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Abstract: This study investigated the diagnostic value of the Angio Planewave Ultrasensitive (An-
gioPLUS) Doppler ultrasound in improving the efficacy of grey scale ultrasound in thyroid nodule
diagnosis. The EU TIRADS was used for the grey scale ultrasound assessment of 94 thyroid nodules.
conventional Doppler and AngioPLUS Doppler ultrasound images were evaluated using qualitative
vascularity grading, where predominant central vascularity indicated malignancy-suspicion, and
quantitative regional vascularity assessment, where predominant peripheral vascularity using a
ratio vascularity index (RVI) of >1 indicated benign disease. Diagnostic performance outcomes of
sole and combination approaches were calculated based on final pathologic results. Using sole EU
TIRADS and AngioPLUS + power Doppler imaging (APDI) based on qualitative vascularity and
RVI, the results were a sensitivity of 83.3% vs. 83.3 vs. 66.7% and a specificity of 50% vs. 81.3% vs.
73.4, respectively. EU TIRADS combined with APDI significantly improved the specificity using
both qualitative vascularity and RVI assessment approaches (84.4% and 81%, respectively, p < 0.05);
and slightly reduced the sensitivity (76.7% and 58.1%). For cytologically-equivocal thyroid nodules,
the combination approach using qualitative vascularity assessment outperformed the EU TIRADS
(sensitivity: both were 88.9%; specificity: 77.4% vs. 38.7%, p < 0.05; and AUROC: 0.83 vs. 0.62,
p < 0.05). APDI combined with EU TIRADS is diagnostically efficient in stratifying thyroid nodules,
particularly cytologically-equivocal nodules.

Keywords: ultrasound; Doppler; TIRADS; malignancy-risk stratification; vascularity; thyroid nodule

1. Introduction

Thyroid cancer is the most prevalent endocrine malignancy globally and the fifth most
common malignancy in women accounting for about 5% of all female cancer diagnoses
worldwide [1]. The incidence of thyroid cancer has increased over the years with a moderate
increase in morbidity with increasing age observed in women and higher mortality rates
observed in men due to diagnosis at advanced stages [2,3]. The increase in incidence
has mainly been observed in papillary thyroid cancer which accounts for over 85% of
thyroid cancers, and this has mostly been attributed to the overdiagnosis of indolent cases
of thyroid malignancy [4–6].

Thyroid ultrasound is the primary diagnostic imaging modality, which is routinely
performed clinically for all patients with suspected or known thyroid neoplasms. Current
ultrasound imaging systems have high spatial resolution and excellent temporal resolu-
tion, which help confirm the presence of a nodule, demonstrating features with/without
suspicion of malignancy and guiding biopsies [7]. The ultrasound diagnosis of thyroid

Biomedicines 2022, 10, 1554. https://doi.org/10.3390/biomedicines10071554 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10071554
https://doi.org/10.3390/biomedicines10071554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-3183-883X
https://orcid.org/0000-0001-5979-6072
https://doi.org/10.3390/biomedicines10071554
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10071554?type=check_update&version=2


Biomedicines 2022, 10, 1554 2 of 15

nodules typically involves malignancy risk stratification based on predictive ultrasound
features to facilitate triaging nodules for biopsy and the pre-operative staging of thyroid
cancer [8,9]. Thyroid Imaging Reporting and Data System (TIRADS) guidelines based
on the scoring of multiple suspicious ultrasound features have emerged to improve the
diagnostic accuracy of sole features. However, thyroid nodule vascularity assessment is
not usually incorporated in the risk stratification categories of some TIRADS which mainly
focus on grey scale ultrasound assessment [10].

Increased vascularity or microvascularization are anticipated consequences of abnor-
mal angiogenesis during carcinogenesis as cancer cells invade the nodule areas that are
deficient in blood vessels [11,12]. Conventional colour Doppler (or colour flow imaging
(CFI) and power Doppler ultrasound (or power Doppler imaging (PDI)) have been com-
monly used in thyroid nodular vascularity assessment to complement grey scale ultrasound
findings. Marked central vascularity, intranodular vascularity, and/or increased chaotic
intranodular central vascularity on CFI and PDI have been suggested to be associated with
suspicion for malignancy while peripheral vascularity is linked with benignity [13–16].
However, this assertion remains contested due to variable findings and some studies sug-
gesting that vascularity patterns on CFI and PDI modes have little value in malignancy
prediction even when combined with grey scale ultrasound features [17–19]. The poor diag-
nostic performance of conventional Doppler methods for malignancy prediction can also be
attributed to the poor sensitivity of these methods in microvascularity pattern assessment.

