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Abstract.
Background: The widespread incidence and prevalence of Alzheimer’s disease and mild cognitive impairment (MCI) has
prompted an urgent call for research to validate early detection cognitive screening and assessment.
Objective: Our primary research aim was to determine if selected MemTrax performance metrics and relevant demographics
and health profile characteristics can be effectively utilized in predictive models developed with machine learning to classify
cognitive health (normal versus MCI), as would be indicated by the Montreal Cognitive Assessment (MoCA).
Methods: We conducted a cross-sectional study on 259 neurology, memory clinic, and internal medicine adult patients
recruited from two hospitals in China. Each patient was given the Chinese-language MoCA and self-administered the
continuous recognition MemTrax online episodic memory test on the same day. Predictive classification models were built
using machine learning with 10-fold cross validation, and model performance was measured using Area Under the Receiver
Operating Characteristic Curve (AUC). Models were built using two MemTrax performance metrics (percent correct, response
time), along with the eight common demographic and personal history features.
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Results: Comparing the learners across selected combinations of MoCA scores and thresholds, Naı̈ve Bayes was generally
the top-performing learner with an overall classification performance of 0.9093. Further, among the top three learners,
MemTrax-based classification performance overall was superior using just the top-ranked four features (0.9119) compared
to using all 10 common features (0.8999).
Conclusion: MemTrax performance can be effectively utilized in a machine learning classification predictive model screening
application for detecting early stage cognitive impairment.

Keywords: Aging, Alzheimer’s disease, dementia, mass screening

INTRODUCTION

The recognized (albeit underdiagnosed) wide-
spread incidence and prevalence and parallel
escalating medical, social, and public health costs
and burden of Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) are increasingly strain-
ing for all stakeholders [1, 2]. This distressing and
bourgeoning scenario has prompted an urgent call
for research to validate early detection cognitive
screening and assessment instruments for regular
practical utility in personal and clinical settings for
older patients across diverse regions and popula-
tions [3]. These instruments must also provide for
seamless translation of informative results into elec-
tronic health records. The benefits will be realized
by informing patients and assisting physicians in rec-
ognizing significant changes earlier and thus enable
more prompt and timely stratification, implemen-
tation, and tracking of appropriate individualized
and more cost-effective treatment and patient care
for those beginning to experience cognitive decline
[3, 4].

The computerized MemTrax tool (http://www.
memtrax.com) is a simple and brief continuous recog-
nition assessment that can be self-administered online
to measure challenging timed episodic memory per-
formance where the user responds to repeated images
and not to an initial presentation [5, 6]. Recent
research and resulting practical implications are
beginning to progressively and collectively demon-
strate the clinical efficacy of MemTrax in early AD
and MCI screening [5–7]. However, direct compar-
ison of clinical utility to existing cognitive health
assessment and conventional standards is warranted
to inform professional perspective and corroborate
MemTrax utility in early detection and diagnostic
support. van der Hoek et al. [8] compared selected
MemTrax performance metrics (reaction speed and
percent correct) to cognitive status as determined
by the Montreal Cognitive Assessment (MoCA).
However, this study was limited to associating

these performance metrics with characterization of
cognitive status (as determined by MoCA) and
defining the relative ranges and cutoff values. Accord-
ingly, to expand on this investigation and improve
classification performance and efficacy, our primary
research question was:

– Can an individual’s selected MemTrax per-
formance metrics and relevant demographics
and health profile characteristics be effectively
utilized in a predictive model developed with
machine learning to classify cognitive health
dichotomously (normal versus MCI), as would
be indicated by one’s MoCA score?

Secondary to this, we wanted to know:

– Including the same features, can a MemTrax
performance-based machine learning model be
effectively applied to a patient to predict severity
(mild versus severe) within selected categories
of cognitive impairment as would be determined
by an independent clinical diagnosis?

The advent and evolving practical application of
artificial intelligence and machine learning in
screening/detection have already demonstrated dis-
tinct practical advantages, with predictive modeling
effectively guiding clinicians in the challenging
assessment of cognitive/brain health and patient man-
agement [7, 9–11]. In our study, we chose a similar
approach in MCI classification modeling and cogni-
tive impairment severity discrimination as confirmed
by clinical diagnosis from three datasets represent-
ing selected volunteer inpatients and outpatients from
two hospitals in China. Using machine learning pre-
dictive modeling, we identified the top-performing
learners from the various dataset/learner combina-
tions and ranked the features to guide us in defining
the most clinically practical model applications.

Our hypotheses were that a validated MemTrax-
based model can be utilized to classify cognitive
health dichotomously (normal or MCI) based on the

http://www.memtrax.com
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MoCA aggregate score threshold criterion, and that
a similar MemTrax predictive model can be effec-
tively employed in discriminating severity in selected
categories of clinically diagnosed cognitive impair-
ment. Demonstrating the anticipated outcomes would
be instrumental in supporting the efficacy of Mem-
Trax as an early detection screen for cognitive decline
and cognitive impairment classification. Favorable
comparison to an industry purported standard com-
plemented by far greater ease and quickness of
utility would be influential in helping clinicians adopt
this simple, reliable, and accessible tool as an ini-
tial screen in detecting early (including prodromal)
stage cognitive deficits. Such an approach and utility
could thus prompt more timely and better stratified
patient care and intervention. These forward-thinking
insights and improved metrics and models could also
be helpful in mitigating or stopping dementia pro-
gression, including AD and AD-related dementias
(ADRD).

