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Abstract

Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. While 
analyses of genetic data from across the globe have increased our understanding of this bacterium’s population genomic struc-
ture, the influence of selective pressures on this successful pathogen is not well understood. In this study, we investigate the 
effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping population genomic structure. 
We also identify a suite of candidate genes potentially under selection, driving patterns of diversity across 356 globally extant 
B. anthracis genomes. We report ten antimicrobial resistance genes and 11 different prophage sequences, resulting in the 
first large-scale documentation of these genetic anomalies for this pathogen. Results of random forest classification suggest 
genomic structure may be driven by a combination of antimicrobial resistance, geography and isolation source, specific to the 
population cluster examined. We found strong evidence that a recombination event linked to a gene involved in protein synthe-
sis may be responsible for phenotypic differences between comparatively disparate populations. We also offer a list of genes 
for further examination of B. anthracis evolution, based on high-impact single nucleotide polymorphisms (SNPs) and clustered 
mutations. The information presented here sheds new light on the factors driving genomic structure in this notorious pathogen 
and may act as a road map for future studies aimed at understanding functional differences in terms of B. anthracis biogeog-
raphy, virulence and evolution.

DATA SUMMARY

(1)	 All NCBI accession numbers related to sequence reads 

and bioproject data used in this study are listed in File S1.

(2)	 All supplementary material can be found at https://​doi.​

org/​10.​6084/​m9.​figshare.​14485140.​v1

(3)	 The R script used for the random forest classification 

and code used for identifying clustered mutations can be 

found at the following GitHub repository: https://​github.​

com/​spencer411/​B_​anthracis_​adaptation.

INTRODUCTION
For pathogens, consideration of intraspecific variation is 
central to understanding the evolution of virulence and 
genotypic persistence [1–3]. Phenotypic and genetic varia-
tion in a population may influence ecological composition 
and function, leading to increased or decreased evolutionary 
capacity under altered habitat regimes [4, 5]. Incorporating 
intraspecific diversity into effective management strategies 
demands the identification of factors influencing ecological 
plasticity and reproductive success [6, 7]. A wide range of 
genomic analyses have revealed genetic anomalies supporting 
ecologically variable phenotypes, suggesting a consequential 
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role for genomic architecture in driving intraspecific hetero-
geneity [8, 9]. For example, single nucelotide polymorphisms 
(SNPs) may facilitate the evolution of new phenotypes 
through the formation of novel proteins in regions that code 
for spore formation in Bacillus anthracis or virulence factors 
in Clostridium difficile [10, 11]. By evaluating the relationship 
between whole genome architecture and ecologically relevant 
sequence variation, we can gain a detailed understanding of 
how biocomplexity drives genomic structure in pathogenic 
bacteria [12, 13]. Nevertheless, the relationship between 
genomic variation and adaptive relevance remains largely 
unknown for the vast majority of pathogenic species [14, 15].

B. anthracis has been extensively studied given its ability to 
cause anthrax, a disease that can be fatal to wildlife, livestock 
and humans [16]. Studies that have examined the integration of 
bacteriophage DNA into the B. anthracis genome have suggested 
that these sequences may influence gene expression, potentially 
driving increased sporulation and observable phenotypic differ-
ences [17, 18]. In addition, antimicrobial resistance (AMR) 
has recently garnered a great deal of attention given the wide 
range of antibiotics administered to both humans and livestock 
throughout the world, driving selective resistance in a myriad of 
bacteria including B. anthracis [19, 20]. Therefore, when exam-
ining B. anthracis genomic architecture in light of selection, the 
use of classification methodologies that incorporate potentially 
ecologically relevant differences in phage diversity and AMR may 
shed light on the drivers of modern population genomic structure 
in this species. This in turn will allow us to better forecast what 
genomic clusters or clades may pose the greatest risk of disease 
emergence and re-emergence in animals and humans [21]. 
Nevertheless, it should be noted that the detection of an AMR 
gene does not always translate to conferred resistance [22].