Recent innovations in microvascular ultrasound imaging techniques with superb
detection of microvascular blood flow include superb microvascular imaging (SMI) and
Angio Planewave Utrasensitive (AngioPLUS) imaging. Both techniques are purported to
outperform CFI and PDI techniques, which have poor sensitivity in depicting microvascu-
lar flow, small blood vessel branching, and low blood flow velocity [20,21]. Some thyroid
studies conducted with SMI have suggested that intranodular vascular flow with penetrat-
ing and more branching vessels is suggestive of malignancy, while dotted linear vascular
flow patterns with fewer vessels are suggestive of benign disease [22,23]. Although An-
gioPLUS has been suggested to be diagnostically effective in differentiating parathyroid
lesions from other lesions [24], its role in the malignancy risk assessment of thyroid nodules
lacks exploration.

This current study sought to determine the diagnostic value of AngioPLUS in thyroid
nodule differentiation based on overall assessment and in cytologically-equivocal nodules.
The diagnostic value was evaluated using a qualitative vascularity grading approach and
quantitative regional vascularity ratio analysis in combination with the European (EU)
TIRADS. PDI coupled with AngioPLUS and combined with EU TIRADS demonstrated
improved overall diagnostic efficacy, more so in cytologically-equivocal thyroid nodules.

2. Materials and Methods
2.1. Study Type

This was a prospective analytical observational study that received ethical approval
from The Hong Kong Polytechnic University Institutional Human Subjects Ethics Sub-
committee (Registration Number: HSEARS20190123004). Consecutive case analysis and
non-probability sampling were applied. Cross-sectional cohorts of patients with thyroid
nodules and/or suspicion of thyroid cancer were purposively recruited at the Prince of
Wales Hospital Department of Surgery and its affiliates from May 2019 to August 2021.
Informed consent was sought from the patients before the data collection procedures.

2.2. Data Collection Procedures
2.2.1. Inclusion and Exclusion Criteria

A total of 94 thyroid nodule images (30 malignant; 64 benign), from 92 patients met
the inclusion criteria of the present study (Figure 1). The inclusion criteria in this study
required patients to all be consenting adults (≥18 years old) who had thyroid nodular
disease or the suspicion of thyroid cancer and were scheduled for biopsy and/or subsequent
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thyroidectomy. Nodules that were ≥ 5mm were included in the study. For patients with
multiple thyroid nodules, either the nodule with the most suspicious sonographic features
(hypoechoic, microcalcifications, irregular margins, tall-than-wide, etc.) or if there were
no obvious suspicious features, then the largest nodules on each lobe or the one/s for
which biopsy and/or surgery was recommended were included in the study. The exclusion
criteria necessitated patients who did not have a conclusive diagnosis as determined from
either cytology results, histopathology results, or both, multinodular goitres without clearly
isolated nodules, and non-vascular nodules.
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Figure 1. Representation of the patient inclusion and exclusion criteria.

2.2.2. Ultrasound Imaging Procedures

A sole investigator with over 3 years experience in thyroid ultrasound scanning con-
ducted the thyroid ultrasound imaging of all patients. An Aixplorer ultrasound machine
(Supersonic Imagine, Aix-en-Provence, France) equipped with a 7–10 MHz linear trans-
ducer was used to conduct grey scale ultrasound scans, colour Doppler, power Doppler,
and AngioPLUS Doppler ultrasound scans. The ultrasound machine settings were stan-
dardized and the same ultrasound scanning settings for the thyroid study were maintained
to ensure consistency. For the Doppler ultrasound modes, the standard settings were set
with a medium wall filter at the lowest pulse repetition frequency where no aliasing was
encountered and the highest colour gain without signal noise. The resultant settings used
in the study were a velocity scale of 10 cm/s with a colour map of 5 for CFI and PDI and a
velocity scale of 4 cm/s with a colour map of 4 for the AngioPLUS modes.

Standard ultrasound protocols were observed to conduct the thyroid scans. Each
patient lay in the supine position with minimal extension of the neck and coupling gel
was applied. With the face turned away from the side of interest, the transducer was
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placed on the exposed side of the neck area. A minimum of 3 images of each target thyroid
nodule were acquired in grey scale ultrasound, colour Doppler, power Doppler, and both
colour and power Doppler with AngioPLUS modes. In the grey scale ultrasound mode,
the images were acquired when most features suggestive of malignancy or benignity were
observed, whereas in the Doppler ultrasound modes, images were acquired where the
nodule demonstrated abundant vascularity and stable Doppler ultrasound signals.

Two thyroid surgeons with extensive experience independently conducted the ultrasound-
guided fine-needle aspiration cytology (FNAC) and later provided the cytological and/or
histopathological diagnosis of the thyroid nodules. Nodules with FNAC results of Cat-
egories 3 and 4 criteria, i.e., atypia of undetermined significance (AUS)/follicular lesion
of undetermined significance (FLUS) and follicular neoplasm (FN)/suspicion of follicular
neoplasm (SFN), were considered equivocal in the present study.