MATERIALS AND METHODS

Study population

Between January 2018 and August 2019, cross-
sectional research was completed on patients
recruited from two hospitals in China. The adminis-
tration of MemTrax [5] to individuals aged 21 years
and over and the collection and analysis of those data
were reviewed and approved by and administered
in accord with the ethical standards of the Human
Subject Protection Committee of Stanford Univer-
sity. MemTrax and all other testing for this overall
study were performed according to the Helsinki dec-
laration of 1975 and approved by the Institutional
Review Board of the First Affiliated Hospital of
Kunming Medical University in Kunming, Yunnan,
China. Each user was provided an informed consent
form to read/review and then voluntarily agree to
participate.

Participants were recruited from the pool of outpa-
tients in the neurology clinic at the Yanhua Hospital
(YH sub-dataset) and the memory clinic at the First
Affiliated Hospital of Kunming Medical University
(XL sub-dataset) in Beijing, China. Participants were
also recruited from neurology (XL sub-dataset) and
internal medicine (KM sub-dataset) inpatients at the
First Affiliated Hospital of Kunming Medical Univer-
sity. Inclusion criteria included 1) men and women at
least 21 years old, 2) ability to speak Chinese (Man-
darin), and 3) ability to understand verbal and written

directions. Exclusion criteria were vision and motor
impairments preventing participants from completing
the MemTrax test, as well the inability to understand
the specific test instructions.

Chinese version of MemTrax

The online MemTrax test platform was translated
into Chinese (URL: https://www.memtrax.com.cn)
and further adapted to be utilized through WeChat
(Shenzhen Tencent Computer Systems Co.
LTD., Shenzhen, Guangdong, China) for self-
administration. Data were stored on a cloud server
(Ali Cloud) located in China and licensed from
Alibaba (Alibaba Technology Co. Ltd., Hangzhou,
Zhejiang, China) by SJN Biomed LTD (Kunming,
Yunnan, China). Specific details on MemTrax and
test validity criteria used here have been described
previously [6]. The test was provided at no charge to
the patients.

Study procedures

For the inpatients and outpatients, a general paper
questionnaire for collecting demographic and per-
sonal information such as age, sex, years of education,
occupation, living alone or with family, and medical
history was administered by a member of the study
team. Following completion of the questionnaire,
the MoCA [12] and MemTrax tests were adminis-
tered (MoCA first) with no more than 20 minutes
between tests. MemTrax percent correct (MTx-%C),
mean response time (MTx-RT), and date and time
of the testing were recorded on paper by a mem-
ber of the study team for each participant tested.
The completed questionnaire and the results of the
MoCA were uploaded into an Excel spreadsheet by
the researcher who administered the tests and verified
by a colleague before the Excel files were saved for
analyses.

MemTrax test

The MemTrax online test included 50 images (25
unique and 25 repeats; 5 sets of 5 images of common
scenes or objects) shown in a specific pseudo-random
order. The participant would (per instructions) touch
the Start button on the screen to commence the
test and begin viewing the image series and again
touch the image on the screen as quickly as possible
whenever a repeated picture appeared. Each image
appeared for 3 s or until the image on the screen was
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touched, which prompted immediate presentation of
the next picture. Using the internal clock of the local
device, MTx-RT for each image was determined by
the elapsed time from presentation of the image to
when the screen was touched by the participant in
response to indicating recognition of the image as one
that had been already shown during the test. MTx-RT
was recorded for every image, with a full 3 s recorded
indicating no response. MTx-%C was calculated to
indicate the percentage of repeat and initial images
to which the user responded correctly (true posi-
tive + true negative divided by 50). Additional details
of the MemTrax administration and implementation,
data reduction, invalid or “no response” data, and
primary data analyses are described elsewhere [6].

The MemTrax test was explained in detail and a
practice test (with unique images other than those
used in the test for recording results) was provided to
the participants in the hospital setting. Participants in
the YH and KM sub-datasets took the MemTrax test
on a smartphone that was loaded with the applica-
tion on WeChat; whereas a limited number of the XL
sub-dataset patients used an iPad and the rest used a
smartphone. All participants took the MemTrax test
with a study investigator unobtrusively observing.

Montreal cognitive assessment

The Beijing version of the Chinese MoCA (MoCA-
BC) [13] was administered and scored by trained
researchers according to the official test instructions.
Suitably, the MoCA-BC has been shown to be a reli-
able test for cognitive screening across all education
levels in Chinese elderly adults [14]. Each test took
about 10 to 30 minutes to administer based on the
respective participant’s cognitive abilities.

MoCA classification modeling

There was a total of 29 usable features, including
two MemTrax test performance metrics and 27 fea-
tures related to demographic and health information
for each participant. Each patient’s MoCA aggre-
gate test score was used as the cognitive screening
“benchmark” to train our predictive models. Accord-
ingly, because MoCA was used to create the class
label, we could not use the aggregate score (or any
of the MoCA subset scores) as an independent fea-
ture. We performed preliminary experiments in which
we modeled (classifying cognitive health defined
by MoCA) the original three hospital/clinic(s) sub-
datasets individually and then combined using all

features. However, all the same data elements were
not collected in each of the four clinics representing
the three sub-datasets; thus, many of our features
in the combined dataset (when using all features)
had a high incidence of missing values. We then
built models with the combined dataset using only
common features which resulted in improved classi-
fication performance. This was likely explained by a
combination of having more instances to work with
by combining the three patient sub-datasets and no
features with an undue prevalence of missing values
(only one feature in the combined dataset, work type,
had any missing values, affecting only three patient
instances), because only common features recorded
at all three sites were included. Notably, we did not
have a specific rejection criterion for each feature that
was ultimately not included in the combined dataset.
However, in our preliminary combined dataset mod-
eling, we first used all features from each of the three
separate patient sub-datasets. This widely resulted in
model performance that was measurably lower than
the initial preliminary modeling on each individual
sub-dataset. Moreover, whereas the classification per-
formance of the models built using all the features
was encouraging, across all learners and classification
schemes, performance improved for twice as many
models when using only common features. In fact,
among what ended up being our top learners, all but
one model improved upon eliminating non-common
features.

