5 normalized expression levels
were averaged between experimental replicas, and in cases where
more than one probe set was present for a gene, the more sensitive
probe set was used. In this dataset, a gene is considered as present in a
tissue, if its normalized expression level is 4200 (Su et al, 2002).
However, our conclusions remain the same when this stringency is
increased or decreased (see Supplementary information). At this
threshold, 498% of the interaction partners in our global network for
which expression information is available are co-expressed in least one
human tissue.

Housekeeping proteins

We identified universally expressed housekeeping proteins using a
total of 10 different criteria. First, we used the GNF Atlas data, and
considered housekeeping proteins as those with an expression level
above 200 in all 79 tissues, or in more than 70/79 tissues (i.e. allowing
for some false-negatives). Second, we used the same two tissue
criteria, but increased (250) or decreased (150) the stringency at which
a gene is considered expressed. Third, we used four additional sets
defined in an earlier publication—genes identified as expressed in 18/
18 or at least 16/18 tissues using microarray data, and genes with the
same tissue criteria but defined using expressed sequence tag (EST)
data (Zhu et al, 2008).

Neurotransmitter receptor complexes

Components of N-methyl-D-aspartate receptor and metabotropic
receptor complexes were identified by extensive proteomic studies as
described (Pocklington et al, 2006). We used the 215 subunits of these
complexes that could be mapped to human Ensembl gene identifiers,
of which 77 have demonstrated roles in learning and memory through
genetic studies in mice or are implicated in psychiatric disorders in
humans (Pocklington et al, 2006). We used the sets of housekeeping

proteins described above to identify how many of these subunits
represent universally expressed proteins.

Protein evolution

Proteins were classified as metazoan specific or pre-metazoan using
the analysis of Freilich et al (2005).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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