2.2.3. Grey Scale Ultrasound Feature Assessment

The same investigator who conducted the imaging independently reviewed the thy-
roid nodule images and subjectively interpreted the ultrasound features based on echogenic-
ity, composition, shape, margins, taller than wide ratio >1, and the presence/absence of
calcifications. For the malignancy risk categorization, the interpretations were scored
based on the EU TIRADS with the assistance of an online calculator for computation
(www.gap.pe.kr/thyroidnodule.php (accessed on 17 October 2021)). Like most TIRADS,
the common features that are indicative of high malignancy suspicion in EU TIRADS are
irregular margins, marked hypoechogenicity, taller than wide shape, and microcalcifica-
tions [25]. However, for the classification of the high-risk/suspicion category, EU TIRADS
requires just the presence of any of the common suspicious features or marked hypoe-
chogenicity in a solid nodule [10,26]. The categorisation criteria for the EU TIRADS are
shown in Figure 2. The cut-off point for malignancy risk stratification using sole grey scale
ultrasound assessment was Category 5 (high risk/suspicion) in the present study. We hy-
pothesized that central vascularization as an additional suspicious ultrasound feature could
potentially improve the overall diagnostic accuracy of grey scale ultrasound assessment
from the level of indeterminate ultrasound suspicion. Therefore, a cut-off point of Category
≥4 was used for the combined assessment of EU TIRADS with the Doppler modes.
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2.2.4. Doppler Ultrasound Feature Assessment

The vascularity features of the nodules were assessed using CFI and PDI and both
modes coupled with AngioPLUS based on qualitative and quantitative approaches.

Qualitative Vascularity Assessment

Each nodule was subjectively evaluated for vascularity for all 4 Doppler modes (i.e.,
1. CFI, 2. AngioPLUS + CFI (ACFI), 3. PDI, 4. AngioPLUS + PDI (APDI)). The subjective
assessment was based on the qualitative grading criteria adapted from Chammas et al. [27]:
Category I = exclusively peripheral vascularity; Category II = predominantly peripheral
vascularity; Category III = predominant central vascularity, and Category IV = exclusively
central blood flow. Two sets of interpretations of the qualitative vascularity grading with a
one-month wash-out period between them were conducted for 40 images to assess intra-
rater reliability. Nodules with Categories I and II features were considered suspicious
for benignity, while those falling in Categories III and IV were considered suspicious for
malignancy (Figure 3). The Doppler mode that resulted in superior diagnostic performance
was then compared and combined with the grey scale ultrasound assessment and the
diagnostic performances were evaluated to determine diagnostic value.
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Figure 3. CFI images demonstrating the adopted qualitative vascularity grading. (I): Exclusive
peripheral vascularity (arrows) in a nodule that had a conclusive benign histopathology diagnosis in
a 61-year-old male patient. (II): Predominant peripheral vascularity demonstrated as more abundant
vascularity in the outer regions (arrows) than the central regions in a histopathologically-benign
nodule in a 53-year-old female patient. (III): Predominant vascularity in the central portion of a
nodule (arrows) in a 44-year-old female who was diagnosed with PTC. (IV): Exclusive marked central
flow (arrows) in a nodule diagnosed as PTC in a 51-year-old female.

Quantitative Assessment

Three sets of thyroid nodule ultrasound images acquired for each Doppler mode (CFI,
ACFI, PDI, and APDI) in the transverse planes were observed, documented, and saved
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for offline analysis. Microsoft Paint was used to manually outline regions of interest (ROI)
and the images were saved in TIFF format and processed further in MATLAB (version
9.4.0.813654 R2018a; The Math Works, Natick, MA, USA). An image processing algorithm
based on an offsetting principle for the regional vascularity segmentation in Doppler
images, which was previously established by our research group [28–30], was used for the
quantitative vascularity evaluation in the present study. The protocol and offset of 22%,
which our research group established as diagnostically optimal for thyroid nodule regional
vascularity segmentation [30], was used to delineate peripheral and central nodule regions.
The central region was represented by the secondary ROI, which was extracted from the
primary ROI (whole nodule) at the 22% offset, while the peripheral region was represented
by the remaining outer segment of the primary ROI. Figure 4 illustrates the algorithm’s
segmentation of central and peripheral vascularity regions in a thyroid nodule. Vascularity
indices (VI) within peripheral and central thyroid nodule regions were determined from
the averages of the three sets of readings for each of the Doppler modes. Furthermore,
ratio analysis of the central and peripheral VIs was applied. A ratio vascularity index (RVI)
of peripheral VI to central VI > 1 denoted predominant peripheral vascularity and ≤ 1
denoted predominant central vascularity. Based on the RVI method, the Doppler mode
with the most optimal diagnostic performance was compared to the grey scale ultrasound
and qualitative vascularity grading approaches and assessed in combination with the grey
scale ultrasound assessment.
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and (B) central regions. (C) shows the primary ROI from which the overall vascularity is calculated.
The VI for the different segments is calculated by the algorithm as the percentage between the total
number of pixels (left) and the number of colour pixels without the grey scale pixels (right) within
the segmented areas. The RVI is the ratio of the VIs of peripheral regions to that of central regions.
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2.2.5. Data Analysis and Statistical Analysis