The final aggregate dataset (YH, XL, and KM com-
bined) included 259 instances, each representing a
unique participant who took both the MemTrax and
the MoCA tests. There were 10 shared independent
features: MemTrax performance metrics: MTx-%C
and mean MTx-RT; demographic and medical history
information: age, sex, years of education, work type
(blue collar/white collar), social support (whether the
test taker lives alone or with family), and yes/no
answers as to whether the user had a history of
diabetes, hyperlipidemia, or traumatic brain injury.
Two additional metrics, MoCA aggregate score and
MoCA aggregate score adjusted for years of educa-
tion [12], were used separately to develop dependent
classification labels, thus creating two distinct mod-
eling schemes to be applied to our combined dataset.
For each version (adjusted and unadjusted) of the
MoCA score, the data were again separately modeled
for binary classification using two different criterion
thresholds—the initially recommended one [12] and
an alternate value used and promoted by others [8,
15]. In the alternate threshold classification scheme,
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Table 1
Summary of modeling scheme variations used for MoCA

classification (Normal Cognitive Health versus MCI)

Modeling Scheme Normal Cognitive MCI
Health (Positive Class)

(Negative Class)

Adjusted-23
Unfiltered/Filtered

101 (39.0%) 158 (61.0%)

Adjusted-26
Unfiltered/Filtered

49 (18.9%) 210 (81.1%)

Unadjusted-23
Unfiltered/Filtered

92 (35.5%) 167 (64.5%)

Unadjusted-26
Unfiltered/Filtered

42 (16.2%) 217 (83.8%)

Respective number and percent of total patients in each class are
differentiated by adjustment of score for education (Adjusted or
Unadjusted) and classification threshold (23 or 26), as applied to
both feature sets (Unfiltered and Filtered).

a patient was considered to have normal cognitive
health if s/he scored ≥23 on the MoCA test and hav-
ing MCI if the score was 22 or lower; whereas, in the
initial recommended classification format, the patient
had to score a 26 or better on the MoCA to be labeled
as having normal cognitive health.

Filtered data for MoCA classification modeling

We further examined MoCA classification using
four commonly used feature ranking techniques:
Chi-Squared, Gain Ratio, Information Gain, and
Symmetrical Uncertainty. For interim perspective, we
applied the rankers to the entire combined dataset
using each of our four modeling schemes. All rankers
agreed on the same top features, i.e., age, number of
years of education, and both MemTrax performance
metrics (MTx-%C, mean MTx-RT). We then rebuilt
the models using each feature selection technique to
train the models on only the top four features (see
Feature selection below).

The resultant final eight variations of the MoCA
score classification modeling schemes are presented
in Table 1.

MemTrax-based clinical evaluation modeling

Of our three original sub-datasets (YH, XL, KM),
only the XL sub-dataset patients were independently
clinically diagnosed for cognitive impairment (i.e.,
their respective MoCA scores were not used in estab-
lishing a classification of normal versus impaired).
Specifically, the XL patients were diagnosed with
either Alzheimer’s disease (AD) or vascular demen-
tia (VaD). Within each of these primary diagnosis

Table 2
Summary of modeling scheme variations used for diagnosis

severity classification (Mild versus Severe)

Modeling Scheme Mild Severe
(Negative Class) (Positive Class)

MCI-AD versus AD 12 (17.4%) 57 (82.6%)
MCI-VaD versus VaD 38 (50.0%) 38 (50.0%)

Respective number and percent of total patients in each class are
differentiated by primary diagnosis category (AD or VaD).

categories, there was a further designation for MCI.
Diagnoses of MCI, dementia, vascular neurocog-
nitive disorder, and neurocognitive disorder due to
AD were based on specific and distinctive diagnos-
tic criteria outlined in the Diagnostic and Statistical
Manual of Mental Disorders: DSM-5 [16]. Con-
sidering these refined diagnoses, two classification
modeling schemes were separately applied to the XL
sub-dataset to distinguish level of severity (degree
of impairment) for each primary diagnosis category.
Data utilized in each of these diagnostic model-
ing schemes (AD and VaD) included demographic
and patient history information, as well as MemTrax
performance (MTx-%C, mean MTx-RT). Each diag-
nosis was labeled mild if designated MCI; otherwise,
it was considered severe. We initially considered
including the MoCA score in the diagnosis models
(mild versus severe); but we determined that would
defeat the purpose of our secondary predictive mod-
eling scheme. Here the learners would be trained
using other patient characteristics readily available
to the provider and performance metrics of the sim-
pler MemTrax test (in lieu of the MoCA) against the
reference “gold standard”, the independent clinical
diagnosis. There were 69 instances in the AD diagno-
sis dataset and 76 instances of VaD (Table 2). In both
datasets, there were 12 independent features. In addi-
tion to the 10 features included in the MoCA score
classification, patient history also included informa-
tion on history of hypertension and stroke.

Statistics

Comparison of participant characteristics and
other numerical features between sub-datasets for
each model classification strategy (to predict MoCA
cognitive health and diagnosis severity) was per-
formed using Python programming language (version
2.7.1) [17]. The model performance differences were
initially determined using a single- or two-factor (as
appropriate) ANOVA with a 95% confidence interval
and the Tukey honest significant difference (HSD)
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test to compare the performance means. This exam-
ination of differences between model performances
was performed using a combination of Python and
R (version 3.5.1) [18]. We employed this (albeit,
arguably less than optimal) approach only as a heuris-
tic aid at this early stage for initial model performance
comparisons in anticipating potential clinical appli-
cation. We then utilized the Bayesian signed-rank
test using a posterior distribution to determine the
probability of model performance differences [19].
For these analyses, we used the interval –0.01, 0.01,
signifying that if two groups had a performance dif-
ference of less than 0.01, they were considered the
same (within the region of practical equivalence), or
otherwise they were different (one better than the
other). To perform the Bayesian comparison of clas-
sifiers and calculate these probabilities, we used the
baycomp library (version 1.0.2) for Python 3.6.4.