Individual and regional genetic diversity that differenti-
ates B. anthracis populations by SNP architecture has been 
identified on a global scale [23–26]. Recent work has refined 
our understanding of population genomic structure for this 
species [27, 28]. Work by Sahl et al. sought to expand on the 
original B. anthracis classification system, and generated an 
SNP database used to characterize the branching structure 
of isolates based on 193 genomes [28]. More recent genomic 
analyses that comprise the largest global phylogeny of B. 
anthracis to date (356 genomes) has redefined B. anthracis 
population genomic structure, resulting in six primary 
clusters and 18 nested clades. This new classification system 
uses an intuitive, simplified naming system and allows for 
linkable, rapid classification [27]. Two of the major genotype 
clusters, cluster 1 (C Branch) and cluster 2 (B Branch), are 
vastly underrepresented in terms of prevalence and have been 
hypothesized to be less fit than the majority of B. anthracis 
specimens isolated and sequenced [26, 29, 30]. However, 
the link between genomic architecture, and the scarcity of 
these genotypes remains largely unexamined. In addition, 
some of the individual clades identified are geographically 
specific, whereas others seem to be widely distributed, raising 
numerous questions about what factors are driving evolu-
tionary success in this species [26–28]. Understanding the 
relationships among spatial variation, population stability, 

and genomic architectural variation is particularly important 
for B. anthracis, as it is a major threat to wildlife, livestock and 
public health globally [31]. In this study, we explore genomic 
variation and selection in a global whole-genome dataset of 
B. anthracis isolates spanning 39 countries and six continents. 
In addition, we apply an ensemble machine learning method 
[random forest (RF)] to elucidate the ways in which isola-
tion source, geography, phage diversity and AMR genes may 
be shaping genomic diversity and genotypic persistence. RF 
operates by constructing decision trees on various subsamples 
of the dataset, allowing for predictions regarding evolutionary 
potential at the population level.

METHODS
Whole genome mapping and assembly
The population genomic dataset used in these analyses was 
previously developed and published by Bruce et al. [27] 
consisting of 356 B. anthracis whole genomes collected from 
the NCBI sequence read archive ([27], File S1, available in 
the online version of this article). Each read pair was mapped 
to the fully annotated Ames Ancestor genome (accession 
AE017334.2), using the RedDog pipeline (https://​github.​
com/​katholt/​RedDog). Mapped reads were then subjected to 
extensive post-processing to remove calls (a) found in regions 
with large ‘inexact’ repeats, (b) within prophage regions of 
the reference genome, (c) from regions that were found to be 
invariable in all but the outgroup, (d) from regions potentially 
resulting from recombination and (e) potentially related to 
stutter. Full details relating to methods for mapping, SNP 
calling and determination of population genomic structure 
can be found in Bruce et al. [27].

For the purpose of this study, the same trimmed sequence 
reads were also subjected to de novo assemblies using SPAdes 
version 3.13.0, a genome assembly algorithm specifically 
developed for single cell and multi-cell bacterial isolates 
[32]. De novo assemblies allow for the identification of unique 
sequences in each isolate not identifiable using the mapping 
method described above.

Impact Statement

Understanding the drivers of pathogen genomic struc-
ture allows for targeted disease management based on 
factors contributing to virulence and host susceptibility. 
Despite the large range of published information on B. 
anthracis genetic structure, little work has been done to 
understand the factors shaping its global genetic consti-
tution. The data presented here allow for the first large-
scale accounting of antimicrobial resistance and phage 
sequence diversity for this species. These results suggest 
that antibiotic resistance genes and isolation source may 
be driving aspects of population structure and emphasize 
the importance of examining multiple factors dictating 
pathogen evolution and genotypic persistence.

https://github.com/katholt/RedDog
https://github.com/katholt/RedDog
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Identification of AMR genes and phage sequence 
variation
We screened each assembly for AMR genes employing 
The Resistance Gene Identifier (RGI) tool provided by the 
Comprehensive Antibiotic Resistance Database (CARD) 
[33]. RGI can be used to predict resistomes from protein 
or nucleotide data based on homology and SNP models. In 
addition to identifying AMR genes, we identified prophage 
sequences within the contigs of each assembled genome 
using the Phage Search Tool Enhanced Release (PHASTER) 
[34]. PHASTER is a web-based application that is designed 
to rapidly and accurately identify, annotate and graphically 
display prophage sequences within bacterial genomes or 
plasmids. The full phylogenetic tree of B. anthracis isolates 
from Bruce et al. [27] was then annotated using iTOL [35] 
with both phage sequence variation (scored as either intact, 
questionable or incomplete; see Table S1 for details), and pres-
ence (or absence) of AMR genes. AMR gene data were then 
plotted geographically to understand patterns of resistance 
on a global scale using Adobe Illustrator [36].