Continuous data were classified as means +/− standard deviation, whereas categorical
and/or nominal data were expressed as frequencies and percentages. The Shapiro–Wilk
test was used to check the normality of the data. The Chi-square test was used to compare
the differences in nodule classification data and peripheral and central vascularity index
ratios of benign and malignant nodules. The paired samples T-test was used for testing the
differences in the mean central and peripheral VI quantification between the CFI vs. ACFI
and PDI vs. APDI modes. The Cohen’s kappa statistic (κ) complemented by the proportion
agreement test was used for the intra-rater reliability assessment of qualitative grading of
nodule vascularity using different Doppler modes. The sensitivity (SEN), specificity (SPEC),
positive predictive values (PPV), negative predictive values (NPV), and area under the
receiver operating characteristic curve (AUROCs) and their corresponding 95% confidence
intervals (C.I.) were calculated with reference to the final cytology or pathology results.
For the combined assessment of EU TIRADS and vascularity assessments, a nodule was
predicted to be malignant if it met the cut-off criteria of both EU TIRADS (≤4) and that of
either of the vascularity assessment approaches. The McNemar and Cochran Q’s tests were
used for the comparative analysis of sensitivity and specificity, whereas the z-test was used
to compare the different AUROCs. Multi-comparison testing was not applied to employ a
more conservative approach and limit the false-negative rate (type 2 error) [31]. The tests
were two-sided and p < 0.05 denoted statistical significance.

3. Results
3.1. Demographic Data

The mean age of all 92 patients (78 females; 14 males) was 53 ± 12.8 years (range: 21
to 75). On average, male patients were statistically significantly older than female patients
(60.7 ± 9.5, range 44 to 71, vs. 51.7 ± 12.9, range 21 to 75, p = 0.01). However, there was
no statistically significant difference in age between patients with malignant and benign
thyroid nodules (53.5 ± 12.7, range: 31 to 74, and 52.9 ± 13, range: 21 to 75, respectively,
p = 0.84). The most common histopathology diagnosis of the malignant nodules was
papillary thyroid carcinoma (PTC, n = 26), while the remaining nodules were classified as
follicular thyroid carcinoma (FTC, n = 3), and non-invasive follicular thyroid neoplasm
with papillary-like nuclear features (NIFTP, n = 1). Among the 94 nodules, there were
40 nodules (31 benign; 9 malignant) with equivocal cytology. Two of the malignant nodules
with equivocal cytology were FTCs while the rest were PTCs.

3.2. Thyroid Nodule Vascularity Assessments

The intra-rater agreement of using the qualitative method in the grading thyroid nod-
ule vascularity was substantial (>0.6) with all the Doppler modes (Supplementary Table S1).
The quantitative ratio analysis of regional vascularity computed as an RVI showed that
for all the Doppler modes benign nodules presented with statistically significant predom-
inant peripheral vascularity (RVI > 1, p < 0.01) rather than central vascularity, whereas
there were no statistically significant differences between predominantly peripheral and
predominantly central vascularity in malignant nodules (Supplementary Table S2).

The vascularity distributions in the peripheral and central nodule regions of conven-
tional CFI and PDI Doppler modes were compared to those of the AngioPLUS modes, ACFI
and APDI. The paired T-test results demonstrated that the addition of AngioPLUS to the
conventional modes detected more vascularity as evidenced by the statistically significantly
higher mean VIs in both segmented regions (peripheral VI: CFI vs. ACFI, t(93) = −8.89 and
PDI vs. APDI, t(93) = −18.46; central VI: CFI vs. ACFI, t(93) = −7.64 and PDI vs. APDI,
t(93) = −11.89, all p < 0.001). The results are shown in Table 1.
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Table 1. Paired comparison of thyroid nodule vascularity detection between conventional Doppler
modes and AngioPLUS modes.

Doppler Mode Pairs at Segmented
Regions

Descriptive Statistics Paired Sample t-Tests

Mean VI SD SEM t df p-Value
(2-Tailed)

Peripheral VI

CFI 44.92 16.05 1.66 −8.89 93 <0.001
CFI + AngioPLUS 55.29 16.74 1.73

PDI 30.91 12.81 1.32 −18.46 93 <0.001
PDI + AngioPLUS 57.34 17.82 1.84

Central VI

CFI 36.70 19.88 2.05 −7.64 93 <0.001
CFI + AngioPLUS 48.07 19.20 1.98

PDI 26.14 14.76 1.52 −11.89 93 <0.001
PDI + AngioPLUS 49.55 21.29 2.20

CFI = colour flow imaging, PDI = power Doppler imaging, SD = standard deviation, SEM = standard error of
mean, df = degrees of freedom, VI = vascularity index.

3.3. Diagnostic Performance Evaluation of EU TIRADS and Doppler Modes in Thyroid Nodule
Malignancy Risk Stratification
3.3.1. Sole Diagnostic Performance Assessments

Grey scale ultrasound assessment using EU TIRADS resulted in high sensitivity and
lower specificity in stratifying all nodules and cytologically-equivocal nodules. The results
are shown in Table 2.