Predictive modeling

We built predictive models using the ten total vari-
ations of our modeling schemes to predict (classify)
the outcome of each patient’s MoCA test or severity
of the clinical diagnosis. All learners were applied
and the models were built using the open source
software platform Weka [20]. For our preliminary
analysis, we employed 10 commonly used learning
algorithms: 5-Nearest Neighbors, two versions of
C4.5 decision tree, Logistic Regression, Multilayer
Perceptron, Naı̈ve Bayes, two versions of Random
Forest, Radial Basis Function Network, and Support
Vector Machine. Key attributes and contrasts of these
algorithms have been described elsewhere [21] (see
respective Appendix). These were chosen because
they represent a variety of different types of learn-
ers and because we have demonstrated success using
them in previous analyses on similar data. Hyper-
parameter settings were chosen from our previous
research indicating them to be robust on a variety of
different data [22]. Based on the results of our pre-
liminary analysis using the same combined dataset
with common features that were used subsequently
in the full analysis, we identified three learners which
provided consistently strong performance across all
classifications: Logistic Regression, Naı̈ve Bayes,
and Support Vector Machine.

Cross-validation and model performance metric

For all predictive modeling (including the prelim-
inary analyses), each model was built using 10-fold

cross validation, and model performance was mea-
sured using Area Under the Receiver Operating
Characteristic Curve (AUC). Cross-validation began
with randomly dividing each of the 10 modeling
scheme datasets into 10 equal segments (folds),
using nine of these respective segments to train the
model and the remaining segment for testing. This
procedure was repeated 10 times, using a differ-
ent segment as the test set in each iteration. The
results were then combined to calculate the final
model’s result/performance. For each learner/dataset
combination, this entire process was repeated 10
times with the data being split differently each time.
This last step reduced bias, ensured replicability, and
helped in determining the overall model performance.
In total (for MoCA score and diagnosis sever-
ity classification schemes combined), 6,600 models
were built. This included 1,800 unfiltered models (6
modeling schemes applied to the dataset × 3 learn-
ers × 10 runs × 10 folds = 1,800 models) and 4,800
filtered models (4 modeling schemes applied to
the dataset × 3 learners × 4 feature selection tech-
niques × 10 runs × 10 folds = 4,800 models).

Feature selection

For the filtered models, feature selection (using the
four feature ranking methods) was performed within
the cross-validation. For each of the 10 folds, as a dif-
ferent 10% of the dataset was the test data, only the
top four selected features for each training dataset
(i.e., the other nine folds, or the remaining 90% of
the entire dataset) were used to build the models. We
were unable to confirm which four features were used
in each model, as that information is not stored or
made available within the modeling platform we uti-
lized (Weka). However, given the consistency in our
initial selection of top features when the rankers were
applied to the entire combined dataset and the sub-
sequent similarity in modeling performances, these
same features (age, years of education, MTx-%C, and
mean MTx-RT) are likely the most prevalent top four
used concomitant with the feature selection within
the cross-validation process.

RESULTS

Participant numerical characteristics (including
MoCA scores and MemTrax performance metrics) of
the respective datasets for each model classification
strategy to predict MoCA-indicated cognitive health
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Table 3
Participant characteristics, MoCA scores, and MemTrax performance for each model classification strategy

Classification Age Education MoCA MoCA MTx-%C MTx-RT
Strategy Adjusted Unadjusted

MoCA Category 61.9 y (13.1) 9.6 y (4.6) 19.2 (6.5) 18.4 (6.7) 74.8% (15.0) 1.4 s (0.3)
Diagnosis Severity 65.6 y (12.1) 8.6 y (4.4) 16.7 (6.2) 15.8 (6.3) 68.3% (13.8) 1.5 s (0.3)

Values shown (mean, SD) differentiated by modeling classification strategies are representative of the combined dataset used to predict
MoCA-indicated cognitive health (MCI versus normal) and the XL sub-dataset only used to predict diagnosis severity (mild versus severe).

Table 4
Dichotomous MoCA score classification performance (AUC; 0.0–1.0) results for each of the three top-performing learners for all respective

modeling schemes

Feature Set Used MoCA Score Cutoff Threshold Logistic Regression Naı̈ve Bayes Support Vector Machine

Unfiltered (10 features) Adjusted 23 0.8862 0.8913 0.8695
26 0.8971 0.9221 0.9161

Unadjusted 23 0.9103 0.9085 0.8995
26 0.8834 0.9153 0.8994

Filtered (4 features) Adjusted 23 0.8929 0.8954 0.8948
26 0.9188 0.9247 0.9201

Unadjusted 23 0.9135 0.9134 0.9122
26 0.9159 0.9236 0.9177

Utilizing variations of feature set, MoCA score, and MoCA score cutoff threshold, the highest performance for each modeling scheme is
shown in bold (not necessarily statistically different than all others not in bold for the respective model).

(normal versus MCI) and diagnosis severity (mild
versus severe) are shown in Table 3.