Classifying population genomic architecture using 
RF
To understand how various factors may be influencing the 
genomic architecture of B. anthracis we used an RF approach 
[37], incorporating AMR gene data, phage diversity data and 
isolate metadata (continent of isolation and source) accessed 
through the NCBI biosample database [38]. RF has gained 
increased attention over the past several decades given its 
ability to produce excellent classification results while also 
being computationally inexpensive [39, 40]. The RF classi-
fier produces valid classifications using predictions derived 
from a group of decision trees and can also be used to select 
and rank those variables, allowing the user to successfully 
discriminate between the target classes [41]. RF was carried 
out using the R package randomForest [37] to construct a 
multitude of decision trees and determine the mean predic-
tion of each individual tree pertaining to the six primary 
population clusters [27]. The R package SPM was then used 
to carry out a 5-fold cross-validation [42].

We first removed samples with missing values for inde-
pendent variables, and additionally removed three variables 
(AMR gene mphL, and phage sequence Bacillus virus 1 and 
Bacillus phage PfEFR-5) which exhibited no variation across 
the dataset. The final dataset resulted in 20 independent 
variables (Table S2). We divided the dataset into a training 
dataset including 75 % of the samples and a validation dataset 
including the other 25 %. To determine Mtry and Ntree 
(number of variables and number of trees), we used a 5-fold 
cross-validation and grid search. To carry out 5-fold cross-
validation, we randomly assigned each sample to one of five 
groups. For each pass of cross-validation, RF classifiers were 
trained with a test dataset of which one group was held out 
[43]. The model with the highest correct classification rate and 
Kappa index of the classification was selected for determining 
values of Mtry and Ntree. We used the best combination of the 
Mtry and Ntree for the final RF model. To assess the model fit 

of the RF we subjected the model to the validation dataset and 
estimated the accuracy. To determine the contribution of the 
variables to the classification in the model, the importance of 
variables was evaluated by the mean decrease in accuracy. The 
mean decrease in accuracy was computed with the difference 
between the out-of-bag (OOB) error (training observations 
not included in the bootstrap) from a dataset with the selected 
variable permuted and the OOB error from the original 
dataset [41].

Recombination, high-impact SNPs and candidate 
genes for selection
To determine how recombination may be influencing popu-
lation genomic structure across our dataset, we first used 
the program Gubbins to iteratively identify loci containing 
elevated densities of base substitutions in the SNP dataset 
(prior to removal of recombinant sequences) [44].

To analyse selection in non-recombining regions, we analysed 
SNPs (post-removal of recombinant sequences) using the 
program SnpEff [45]. SnpEff annotates and predicts the effects 
of genetic variants on genes and proteins (such as amino acid 
changes). To assess ‘high-impact’ SNPs influencing population 
genomic structure, we compiled a list of SNPs that produce 
significant changes to protein structure in the B. anthracis 
chromosome and plasmids, specific to each primary cluster 
and groups of primary clusters, such as mutations that result 
in the gain of a stop codon, the loss of a start codon and splice 
region variants. We also looked for clustered SNPs across each 
of the aforementioned groups to identify genes that were 
possibly associated with selection using a modified version 
of the algorithm developed by Cui et al. [46], classifying genes 
that showed three or more mutations within a 2000 bp range, 
as well as genes that showed two or more SNPs within a 50 bp 
range. Clustered mutations have a low probability of occur-
ring under a neutral substitution model, in which variations 
are assumed to be randomly distributed across the genome 
Zhou et al. [47]. Examining the ratio of non-synonymous to 
synonymous SNPs at the gene level was problematic given 
the clonal nature of B. anthracis and reduced variability 
at the level of the gene, and was therefore not included in 
our analysis. We then compiled a list of candidate genes for 
selection that were identified using both methods above. 
Finally, we examined differences in SNP variation across the 
B. anthracis virulence genes (in the plasmids), again using 
SNPeff to identify SNPs potentially leading to functional 
differences across the different population genomic clusters.