Table 2. Diagnostic performance of EU TIRADS for the stratification of all nodules and cytologically-
equivocal nodules.

EU TIRADS

Diagnostic
Performance

Measures

All Nodules
(n = 94)

Equivocal Nodules
(n = 40)

SEN (%) 83.3 (65.3; 94.4) 88.9 (51.8; 99.7)
SPEC (%) 50.0 (37.2; 62.8) 38.7 (21.8; 57.8)
PPV (%) 43.9 (30.7; 57.6) 29.6 (13.8; 50.2)
NPV (%) 86.5 (71.2; 95.5) 92.3 (64.0; 99.8)
AUROC 0.67 (0.57; 0.76) 0.62 (0.47; 0.78)

SEN = sensitivity, SPEC = specificity, PPV = positive predictive value, NPV = negative predictive value,. AUROC = area
under the receiver operating characteristic curve.

The sole vascularity assessment of all nodules demonstrated that AngioPLUS signifi-
cantly improved the sensitivity of conventional CFI (from 53.3% to 80%, p < 0.05) and PDI
modes (from 46.7% to 83.3%, p < 0.05) and maintained comparable high specificities based
on the qualitative assessment (Table 3). Similarly, for cytologically-equivocal nodules, the
addition of AngioPLUS resulted in perfect sensitivity from that of PDI alone (100% from
66.7%, p < 0.05).

Quantitative vascularity assessment maintained high specificity and comparably lower
sensitivity across all Doppler modes for stratifying all nodules and cytologically-equivocal
nodules. The results are shown in Table 4. The addition of AngioPLUS to PDI (APDI)
resulted in the highest sensitivity overall; however, this was only statistically significant
to that of PDI in the assessment of cytologically-equivocal nodules (all: 66.7%; equivocal:
77.8%). Therefore, the addition of AngioPLUS to PDI based on qualitative vascularity
assessment resulted in the most optimal sensitivity and specificity for stratifying all nodules
and cytologically-equivocal nodules.
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Table 3. Diagnostic performance of qualitative vascularity grading in thyroid nodule risk-
stratification of all nodules and cytologically-equivocal nodules.

Qualitative Vascularity Grading Modes

Nodules Diagnostic
Performance CFI ACFI PDI APDI

All
(n = 94)

SEN (%) 53.3 (34.3; 71.7) * 80.0 (61.4; 92.3) 46.7 (28.3; 65.7) 83.3(65.3; 94.4) ‡

SPEC (%) 92.2 (82.7; 97.4) 82.8 (71.3; 91.1) 95.3 (86.9; 99.0) 81.3 (69.5; 89.9)
NPV (%) 80.8 (69.9; 89.1) 89.8 (79.2; 96.2) 79.2 (68.5; 87.6) 91.2 (80.7; 97.1)
PPV (%) 76.2 (52.8; 91.8) 68.6 (50.7; 83.1) 82.4 (56.6; 96.2) 67.6 (50.2; 82.0)
AUROC 0.73 (0.63; 0.82) 0.81 (0.73; 0.90) 0.71 (0.62; 0.80) ‡ 0.82(0.74; 0.91)

Equivocal
(n = 40)

SEN (%) 66.7 (29.9; 92.5) * 88.9 (51.8; 99.7) 66.7 (29.9; 92.5) ‡ 100 (66.4; 100)
SPEC (%) 90.3 (74.2; 98.0) 80.6 (62.5; 92.5) 93.5 (78.6; 99.2) 77.4 (58.9; 90.4)
NPV (%) 90.3 (74.2; 98.0) 96.2 (80.4; 99.9) 90.6 (75.0; 98.0) 100 (.)
PPV (%) 66.7 (29.9; 92.5) 57.1 (28.9; 82.3) 75.0 (34.9; 96.8) 56.3 (29.2; 80.2)
AUROC 0.79 (0.61; 0.96) 0.85 (0.72; 0.98) 0.80 (0.63; 0.97) 0.89 (0.81; 0.96)

SEN = sensitivity, SPEC = specificity, PPV = positive predictive value, NPV = negative predictive value, AUROC = area
under the receiver operating characteristic curve, CFI = colour flow imaging, ACFI = AngioPLUS + CFI, PDI = power
Doppler imaging, APDI = AngioPLUS + PDI, (.) = value dependent on disease prevalence. * = p < 0.05 relative to ACFI,
‡ = p < 0.05 relative to APDI.

Table 4. Diagnostic performance of quantitative vascularity grading (RVI ≥ 1) in thyroid nodule risk-
stratification of all nodules and cytologically-equivocal nodules.