For each combination of MoCA score (adjusted/
unadjusted) and threshold (26/23), there was a
statistical difference (p = 0.000) in each pairwise
comparison (normal cognitive health versus MCI) for
age, education, and MemTrax performance (MTx-
%C and MTx-RT). Each patient sub-dataset in the
respective MCI class for each combination was on
average about 9 to 15 years older, reported about
five fewer years of education, and had less favorable
MemTrax performance for both metrics.

Predictive modeling performance results for the
MoCA score classifications using the top three learn-
ers, Logistic Regression, Naı̈ve Bayes, and Support
Vector Machine, are shown in Table 4. These three
were chosen based on the most consistently high
absolute learner performance across all the various
models applied to the datasets for all the modeling
schemes. For the unfiltered dataset and modeling,
each of the data values in Table 4 indicates the model
performance based on the AUC respective mean
derived from the 100 models (10 runs × 10 folds)
built for each learner/modeling scheme combination,
with the respective highest performing learner indi-
cated in bold. Whereas for the filtered dataset model-
ing, the results reported in Table 4 reflect the overall
average model performances from 400 models for
each learner using each of the feature ranking meth-
ods (4 feature ranking methods × 10 runs × 10 folds).

Comparing the learners across all combinations
of MoCA score versions and thresholds (adjusted/
unadjusted and 23/26, respectively) in the combined
unfiltered dataset (i.e., using the 10 common fea-
tures), Naı̈ve Bayes was generally the top-performing
learner with an overall classification performance
of 0.9093. Considering the top three learners, the
Bayesian-correlated signed-rank tests indicated that
the probability (Pr) of Naı̈ve Bayes outperform-
ing Logistic Regression was 99.9%. Moreover,
between Naı̈ve Bayes and Support Vector Machine, a
21.0% probability of practical equivalence in learner
performance (thus, a 79.0% probability of Naı̈ve
Bayes outperforming Support Vector Machine), cou-
pled with the 0.0% probability of Support Vector
Machine performing better, measurably reinforces
the performance advantage for Naı̈ve Bayes. Fur-
ther comparison of MoCA score version across all
learners/thresholds suggested a slight performance
advantage using unadjusted MoCA scores versus
adjusted (0.9027 versus 0.8971, respectively; Pr
(unadjusted > adjusted) = 0.988). Similarly, a com-
parison of cutoff threshold across all learners and
MoCA score versions indicated a small classification
performance advantage using 26 as the classifica-
tion threshold versus 23 (0.9056 versus 0.8942,
respectively; Pr (26 > 23) = 0.999). Lastly, examin-
ing the classification performance for the models
utilizing only the filtered results (i.e., top-ranked
four features only), Naı̈ve Bayes (0.9143) was
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numerically the top-performing learner across all
MoCA score versions/thresholds. However, across
all feature ranking techniques combined, all the top-
performing learners performed similarly. Bayesian
signed-rank tests showed 100% probability of practi-
cal equivalence between each pair of filtered learners.
As with the unfiltered data (using all 10 common fea-
tures), there was again a performance advantage for
the unadjusted version of the MoCA score (Pr (unad-
justed > adjusted) = 1.000), as well as a similarly
distinct advantage for the classification threshold of
26 (Pr (26 > 23) = 1.000). Notably, the average per-
formance of each of the top three learners across
all MoCA score versions/thresholds using only the
top-ranked four features exceeded the average per-
formance of any learner on the unfiltered data. Not
surprisingly, classification performance of the filtered
models (using the top-ranked four features) over-
all was superior (0.9119) to the unfiltered models
(0.8999), regardless of the feature ranking method
models that were compared to those respective mod-
els using all 10 common features. For each feature
selection method, there was 100% probability of a
performance advantage over the unfiltered models.

With the patients considered for AD diagno-
sis severity classification, between-group (MCI-AD
versus AD) differences for age (p = 0.004), educa-
tion (p = 0.028), MoCA score adjusted/unadjusted
(p = 0.000), and MTx-%C (p = 0.008) were statis-
tically significant; whereas for MTx-RT it was
not (p = 0.097). With those patients considered
for VaD diagnosis severity classification, between-
group (MCI-VaD versus VaD) differences for MoCA
score adjusted/unadjusted (p = 0.007) and MTx-%C
(p = 0.026) and MTx-RT (p = 0.001) were statistically
significant; whereas for age (p = 0.511) and education
(p = 0.157) there were no significant between-group
differences.

Predictive modeling performance results for the
diagnosis severity classifications using the three pre-
viously selected learners, Logistic Regression, Naı̈ve
Bayes, and Support Vector Machine, are shown
in Table 5. Whereas additional examined learners
demonstrated slightly stronger performances indi-
vidually with one of the two clinical diagnosis
categories, the three learners we had identified as
the most favorable in our previous modeling offered
the most consistent performance with both new mod-
eling schemes. Comparing the learners across each
of the primary diagnosis categories (AD and VaD),
there was no consistent classification performance
difference between learners for MCI-VaD versus

Table 5
Dichotomous clinical diagnosis severity classification perfor-
mance (AUC; 0.0–1.0) results for each of the three top-performing

learners for both respective modeling schemes

Modeling Scheme Logistic Naı̈ve Support
Regression Bayes Vector

Machine

MCI-AD versus AD 0.7465 0.7810 0.7443
MCI-VaD versus VaD 0.8033 0.8044 0.8338

The highest performance for each modeling scheme is shown in
bold (not necessarily statistically different than others not in bold).

VaD, although Support Vector Machine generally
performed more prominently. Similarly, there were
no significant differences between learners for the
MCI-AD versus AD classification, although Naı̈ve
Bayes (NB) had a slight performance advantage
over Logistic Regression (LR) and just a negligible
plurality over Support Vector Machine, with prob-
abilities of 61.4% and 41.7% respectively. Across
both datasets, there was an overall performance
advantage for Support Vector Machine (SVM), with
Pr (SVM > LR) = 0.819 and Pr (SVM > NB) = 0.934.
Our overall classification performance across all
learners in predicting severity of diagnosis in the XL
sub-dataset was better in the VaD diagnosis category
versus AD (Pr (VAD > AD) = 0.998).