RESULTS
Global variation in AMR and phage diversity
We identified a total of ten AMR genes across the global 
collection of 356 B. anthracis genomes analysed (Fig.  1, 
Table 1). Additional information regarding the AMR genes 
and their frequency is provided in Table S3. A key linking the 
classification framework shown here to the previously estab-
lished branch labels outlined by Sahl et al. [28] are provided 
in Fig. S1. Five AMR genes (mphL, bla1, fosB, bla2 and vmlR) 
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Fig. 1. AMR genes identified in the whole‐chromosome tree of 356 global B. anthracis isolates (a). Primary clusters are divided into their 
numbered nested clades by grey lines. The key on the right lists the ten AMR genes identified. Outer rings reflect presence (colour) or 
absence (white) of each gene across all isolates in the phylogeny. A world map depicting the prevalence of AMR genes is depicted in 
(b). Each circle represents an AMR gene coloured according to the key and figure above. Percentages represent the total proportion of 
isolates from each continent where the respective AMR gene was identified (including North America, South America, Europe, Asia and 
Oceania). See Fig. S1 for a key to previously established classification schemes.
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were found across the majority of isolates tested. AMR gene 
mphL was identified in every isolate examined. AMR gene 
bla1 was absent in two unrelated isolates, one collected in 
South Carolina, USA [clade 4.3 (Vollum), NCBI Sequence 
Read Archive: SRR5811007], and the other collected in 
Morioka, Japan [clade 5.2 (Sterne), NCBI Sequence Read 
Archive: DRR128181]. AMR gene fosB was absent from a 
single isolate collected in South Carolina [clade 4.2 (Vollum), 
NCBI Sequence Read Archive: SRR5811063], and all isolates 
that comprise primary cluster 1 (C Branch) from the USA 
(N=5). The gene bla2 was absent from a number of other 
disparate samples (N=11) and was completely absent from 
all isolates that comprise clade 3.1 (Ancient A; N=4). AMR 
gene vmlR was present in all isolates with the exception of 
a handful of closely related isolates collected in the USA 
between 1956 and 1978 from clade 4.1 (Vollum, N=3), as 
well as all isolates that comprise primary cluster 5 (V770, 
Ames, Sterne, Aust94; N=72). All other AMR genes were 
far rarer. AMR gene bcII was present in only six samples, 
including one isolate from Alabama [clade 4.2 (Vollum), 
NCBI Sequence Read Archive: SRR1739961], one isolate 
from Akita, Japan [clade 5.2 (Sterne), NCBI Sequence Read 
Archive: DRR128182], one isolate from Argentina [clade 
5.2 (Sterne), NCBI Sequence Read Archive: SRR5810989], 
and three isolates from Albania [clade 6.1 (TEABr008/011), 
NCBI Sequence Read Archive: SRR2968139, SRR2968140 and 
SRR2968213]. AMR gene tem-116 was present in only three 
isolates, all collected in Zambia between 2012 and 2013 [clade 
3.3 (Ancient A), NCBI Sequence Read Archive: DRR014736, 
DRR014737 and DRR125655]. AMR gene cfrC was present 
in a single isolate from Germany [clade 5.3 (Aust94), NCBI 
Sequence Read Archive: SRR2968155], dfrG was present in 
a single isolate from Zambia [clade 3.3 (Ancient A), NCBI 
Sequence Read Archive: DRR125655] and oxa-59 was present 

in a single isolate from Italy [clade 6.1 (TEABr008/011), NCBI 
Sequence Read Archive: SRR2968209].

In addition to AMR genes, we also identified 11 prophage 
sequences across our global dataset (Fig.  2, Table S4). 
Prophage sequences were scored as intact, questionable or 
incomplete. Criteria related to this categorization can be 
found in Table S1. Additional information regarding the 
phage sequences and their lineages is provided in Table 
S5. Bacillus virus 1, Bacillus phage PfEFR-5 and Staphy-
lococcus phage vB_SepS_SEP9 sequences were detected 
across all of our samples. Bacillus virus 1 was determined 
to be intact in all isolates examined. Bacillus phage PfEFR-5 
was determined to be questionable across most isolates, but 
incomplete for all isolates comprising primary cluster 1 (C 
Branch, N=5), while Staphylococcus phage vB_SepS_SEP9 
was determined to be questionable across all isolates, but 
incomplete for all isolates comprising primary clusters 
1 and 2 (C and B Branches; N=18). The eight remaining 
prophage sequences were scattered in comparatively 
minimal amounts across the global dataset, with the excep-
tion of Bacillus phage phBC6A52 which was intact in a large 
number of the isolates examined (N=91), with seemingly no 
link to relatedness or geography among isolates.

Explaining global genomic clusters with RF
The RF model was trained using 5-fold cross-validation 
with a training dataset. The best model parameter (where 
Ntree and Mtry equalled 400 and 9 respectively) produced 
a cross-correlation rate that showed a high value of 83.6, 
while kappa equalled 0.764. Variables examined include 
presence of AMR genes and phage sequences, as well as 
sample source (details provided in Table S2). With this 
combination of Ntree and Mtry, the OOB error based on 

Table 1. AMR genes and their definitions from the Comprehensive Antibiotic Resistance Database (CARD)