Quantitative Vascularity Grading Modes

Nodules Diagnostic
Performance CFI ACFI PDI APDI

All
(n = 94)

SEN (%) 56.7 (37.4 ; 74.5) 60.0 (40.6 ; 77.3) 46.7 (28.3 ; 65.7) 66.7 (47.2 ; 82.7)
SPEC (%) 81.3 (69.5 ; 89.9) 73.4 (60.9 ; 83.7) 65.6 (52.7 ; 77.1) §§ 73.4 (60.9 ; 83.7)
NPV (%) 80.0 (68.2 ; 88.9) 79.7 (67.2 ; 89.0) 72.4 (59.1 ; 83.3) 82.5 (70.1 ; 91.3)
PPV (%) 58.6 (38.9 ; 76.5) 51.4 (34.0 ; 68.6) 38.9 (23.1 ; 56.5) 54.1 (36.9 ; 70.5)
AUROC 0.69 (0.59 ; 0.79) †† 0.67 (0.56 ; 0.77) 0.56 (0.45 ; 0.67) 0.70 (0.60 ; 0.80) ††

Equivocal
(n = 40)

SEN (%) 66.7 (29.9 ; 92.5) 55.6 (21.2 ; 86.3) 33.3 (7.5 ; 70.1)
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3.3.2. Combination Approach Diagnostic Performance Assessments

Vascularity assessment based on AngioPLUS + Power Doppler Imaging (APDI) was
combined with the EU TIRADS grey scale assessment to ascertain the diagnostic per-
formance of the combination approaches in stratifying thyroid nodules. The results are
demonstrated in Table 5. In the assessment of all nodules, the combination of APDI based
on qualitative vascularity grading with EU TIRADS significantly improved the specificity
of sole EU TIRADS (84.4% vs. 50%, p < 0.05) with a sensitivity that was insignificantly
lower than that of sole EU TIRADS (76.7% vs. 83.3, p > 0.05). The false-negative rate
(FNR) was best using the sole EU TIRADS (16.3%), while the combination with APDI
resulted in a slight increase (23.3%). The addition of ADPI to EU TIRADS reduced the
false positive rate (FPR) from the highest achieved with the sole EU TIRADS (15.6% vs.
50%). Figure 5A demonstrates the FPR and FPR results for stratifying all nodules. For
stratifying cytologically-equivocal nodules, the addition of APDI to EU TIRADS resulted
in the most optimal diagnostic performance. The sensitivity of the combination approach
was comparable to the sole EU approach (88.9%), while the specificity was significantly
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improved compared to that of sole EU TIRADS (77.4% vs. 38.7%, p < 0.05). The combination
approach maintained an FNR comparable to that of sole EU TIRADS (11.1%), and also
achieved the lowest FPR (22.6%), while EU TIRADS had the highest FPR (61.3%). Figure 5B
shows the FNR and FPR for cytologically-equivocal nodules. Overall, for the stratification
of all nodules and cytologically-equivocal nodules, the addition of qualitatively assessed
APDI to EU TIRADS had a higher discrimination ability than sole EU TIRADS.

Table 5. Diagnostic performance assessment of EU TIRADS in combination with qualitative grading
and quantitative vascularity assessment in thyroid nodule risk-stratification.

Nodules
Diagnostic

Performance
Measures

GSU GSU +
Qualitative Vascularity

GSU +
Quantitative Vascularity

EU EU + APDI_Qual EU + APDI_RVI

All
(n = 94)

SEN (%) 83.3 (65.3 ; 94.4) 76.7 (57.7 ; 90.1) 58.1 (39.1 ; 75.5) *
SPEC (%) 50.0 (37.2 ; 62.8) 84.4 (73.1 ; 92.2) *** 81.0 (69.1 ; 89.8) ***
PPV (%) 43.9 (30.7 ; 57.6) 69.7 (51.3 ; 84.4) 60.0 (40.6 ; 77.3)
NPV (%) 86.5 (71.2 ; 95.5) 88.5 (77.8 ; 95.3) 79.7 (67.8 ; 88.7)
AUROC 0.67 (0.57 ; 0.76) 0.81 (0.72 ; 0.89) * 0.70 (0.60 ; 0.80)

Equivocal
(n = 40)

SEN (%) 88.9 (51.8 ; 99.7) 88.9 (51.8 ; 99.7) 66.7 (29.9 ; 92.5)
SPEC (%) 38.7 (21.8 ; 57.8) 77.4 (58.9 ; 90.4) *** 74.2 (55.4 ; 88.1) ***
PPV (%) 29.6 (13.8 ; 50.2) 53.3 (26.6 ; 78.7) 42.9 (17.7 ; 71.1)
NPV (%) 92.3 (64.0 ; 99.8) 96.0 (79.6 ; 99.9) 88.5 (69.8 ; 97.6)
AUROC 0.62 (0.47; 0.78) 0.83 (0.70; 0.96) *** 0.70 (0.52; 0.89)

SEN = sensitivity, SPEC = specificity, PPV = positive predictive value, NPV = negative predictive value, AUROC =
area under the receiver operating characteristic curve, RVI = ratio vascularity index, GSU = grey scale ultrasound,
EU = European TIRADS, APDI = AngioPLUS + power Doppler imaging, Qual = qualitative vascularity grading,
* = p < 0.05 with reference to EU, *** = p < 0.001 with reference to EU.
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Figure 5. An illustration of the false-positive rates (FPR) and false-negative rates (FNR) for sole
EU TIRADS and AngioPLUS + Power Doppler Imaging (APDI) based on qualitative (Qual) and
quantitative ratio vascularity index (RVI) assessments, and combination approaches for stratifying:
(A)—all nodules and (B)—cytologically-equivocal nodules.