DISCUSSION

Early detection of changes in cognitive health has
important practical utility in personal health manage-
ment and public health alike. Indeed, it is also very
much a high priority in clinical settings for patients
worldwide. The shared goal is to alert patients, care-
givers, and providers and prompt earlier appropriate
and cost-effective treatment and longitudinal care
for those beginning to experience cognitive decline
[1, 3, 4]. Merging our three hospital/clinic(s) data
subsets, we identified three distinctively preferable
learners (with one notable standout – Naı̈ve Bayes)
to build predictive models utilizing MemTrax perfor-
mance metrics that could reliably classify cognitive
health status dichotomously (normal cognitive health
or MCI) as would be indicated by a MoCA aggregate
score. Notably, overall classification performance
for all three learners improved when our models
utilized only the top-ranked four features which prin-
cipally encompassed these MemTrax performance
metrics. Moreover, we revealed the substantiated
potential for utilizing the same learners and MemTrax
performance metrics in a diagnostic support clas-
sification modeling scheme to distinguish severity
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of two categories of dementia diagnosis: AD and
VaD.

Memory testing is central to early detection of AD
[23, 24]. Thus, it is opportune that MemTrax is an
acceptable, engaging, and easy-to-implement online
screening test for episodic memory in the general
population [6]. Recognition accuracy and response
times from this continuous performance task are par-
ticularly revealing in identifying early and evolving
deterioration and consequent deficits in the neuro-
plastic processes related to learning, memory, and
cognition. That is, the models here that are based
largely on MemTrax performance metrics are sensi-
tive to and are more likely to readily and with minimal
cost reveal biological neuropathologic deficits dur-
ing the transitional asymptomatic stage well prior to
more substantial functional loss [25]. Ashford et al.
closely examined the patterns and behaviors of recog-
nition memory accuracy and response time in online
users who participated on their own with MemTrax
[6]. Respecting that these distributions are critical in
optimal modeling and developing valid and effective
patient care applications, defining clinically applica-
ble recognition and response time profiles is essential
in establishing a valuable foundational reference for
clinical and research utility. The practical value of
MemTrax in AD screening for early stage cognitive
impairment and differential diagnostic support needs
to then be more closely examined in the context of
a clinical setting where comorbidities and cognitive,
sensory, and motor capabilities affecting test perfor-
mance can be considered. And to inform professional
perspective and encourage practical clinical utility,
it is first imperative to demonstrate comparison to
an established cognitive health assessment test, even
though the latter may be recognizably constrained
by cumbersome testing logistics, education and lan-
guage deterrents, and cultural influences [26]. In this
regard, the favorable comparison of MemTrax in clin-
ical efficacy to MoCA that is commonly purported as
an industry standard is significant, especially when
weighing the greater ease of utility and patient accep-
tance of MemTrax.

Previous exploration comparing MemTrax to
MoCA highlights the rationale and preliminary evi-
dence warranting our modeling investigation [8].
However, this prior comparison merely associated the
two key MemTrax performance metrics we examined
with cognitive status as determined by MoCA and
defined respective ranges and cutoff values. We deep-
ened the clinical utility assessment of MemTrax by
exploring a predictive modeling-based approach that

would provide a more individualized consideration
of other potentially relevant patient-specific parame-
ters. In contrast to others, we did not find an advantage
in model performance using an education correction
(adjustment) to the MoCA score or in varying the cog-
nitive health discriminating MoCA aggregate score
threshold from the originally recommended 26 to 23
[12, 15]. In fact, the classification performance advan-
tage favored using the unadjusted MoCA score and
the higher threshold.

Key points in clinical practice

Machine learning is often best utilized and most
effectual in predictive modeling when the data are
extensive and multi-dimensional, that is, when there
are numerous observations and a concomitant wide
array of high-value (contributing) attributes. Yet, with
these current data, the filtered models with only four
select features performed better than those utiliz-
ing all 10 common features. This suggests that our
aggregate hospital dataset did not have the most clin-
ically appropriate (high value) features to optimally
classify the patients in this way. Nevertheless, the
feature ranking emphasis on the key MemTrax perfor-
mance metrics—MTx-%C and MTx-RT— strongly
supports building early stage cognitive deficit screen-
ing models around this test that is simple, easy to
administer, low-cost, and aptly revealing regarding
memory performance, at least right now as an initial
screen for a binary classification of cognitive health
status. Given the ever-mounting strain on providers
and healthcare systems, patient screening processes
and clinical applications should be suitably devel-
oped with an emphasis on collecting, tracking, and
modeling those patient characteristics and test met-
rics that are most useful, advantageous, and proven
effective in diagnostic and patient management
support.

With the two key MemTrax metrics being cen-
tral to MCI classification, our top-performing learner
(Naı̈ve Bayes) had a very high predictive performance
in most models (AUC over 0.90) with a true-positive
to false-positive ratio nearing or somewhat exceed-
ing 4 : 1. A translational clinical application using
this learner would thus capture (correctly classify)
by far most of those with a cognitive deficit, while
minimizing the cost associated with mistakenly clas-
sifying someone with normal cognitive health as
having a cognitive deficit (false positive) or missing
that classification in those who do have a cognitive
deficit (false negative). Either one of these scenarios
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of misclassification could impose an undue psycho-
social burden to the patient and caregivers.