Name Resistance mechanism Accession Definition

mphL Antibiotic inactivation ARO:3003072 A chromosomally encoded macrolide phosphotransferase that inactivates macrolides such as 
erythromycin, clarithromycin, azithromycin

bla1 Antibiotic inactivation ARO:3000090 A chromosomally encoded beta-lactamase that hydrolyses penicillins

fosB Antibiotic inactivation ARO:3000172 A thiol transferase that leads to fosfomycin resistance

bla2 Antibiotic inactivation ARO:3004189 A chromosomally encoded beta-lactamase that has penicillin-, cephalosporin- and 
carbapenem-hydrolysing abilities

vmlR Antibiotic target protection ARO:3004476 An ABC-F ATPase ribosomal protection protein shown to confer resistance to lincomycin and 
streptogramin A virginiamycin

bcII Antibiotic inactivation ARO:3002878 A zinc metallo-beta-lactamase that hydrolyses a large number of penicillins and 
cephalosporins

tem-116 Antibiotic inactivation ARO:3000979 A broad-spectrum beta-lactamase found in many species of bacteria

cfrC Antibiotic target alteration ARO:3004146 A cfr-like 23S rRNA methyltransferase shown to confer resistance to linezolid and phenicol 
antibiotics, including florfenicol and chloramphenicol

dfrG Antibiotic target replacement ARO:3002868 A plasmid-encoded dihydrofolate reductase

oxa-59 Antibiotic inactivation ARO:3001772 A beta-lactamase
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the confusion matrix was 16.89 %. Applying the model to 
the validation dataset and comparing the observations and 
predictions, the overall accuracy was 0.861. The model 
always failed to predict primary cluster 1 (C Branch) for the 
validation dataset (N=1), and primary cluster 2 (B Branch) 
for both the training set (N=9) and the validation dataset 
(N=2), probably due to the reduced number of representa-
tives comprising these clusters. The AMR gene vmlR, the 
isolation source (host, environment or industry) and the 
continent of isolation were the most important variables 
in explaining genomic clusters across the entire dataset 
(Fig.  3a). The variable importance based on the mean 
decrease in accuracy for each individual cluster is shown 
in Fig. 3b. The absence of AMR gene fosB was the strongest 
predictor for primary cluster 1 (C Branch), whereas the 
vmlR gene in primary cluster 2 (B Branch) acted as the 
strongest predictor. Nevertheless, both of these models 
exhibited negligible accuracy in the confusion matrix, 
suggesting more data are needed for accurate classification 
for these two clusters (Table S6). In cluster 3 (Ancient A) 
the continent of isolation was the strongest predictor by a 

large margin, as the vast majority of the samples that make 
up this population were isolated in Africa. For cluster 4 
(Vollum) isolation source was the strongest predictor, 
followed by continent, as the majority of the isolates from 
this cluster were collected from industry (textile factories, 
animal processing plants, etc.) in North America. For 
cluster 5 (V770, Ames, Sterne, Aust94) the absence of the 
vmlR gene was the strongest, lone overall predictor. Finally, 
in cluster 6 (TEA), isolation source, presence of the vmlR 
gene and continent all showed comparatively strong power 
in classifying this cluster, with the majority of isolates from 
this cluster being isolated from animal hosts in North 
America and Europe.

Role of selection in shaping the B. anthracis genome
The program Gubbins predicted two instances of recom-
bination, the first in a single isolate from Thailand [clade 
5.2 (Ames), NCBI Sequence Read Archive: SRR5811219], 
based on 26 SNPs, and the second encompassing 13 isolates 
[comprising all of primary cluster 2 (B Branch)], based on 

Fig. 2. Prophage sequences identified in whole‐chromosome tree of 356 global B. anthracis isolates. Primary clusters are divided into 
their numbered nested clades by grey lines. The key on the right indicates the phage sequence present for each isolate, numbered 
according to their order from the inside of the ring to the outside. Colour indicates whether the phage sequence was determined to be 
intact, questionable or incomplete. Criteria related to this categorization can be found in Table S1. See Fig. S1 for a key to previously 
established classification schemes.
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Fig. 3. Importance of the covariates in defining population genomic architecture for all primary clusters combined (a) and for each 
primary cluster on its own (b) by the RF classifier.
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24 SNPs. Both instances of predicted recombination were 
specific to the rrsA rRNA gene [positions 9335–10 841 in 
the Ames Ancestor reference genome (NCBI accession: 
AE017334.2)], which encodes the 16S rRNA, essential to 
translating messenger RNA into proteins.