The combination approach based on the addition of quantitatively assessed APDI to
EU TIRADS resulted in high specificity, the lowest sensitivity, and the highest FNR for
stratifying all nodules and cytologically-equivocal nodules.
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4. Discussion

The present study evaluated the diagnostic value of AngioPLUS Doppler ultrasound
for thyroid nodule malignancy-risk stratification based on qualitative vascularity grading
and quantitative regional vascularity assessments in combination with EU TIRADS.

4.1. Grey Scale Ultrasound Assessment with EU TIRADS

In the present study, sole EU TIRADS had an optimal diagnostic performance with
high sensitivity, low FNR, and low specificity for the malignancy-risk stratification of
thyroid nodules. The high sensitivity with lower specificity of the EU TIRADS can be
attributed to its criteria of the presence of any single predictive feature to denote high
malignancy risk/suspicion. The diagnostic performance of EU TIRADS has been explored
extensively in overall thyroid nodule assessment [32–34], but assessment of cytologically-
equivocal nodules is scant. While the present study showed high sensitivity and low
specificity in stratifying cytologically-equivocal nodules, some recent studies demonstrated
a lower sensitivity (<55%) and higher specificity (≥70%) in discriminating FLUS/AUS and
SFN/HC nodules [35,36]. The differences in the findings can be attributed to the smaller
sample size, the use of computer-assisted EU TIRADS stratification, lack of subgrouping
of the equivocal nodules, and the prevalence of PTCs in the present study. The present
study’s findings can therefore be inferred as applicable to PTCs.

4.2. Qualitative Vascularity Assessment of AngioPLUS Combined with EU TIRADS

The present study demonstrated that coupling AngioPLUS with conventional Doppler
modes resulted in a more optimal diagnostic performance than conventional Doppler
modes alone. The superior detection of microvascular flow with AngioPLUS resulted in
high specificity and high sensitivity, which was comparable to that of EU TIRADS alone. A
predominantly central vascularity pattern has previously been suggested as an independent
thyroid nodule malignancy risk factor [27]; however, its diagnostic performance with
conventional CFI and DPI resulted in ambiguous findings [18,37]. Our findings of high
specificity and low sensitivity with conventional Doppler modes using this vascularity
pattern concur with those of previous studies [38,39]. However, some studies have shown
variable findings of either high sensitivity or high sensitivity and specificity [40,41]. Rosario
et al. [42] demonstrated that there was no additional diagnostic value in combining PDI
vascularity assessment with sole grey scale ultrasound assessment since the diagnostic
performance outcomes of the combination approach remained comparable to those of
the sole grey scale ultrasound (SEN: 88.7% vs. 89.4%; SPEC: 68.2% vs. 66.4%). The
varying study designs and the diversity of ultrasound machines that influence the poor
sensitivity of conventional Doppler modes in detecting microvascular flow contribute to
the different findings.

In the present study, the combination of qualitatively graded APDI with EU TIRADS
improved the overall diagnostic efficacy of sole EU TIRADS for stratifying all nodules.
Although sole EU TIRADS had the highest sensitivity and lowest FNR overall, the highest
FPR is suggestive of a high unnecessary biopsy rate with sole use. The combination of EU
TIRADS with APDI with a lower FPR could have reduced the unnecessary biopsy rate by
34.4% while sufficiently detecting true malignant cases as it maintained a comparably high
sensitivity. The slight increase in FNR with the combination approach would have resulted
in only two cases of true malignancies being missed. Furthermore, the combination of APDI
with EU TIRADS proved to be best for stratifying cytologically-equivocal nodules over sole
EU TIRADS. By maintaining a high sensitivity while significantly increasing the specificity
and resulting in low FNR and FPR compared to sole EU TIRADS, the combination approach
had high discriminating ability and could have lowered the unnecessary biopsy rate of
EU TIRADS by 38.7%. Based on our results, we can posit that AngioPLUS has additional
diagnostic value in the differentiation of thyroid nodules, as it optimises both the sensitivity
and specificity and therefore can potentially limit unnecessary biopsy rates. Combined
with EU TIRADS at the cut-off point of intermediate suspicion category, the false-positive
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rate is lowered compared to sole EU TIRADS using a high suspicion category cut-off point.
This combination approach could potentially be used to follow up cytologically equivocal
thyroid nodules. Integrating it into the routine diagnostic workflow may result in the
conservative diagnosis of thyroid nodules by the optimal detection of cancers and limited
unnecessary repeated biopsies.