Whereas in the preliminary and full analyses we
used all ten learners in each modeling scheme, we
focused our results on the three classifiers showing
the most consistent strong performance. This was
also to highlight, based on these data, the learners
that would anticipatedly perform dependably at a high
level in a practical clinical application in determin-
ing cognitive status classification. Moreover, because
this study was intended as an introductory inves-
tigation into the utility of machine learning on
cognitive screening and these timely clinical chal-
lenges, we made the decision to keep the learning
techniques simple and generalized, with minimal
parameter tuning. We appreciate that this approach
may have limited the potential for more narrowly
defined patient-specific predictive capabilities. Like-
wise, whereas training the models using only the top
features (filtered approach) informs us further regard-
ing these data (specific to the shortcomings in data
collected and highlighting the value in optimizing
precious clinical time and resources), we recognize
that it is premature to narrow the scope of the mod-
els and, therefore, all (and other features) should be
considered with future research until we have a more
definitive profile of priority features that would be
applicable to the broad population. Thus, we also
fully recognize that more inclusive and broadly rep-
resentative data and optimization of these and other
models would be necessary before integrating them
into an effective clinical application, especially to
accommodate comorbidities affecting cognitive per-
formance that would need be considered in further
clinical evaluation.

Utility of MemTrax was further edified by the mod-
eling of disease severity based on separate clinical
diagnosis. A better overall classification performance
in predicting severity of VaD (compared to AD) was
not surprising given the patient profile features in the
models specific to vascular health and stroke risk,
i.e., hypertension, hyperlipidemia, diabetes, and (of
course) stroke history. Though it would have been
more desirable and fitting to have the same clinical
assessment conducted on matched patients with nor-
mal cognitive health to train the learners with these
more inclusive data. This is especially warranted, as
MemTrax is intended to be used primarily for early
stage detection of a cognitive deficit and subsequent
tracking of individual change. It is also plausible
that the more desirable distribution of data in the
VaD dataset contributed in part to the comparatively

better modeling performance. The VaD dataset was
well-balanced between the two classes, whereas the
AD dataset with far fewer MCI patients was not.
Particularly in small datasets, even a few addi-
tional instances can make a measurable difference.
Both perspectives are reasonable arguments under-
lying the differences in disease severity modeling
performance. However, proportionately attributing
improved performance to dataset numerical char-
acteristics or the inherent features specific to the
clinical presentation under consideration is prema-
ture. Nonetheless, this novel demonstrated utility of
a MemTrax predictive classification model in the
role of clinical diagnostic support provides valuable
perspective and affirms pursuit for additional exami-
nation with patients across the continuum of MCI.

The implementation and demonstrated utility of
MemTrax and these models in China, where the
language and culture are drastically different from
other regions of established utility (e.g., France,
Netherlands, and United States) [7, 8, 27], fur-
ther underscores the potential for widespread global
acceptance and clinical value of a MemTrax-based
platform. This is a demonstrable example in striving
toward data harmonization and developing practi-
cal international norms and modeling resources for
cognitive screening that are standardized and easily
adapted for use worldwide.

Next steps in cognitive decline modeling and
application

Cognitive dysfunction in AD indeed occurs on
a continuum, not in discrete stages or steps [28,
29]. However, at this early phase, our goal was to
first establish our ability to build a model incorpo-
rating MemTrax that can fundamentally distinguish
“normal” from “not normal”. More inclusive empir-
ical data (e.g., brain imaging, genetic features,
biomarkers, comorbidities, and functional markers
of complex activities requiring cognitive control)
[30] across varied global regions, populations, and
age groups to train and develop more sophisticated
(including aptly weighted ensemble) machine learn-
ing models will support a greater degree of enhanced
classification, that is, the capacity to categorize
groups of patients with MCI into smaller and more
definitive subsets along the cognitive decline contin-
uum. Moreover, concomitant clinical diagnoses for
individuals across regionally diverse patient popu-
lations are essential to effectively train these more
inclusive and predictably robust models. This will
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facilitate more specific stratified case management
for those with similar backgrounds, influences, and
more narrowly defined characteristic cognitive pro-
files and thus optimize clinical decision support and
patient care.

Much of the relevant clinical research to-date
has addressed patients with at least mild demen-
tia; and, in practice, too often patient intervention is
only attempted at advanced stages. However, because
cognitive decline begins well before clinical cri-
teria for dementia are met, an effectively applied
MemTrax-based early screen could encourage appro-
priate education of individuals about the disease and
its progressions and prompt earlier and more timely
interventions. Thus, early detection could support
suitable involvements ranging from exercise, diet,
emotional support, and improved socialization to
pharmacological intervention and reinforce patient-
related changes in behavior and perception that singly
or in aggregate could mitigate or potentially stop
dementia progression [31, 32]. Moreover, with effec-
tive early screening, individuals and their families
may be prompted to consider clinical trials or get
counseling and other social services support to help
clarify expectations and intentions and manage daily
tasks. Further validation and widespread practical
utility in these ways could be instrumental in miti-
gating or stopping the progression of MCI, AD, and
ADRD for many individuals.

Indeed, the low end of the patient age range in
our study does not represent the population of tra-
ditional concern with AD. Nonetheless, the average
age for each group utilized in the classification mod-
eling schemes based on the MoCA score/threshold
and diagnosis severity (Table 3) underscores a clear
majority (over 80%) being at least 50 years old. This
distribution is thus very appropriate for generaliza-
tion, supporting the utility of these models in the
population characterizing those typically affected by
early onset and burgeoning neurocognitive illness due
to AD and VaD. Also, recent evidence and perspective
stress those recognized factors (e.g., hypertension,
obesity, diabetes, and smoking) potentially contribut-
ing to higher early adult and midlife vascular risk
scores and consequent subtle vascular brain injury
that develops insidiously with evident effects even in
young adults [33–35]. Accordingly, the most optimal
initial screening opportunity for detecting early stage
cognitive deficits and initiating effective prevention
and intervention strategies in successfully addressing
dementia will emerge from examining contribut-
ing factors and antecedent indicators across the age

spectrum, including early adulthood and potentially
even childhood (noting the relevance of genetic fac-
tors such as apolipoprotein E from early gestation).