After removing SNPs associated with recombination, SNP 
calls were split by primary cluster designations using a 
hierarchical approach, grouping primary clusters based on 
their nested structure, while filtering at a minimum allele 
frequency of 0.10 to avoid the identification of relatively rare 
alleles that were not necessarily indicative of their respective 
population genomic cluster. High-impact SNPs were then 
identified using the program snpEff. A detailed account of 
all 62 high-impact SNPs identified (including their predicted 
effect) is presented in Table S7. We also looked at clustered 
mutations in the same hierarchical manner, leading to the 
identification of 122 candidate genes potentially influencing 
selection (Table S8). Comparing both methodologies, five 
genes that spanned clustered mutations also contained a high-
impact SNP (Table 2). These include genes coding for a DNA-
binding response regulator and stage 0 sporulation regulatory 
protein (both specific to primary cluster 1), a tetratricopeptide 
repeat (TPR) domain protein [specific to primary cluster 2 
(B Branch)], as well as a chlorohydrolase family protein and 
a hypothetical protein [both specific to primary clusters 5 
(V770, Ames, Sterne, Aust94) and 6 (TEA)].

Lastly, we looked at non-synonymous mutations across the B. 
anthracis virulence genes (in the pXO1 and pXO2 plasmids), 
again using a minimum allele frequency of 0.10 to avoid the 
identification of relatively rare alleles that were not neces-
sarily indicative of a group. All of the non-synonymous SNPs 
identified were on the pXO1 plasmid and spanned two toxin 
genes: the cya (calmodulin-sensitive adenylate cyclase) and 
the pagA (protective antigen) genes (Table 3). Both of the 

mutations in the cya gene were specific to clade 6.3 (WNA/
TEABr011) for which all isolates were collected in western 
North America. In the pagA gene, one missense mutation was 
specific to the genetically and geographically diverse primary 
cluster 4 (Vollum), and the other to cluster 5 (V770, Ames, 
Sterne, Aust94), for which most of the isolates were collected 
in Asia and Europe.

DISCUSSION
Understanding the drivers of population genomic structure in 
pathogens is essential for making informed decisions related 
to wildlife management, disease control and public health. 
The data presented in this study offer the first detailed, global 
accounting of AMR genes and phage diversity in B. anthracis. 
In addition, our findings suggest that the six primary clusters 
defining population genomic structure in this species are 
consistent with differences in both AMR genes, geography 
and the source from which they were isolated. We also 
demonstrate that a recombination event linked to protein 
translation may take part in determining the persistence 
of certain B. anthracis strains. Finally, we offer a wealth of 
information on genomic diversity potentially associated with 
functional differences driving selection, allowing for further 
investigations into B. anthracis persistence, biogeography and 
evolution.

AMR has gained increased attention as a major threat to public 
health throughout the world [48, 49]. By documenting AMR 
genes on a global scale, we can gain a better understanding 
of how biogeography and persistence are transforming the 
genomic constitution of dangerous pathogens at both regional 
and wider scales [50, 51]. Based on our analysis of over 350 
whole genomes, we have identified ten AMR genes present in 
B. anthracis isolates collected from over 35 countries, many 

Table 2. Information for SNPs that exhibit a potentially high-impact effect and fall within clustered mutations across the B. anthracis genome; positions 
are relative to the Ames Ancestor reference genome (NCBI accession: AE017334.2)

Cluster Position Reference Alternate Comparative effect Gene/product

1 1 260 604 C T Stop gained DNA-binding response regulator

1 292 469 C A Stop gained Stage 0 sporulation regulatory protein

2 3 140 849 A T Stop gained TPR domain protein

5 and 6 1 748 642 A T Stop gained Chlorohydrolase family protein

2 423 864 T C Start lost Hypothetical protein

Table 3. Information for non-synonymous SNPs in virulence genes across the B. anthracis plasmids; positions are relative to the Ames Ancestor 
reference genome (NCBI accession: AE017336)

Cluster.clade Position Plasmid Reference Alternate Comparative effect Gene/product

6.3 123 936 pXO1 A T Missense mutation cya: calmodulin-sensitive adenylate cyclase

6.3 124 007 pXO1 A G Missense mutation cya: calmodulin-sensitive adenylate cyclase

4 145 471 pXO1 C T Missense mutation pagA: protective antigen

5 145 577 pXO1 C T Missense mutation pagA: protective antigen
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consistent with the different population clusters examined in 
this study. Five of these genes are commonplace and can be 
found in the majority of isolates examined, whereas the other 
five are comparatively rare across the dataset. Given the appli-
cation of commonly used antibiotic drugs, such as penicillin, 
doxycycline and ciprofloxacin, to treat B. anthracis infections, 
the regions where rare antibiotic-resistant gene isolates were 
sampled may benefit from monitoring, in order to document 
the persistence of these novel, resistant population clusters 
and modify antibiotic treatments for effectiveness [52, 53]. 
The resistance gene bcII for example, which was found in only 
six samples, is known to hydrolyse a large number of penicil-
lins (Table 1). Rarer antibiotic-resistant gene strains such as 
these may be indicative of a larger problem with antibiotic 
resistance in other dangerous pathogens as well, especially if 
the overuse of certain antibiotics is driving resistance in those 
regions where novel resistance genes reside [54].