Our findings of optimal sensitivity and specificity with AngioPLUS compared to sole
grey scale assessment concur with studies of thyroid nodule assessment based on SMI. A
previous study reported an improved sensitivity of PDI using SMI (41.8% to 75.9%) and
an excellent diagnostic efficacy (AUROC: 0.92) in combination with grey scale ultrasound
features [43]. In another study, SMI combined with ACR TIRADS improved the sensitivity,
specificity, and AUROC of sole ACR TIRADS (SEN: 65.1% to 93.8%; SPEC: 93% to 94.4%;
AUROC: 0.88 to 0.95) [44]. Although the combination approaches in both studies showed
an improved overall diagnostic efficacy, the different diagnostic outcomes of the two sole
TIRADS may be explained by the different malignancy risk stratification criteria. Our
study used the EU TIRADS at the high malignancy risk category based on a pattern-based
approach, whereas the aforementioned study used ACR at the moderate risk category
based on a score-based approach. Contrastingly, in other studies SMI combined with
grey scale ultrasound feature assessment failed to significantly improve the diagnostic
performance [45,46]. The variable findings can be attributed to different TIRADS, SMI
assessment using the monochromatic mode, and vascularity grading, where intranodular
vascularity was classified as mild or extensive vascularity, or both.

4.3. Quantitative Vascularity Assessment of AngioPLUS in Combination with EU TIRADS

In the present study, the quantitative vascularity assessment approach demonstrated
higher VIs of central and peripheral vascularity regions with the AngioPLUS modes than
the sole conventional Doppler modes. Therefore, these results substantiate the increased
sensitivity in microvascularity detection in thyroid nodules with AngioPLUS than with
conventional Doppler modes. The regional vascularity ratio analysis based on an RVI > 1
at an offset of 22% affirmed that predominant peripheral vascularity is prevalent in benign
nodules. However, the approach had high specificity and lower sensitivity even with
AngioPLUS and in combination with EU TIRADS for the overall assessment of all nodules.
Quantitative vascularity assessment approaches had been evaluated in a few previous
studies mainly using conventional Doppler modes. A recent study based on the quantifi-
cation of SMI reported that higher SMI pixel counts in malignant thyroid nodules may
help differentiate them from benign nodules [47]. However, that approach also had low
sensitivity (40.5%) and high specificity (91.3%). Yoon et al. [48] reported a low diagnostic
performance of PDI using sole VI assessment with a significant reduction in specificity
from that of grey scale ultrasound alone using the combination approach. Contrarily, in
another study based on a 90% central to 10% peripheral ratio for the regional segmentation
of intranodular vascularity, the overall VI, central VI, and peripheral VI for vascularity
densities yielded high sensitivity and low specificity [49]. However, neither peripheral nor
central vascularity was predominant in benign or malignant nodules in that study. Con-
trary to the present study, the only study that compared sole qualitative and quantitative
vascularity assessment reported a higher sensitivity using quantitative central vascular area,
whereas the specificity was comparable (SEN: 90% vs. 67.5%; SPEC: 88.1% vs. 88%) [50].
The differences in the methodologies of determining central vascularity may explain the
variable findings.

In the present study, the APDI mode resulted in a more optimal sensitivity, which
was lower than that of sole EU TIRADS, balanced with higher specificity and NPV, which
were maintained in the combination approach with EU TIRADS. For the assessment of
cytologically-equivocal thyroid nodules, APDI had the most optimal diagnostic perfor-
mance; however, the combination approach with EU TIRADS resulted in reduced sensitivity
and sustained specificity. Although there is potential to reduce the unnecessary biopsy
rates with this approach, the large sacrifice of the sensitivity would be a drawback in
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clinical application considerations. This is because the reduced sensitivity increases the
false-negative rate, which may delay treatment of thyroid cancer patients. Ultimately, the
ratio analysis approach of RVI > 1 may accurately stratify benign nodules but may not be
ideal for ruling in disease. Therefore, qualitatively graded APDI in combination with EU
TIRADS is more optimal for best stratifying cytologically-equivocal thyroid nodules.

4.4. Limitations

The sample size was small and most malignant nodules were PTCs, thereby limiting
the generalisability of the findings to other cancers. The category-specific diagnostic
performance evaluation of AngioPLUS Doppler ultrasound in cytologically-equivocal
nodules could not be conducted. Due to the selection of patients with FNAC and/or
histopathology results, we cannot exclude selection bias. However, due to the limited
diagnostic performance evaluation of the AngioPLUS Doppler ultrasound, along with
several TIRADS, our findings may guide larger multi-centre prospective validation studies
with multiple raters and different types of thyroid cancers.

5. Conclusions

Qualitatively-graded APDI has additional diagnostic value in thyroid nodule dif-
ferentiation as it can improve the diagnostic efficacy of EU TIRADS by optimising both
the sensitivity and specificity. It has greater potential for improving the diagnosis of
cytologically-equivocal nodules and limiting unnecessary biopsy rates. Quantitative vascu-
larity assessment using APDI adequately discriminates benign nodules but is not effective
for ruling in malignancy even when combined with EU TIRADS.
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thyroid nodules for different Doppler modes.
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