In practice, valid clinical diagnoses and costly pro-
cedures for advanced imaging, genetic profiling, and
measuring promising biomarkers are not always read-
ily available or even feasible for many providers.
Thus, in many instances, initial overall cognitive
health status classification may have to be derived
from models using other simple metrics provided
by the patient (e.g., self-reported memory problems,
current medications, and routine activity limitations)
and common demographic features [7]. Registries
such as the University of California Brain Health
Registry (https://www.brainhealthregistry.org/) [27]
and others with an inherent greater breadth of self-
reported symptoms, qualitative measures (e.g., sleep
and every day cognition), medications, health status,
and history, and more detailed demographics will be
instrumental in developing and validating the practi-
cal application of these more primitive models in the
clinic. Further, a test such as MemTrax, which has
demonstrated utility in assessing memory function,
may in fact provide a substantially better estimate
of AD pathology than biological markers. Given that
the core feature of AD pathology is disruption of neu-
roplasticity and an overwhelmingly complex loss of
synapses, which is manifest as episodic memory dys-
function, a measure which assesses episodic memory
may in fact provide a better estimate of AD patho-
logical burden than biological markers in the living
patient [36].

With all predictive models—whether comple-
mented by complex and inclusive data from
state-of-the-art technology and refined clinical
insights across multiple domains or those limited to
more basic and readily available information char-
acteristic of existing patient profiles—the recognized
advantage of artificial intelligence and machine learn-
ing is that the resultant models can synthesize and
inductively “learn” from relevant new data and per-
spective provided by ongoing application utilization.
Following practical technology transfer, as the mod-
els here (and to be developed) are applied and
enriched with more cases and pertinent data (includ-
ing patients with comorbidities that could present
with ensuing cognitive decline), prediction perfor-
mance and cognitive health classification will be
more robust, resulting in more effective clinical deci-
sion support utility. This evolution will be more fully
and practically realized with embedding MemTrax
into custom (targeted to the available capabilities)
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platforms that healthcare providers could utilize in
real-time in the clinic.

Imperative to the validation and utility of the
MemTrax model for diagnostic support and patient
care are highly sought-after meaningful longitudinal
data. By observing and recording the concomitant
changes (if any) in clinical status across an ade-
quate range of normal through early-stage MCI, the
models for appropriate ongoing assessment and clas-
sification can be trained and modified as patients age
and are treated. That is, repeated utility can assist
with longitudinal tracking of mild cognitive changes,
intervention effectiveness, and maintaining informed
stratified care. This approach aligns more closely with
clinical practice and patient and case management.

Limitations

We appreciate the challenge and value in collect-
ing clean clinical data in a controlled clinic/hospital
setting. Nonetheless, it would have strengthened our
modeling if our datasets included more patients with
common features. Moreover, specific to our diag-
nosis modeling, it would have been more desirable
and fitting to have the same clinical assessment con-
ducted on matched patients with normal cognitive
health to train the learners. And as underscored by the
higher classification performance using the filtered
dataset (only the top-ranked four features), more gen-
eral and cognitive health measures/indicators would
likely have improved modeling performance with
a greater number of common features across all
patients.

Certain participants might have been concomi-
tantly experiencing other illnesses that could have
prompted transitory or chronic cognitive deficien-
cies. Other than the XL sub-dataset where the patients
were diagnostically classified as having either AD or
VaD, comorbidity data were not collected/reported
in the YH patient pool, and the predominant reported
comorbidity by far in the KM sub-dataset was dia-
betes. It is arguable, however, that including patients
in our modeling schemes with comorbidities that
could prompt or exacerbate a level of cognitive
deficiency and a consequent lower MemTrax perfor-
mance would be more representative of the real-world
targeted patient population for this more generalized
early cognitive screening and modeling approach.
Moving forward, accurate diagnosis of comorbidi-
ties potentially affecting cognitive performance is
broadly beneficial for optimizing the models and
resultant patient care applications.

Lastly, the YH and KM sub-dataset patients used
a smartphone to take the MemTrax test, whereas a
limited number of the XL sub-dataset patients used
an iPad and the rest used a smartphone. This could
have introduced a minor device-related difference in
MemTrax performance for the MoCA classification
modeling. However, differences (if any) in MTx-RT,
for example, between devices would likely be neg-
ligible, especially with each participant being given
a “practice” test just before the recorded test perfor-
mance. Nevertheless, utility of these two handheld
devices potentially compromises direct comparison
to and/or integration with other MemTrax results
where users responded to repeat pictures by touching
the spacebar on a computer keyboard.

Key points on MemTrax predictive modeling
utility

• Our top-performing predictive models encom-
passing selected MemTrax performance metrics
could reliably classify cognitive health status
(normal cognitive health or MCI) as would be
indicated by the widely recognized MoCA test.

• These results support integration of selected
MemTrax performance metrics into a classifica-
tion predictive model screening application for
early stage cognitive impairment.

• Our classification modeling also revealed the
potential for utilizing MemTrax performance
in applications for distinguishing severity of
dementia diagnosis.

These novel findings establish definitive evidence
supporting the utility of machine learning in building
enhanced robust MemTrax-based classification mod-
els for diagnostic support in effective clinical case
management and patient care for individuals experi-
encing cognitive impairment.
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