The influence of bacteriophage sequences on population 
genomic structure across the global dataset is less clear. As 
with AMR genes, several phage sequences were commonplace 
across isolates examined, while others were rarer or without 
pattern. Phage diversity was the least important factor in 
predicting population genomic structure based on the RF 
technique applied in this study. This is in contrast to studies 
of other pathogens, where phage sequence variation has been 
consistent with population genomic structure and therefore 
used for strain typing [55, 56]. Although previous studies have 
suggested some phage sequences may affect certain bacterial 
processes in B. anthracis, such as sporulation [17, 18], there 
was not an observable example of this leading to any advan-
tage reflected in the form of genetically similar population 
clusters.

Applying the RF model, population genomic structure was 
most readily described by a combination of AMR genes, 
isolation location and source. The strongest predictor of 
population genomic structure when examining the dataset 
in its entirety was the presence of the AMR gene vmlR, 
which was completely absent in primary cluster 5 [which 
was A.Br.001–A.Br.004 (Ames, Sterne, Aust94, V770) in the 
original classification system], the most genetically diverse 
population cluster examined in this study from which isolates 
were collected across Europe, Asia, Africa and the Americas. 
Interestingly, isolation source (host, environment or industry) 
was the second strongest predictor, suggesting that some 
strains of B. anthracis may be better suited to different envi-
ronmental circumstances (or at least more readily cultured 
within them). Previous work that has examined population 
genomic structure has suggested that environmental growth 
outside of the host is possible [28]. Additionally, strains 
collected from industry may represent geographical consist-
encies in raw wool procural rather than a niche associated 
with this type of artificial environment [57, 58]. Nevertheless, 
long latent periods in the spore phase may be hindering our 
ability to detect environmental consistencies with population 
genomic structure. Not surprisingly, the continent of isolation 
was also a strong predictor in terms of population genomic 
structure, consistent with expected biogeographical patterns 

based on centuries of dispersal, complex trading patterns 
and global commerce. These findings are largely consistent 
with past work that has examined the population genetics 
and ubiquitous dissemination of this bacterium [26, 28, 58]. 
These combined forces – AMR genes, isolation source and 
biogeography – all seem to play a role in defining modern 
population structure in this bacterium.

Using RF models to look at the factors influencing each 
primary cluster individually, we found that varying circum-
stances seem to act as predictors for each individual cluster. 
The most underrepresented group, primary cluster 1, previ-
ously referred to as the C Branch in the B. anthracis literature 
and viewed as a rarely occurring clade [26, 28], is largely 
defined by the absence of the AMR gene fosB, which is found 
universally across all other population clusters examined. The 
relatively rare primary cluster 2 (B Branch) was not easily 
defined by any of the variables examined. Nevertheless, clas-
sification performance for both primary cluster 1 and cluster 
2 was equally poor when assessing the accuracy. Previous 
work that has specifically examined isolates belonging to 
cluster 2 from Kruger National Park found that they were 
prevalent in more alkaline calcium-rich soils than cluster 
3 (Ancient A) isolates occurring in the same region [30]. 
Cluster 3 (Ancient A) was described primarily by its isola-
tion from the continent of Africa (although there are several 
isolates from elsewhere as well), suggesting that isolates from 
this group may be uniquely suited to or may have originated 
in this region. Primary cluster 4 is primarily described by a 
combination of isolation source and continent. This group, 
formerly referred to as A.Br.007 or Vollum in the literature, 
was isolated almost exclusively in a manufacturing setting 
in North America. Metadata and historical records for some 
of these isolates which were originally sequenced by the 
Centers for Disease Control (CDC) suggest that these isolates 
may have originated in other areas, most notably Asia and 
the Middle East [58, 59]. Cluster 5 (A.Br 001–004) is most 
readily described by the complete absence of the AMR gene 
vmlR. Lastly, cluster 6 [previously the A.Br.008 and A.Br.009 
lineages (TAE)] was primarily described by isolation source, 
as the majority of these isolates were collected from animal 
hosts throughout Europe and North America, although this 
group also contained isolates from Asia and South America 
in smaller numbers.

When examining population genomic structure in the context 
of candidate genes for selection, we see that recombination 
specific to primary cluster 2 (previously known as B Branch) 
may be responsible for the comparatively extreme difference 
in population structure in this group when compared to 
groups 3 to 6 (A Branch). A study that specifically looked at 
this group suggests that there may be phenotypic differences 
leading to contrasting mechanisms of infection, making this 
group specifically well suited to bovine species [58]. Given 
that this recombination event is rooted in a gene responsible 
for protein translation, these results support the hypothesis 
that phenotypic and functional traits for this cluster may be 
substantially different from the others.
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We examined genes that were identified using two methods 
for pinpointing candidates for selection (high-impact SNPs 
and clustered mutations) and found that a range of functional 
differences may be driving population genomic structure. 
Primary cluster 1 (C Branch) exhibited premature stop 
codons in two genes, a DNA-binding response regulator and a 
stage 0 sporulation regulatory protein. If these premature stop 
codons are hindering this cluster’s ability to produce proteins 
and influencing the timing and magnitude of sporulation, 
then this may indeed be why they are so underrepresented 
in the global dataset, and comparatively rare. Primary cluster 
2 (B Branch) exhibited a premature stop codon in the TPR 
domain protein. TPR proteins may act as scaffolds for the 
assembly of different multiprotein complexes [60]. A prema-
ture stop codon in this sequence may be similarly affecting 
primary cluster 2’s ability to persist and reproduce, leading 
to its similar rarity across the remainder of the global dataset 
(N=13/356). When primary clusters 5 and 6 are examined as 
a unit we see that the chlorohydrolase family protein exhibits 
a premature stop codon. Hydrolase proteins commonly 
perform as biochemical catalysts that use water to break a 
chemical bond, which typically results in dividing larger 
molecules into smaller molecules [61]. If this protein lacks 
the ability to perform this function, isolates specific to this 
group may be functionally different from the other popula-
tion groupings. Overall these findings lay the groundwork 
for future studies into B. anthracis evolution, allowing for 
investigations into how protein structure drives functional 
and phenotypic differences across varied lineages.

Lastly, we looked at the B. anthracis virulence genes and 
found that several missense mutations may be influencing 
protein structure in some population clusters relative to 
others. Primary clusters 4 (Vollum) and 5 (A.Br001-004), 
the second and third most common designations across all 
isolates examined, exhibited different missense mutations 
in the pagA gene. The pagA gene encodes the protective 
antigen (PA), which binds to a receptor in sensitive eukary-
otic cells, thereby facilitating the translocation of the enzy-
matic toxin components, oedema factor and lethal factor, 
across the target cell membrane [62]. Past work on this 
gene found six different haplotypes, which translate into 
three different amino acid sequences. Amino acid changes 
were shown to be located in an area near a highly antigenic 
region critical to lethal factor binding [63]. These mutations 
may therefore explain these clusters’ comparatively robust 
prevalence compared to some others if this differentiated 
structure is more beneficial to genotypic persistence. We 
also found two mutations in the cya gene specific to clade 
6.3 (WNA) entirely from North America. The cya gene 
codes for the calmodulin-sensitive adenylate cyclase that, 
when associated with PA, causes oedema. This protein 
product is not toxic in and of itself, although it is required 
for the survival of germinated spores within macrophages at 
the early stages of infection, provoking dramatic elevation 
of intracellular cAMP levels in the host [64].

When evaluating the population genomic structure of B. 
anthracis in light of biogeography, AMR, phage diversity and 

candidate genes for selection, we find varying explanations 
for differences in population genomic structure. Neverthe-
less, it should be noted that in a mined dataset such as this, 
inaccuracy in metadata and/or sequencing has the potential 
to produce unintentional errors. In addition, our dataset 
is highly biased towards developed countries where whole 
genome sequencing technology is readily available and 
government support for such work is more abundant. Given 
the complex dispersal history of this notorious pathogen 
and the competing factors that ultimately sculpt its global 
genomic architecture, no single factor alone can be attributed 
to its modern genomic constitution. Despite these limita-
tions we were able to determine the most influential factors 
consistent with differences and similarities among lineages 
using modern bioinformatic techniques. The information 
provided in this study not only offers a detailed accounting 
of AMR genes and phage diversity in this species, but also 
allows for the groundwork upon which future B. anthracis 
studies into evolution can be built. This work has the potential 
to drive further discovery of functional differences in terms 
of virulence and genotypic persistence that may ultimately 
help to inform management strategies in the realm of public 
health and wildlife conservation.
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