
Swintek and Walter ﻿BMC Res Notes           (2021) 14:28  
https://doi.org/10.1186/s13104-021-05447-5

RESEARCH NOTE

Development and characterization 
of thirteen novel microsatellite markers for use 
in Greenland sharks (Somniosus microcephalus), 
with cross‑amplification in Pacific sleeper sharks 
(Somniosus pacificus)
Meaghan A. Swintek and Ryan P. Walter* 

Abstract 

Objective:  The objectives of this work are to isolate, develop, and characterize polymorphic microsatellite markers 
for use in Greenland sharks (Somniosus microcephalus).

Results:  Thirteen microsatellite loci were successfully amplified and yielded multi-locus genotypes for 36 S. micro-
cephalus individuals from Grise Fjord (n = 16) and Svalbard (n = 20). Each locus yielded between 2 and 9 alleles and 
observed heterozygosity ranged from 0.11 to 0.70 when estimated across both sites. One locus and three loci devi-
ated from HWE following Bonferroni correction, for individuals sampled from Grise Fjord and Svalbard, respectively. 
Cross-amplification was successful at every locus for five of the ten S. pacificus individuals.
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Introduction
Greenland sharks (Somniosus microcephalus) are long 
lived [1] and presumably late to mature [2] sharks capable 
of extensive migration [3] in the North Atlantic to Arctic 
marine environments. Previous molecular genetic work 
successfully differentiated Greenland sharks from other 
species in Somniosus [4] and revealed hybridization with 
Pacific sleeper sharks (Somniosus pacificus) [5, 6], how-
ever, knowledge of their population-level genetic varia-
tion is yet to be described.

Highly variable molecular genetic markers, such as 
microsatellites, can provide data to characterize popu-
lation genetic structure, and have proven useful for 
describing spatial genetic variation in widely distributed 

elasmobranchs [7–9]. Here, we isolate, develop, and 
describe polymorphic microsatellite loci to provide 
molecular genetic markers for assessing the population-
level genetic variation in the Greenland shark. Thirteen 
markers were identified as possible candidate loci for 
population analyses in Greenland shark samples col-
lected from two locations in the Arctic. We also explored 
marker cross-amplification in Pacific sleeper sharks, pro-
viding evidence of utility in other Somniosus species.

Main text
Methods
Primer sets for 50 candidate microsatellite loci were 
constructed from reduced-representation genomic 
DNA sequence data from a single Somniosus micro-
cephalus individual sampled from Resolute Bay (SRA 
accession: PRJNA655731). Genomic DNA from this 
individual was prepared using the QIAgen DNeasy 
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Tissue Kit (Valencia, CA, USA) and shipped to Global 
Biologics (Columbia, MO) where a library was cre-
ated with SPRI selection targeting 450  bp inserts. The 
library was pooled with other species libraries and 
sequenced on an Illumina HiSeq 2500. Approximately 
4 million 250 bp PE reads were recovered; from these, 
tetrasat motifs with a minimum of five uninterrupted 
repeating motifs (e.g. GAC​AGA​CAG​ACA​GACA) 
were targeted using STR finder in Galaxy [10] and 
PCR primer regions flanking each motif were identi-
fied using PRIMER3 [11]. A total of 36 S. microcephalus 
sampled from two sites (Grise Fjord: n = 16; Svalbard: 
n = 20) were used to characterize and optimize the pro-
spective microsatellite markers, and an additional ten S. 
pacificus individuals were used to test for cross-species 
amplification. For all individuals, genomic DNA was 
extracted and purified from fin tissue stored in either 
ethanol or RNAlater (Invitrogen, Carlsbad, CA, USA), 
using the Promega Wizard Genomic DNA Extraction 
Kit (Promega Corp, Madison, WI, USA), according to 
the manufacturer’s instructions.

PCR reactions occurred in 12.5 µL volumes con-
taining 1.25 µL 10X PCR reaction buffer with 15  mM 
magnesium chloride (GenScript, Piscataway, NJ, USA), 
0.25 µL 40 mM dNTP’s (APEX BioResearch Products), 
0.25 µL 10 µM forward primer, 0.25 µL 10 µM reverse 
primer, 5 U Taq Polymerase (GenScript, Piscataway, 
NJ, USA), and 0.5 µL genomic DNA, with one locus 
(Smic2) requiring an additional 0.625 µL 15 mM mag-
nesium chloride per reaction. Thermal-cycler condi-
tions consisted of an initial denaturation at 94  °C for 
2  min, followed by 30 cycles of 94  °C for 30  s (dena-
turation), 52–57  °C for 30  s (annealing) depending on 
marker identity (Table 1), 72  °C for 1 min (extension), 
and a final step at 72 °C for 1 min and 30 s. Three loci 
(Smic2, Smic24, Smic31) required half the time within 
each cycle (i.e., reduced from 30 to 15  s and 1  min to 
30 s). PCR products were visualized on a 1.5% agarose 
gels for estimated size confirmation, then measured for 
precise fragment lengths using a Fragment Analyzer 
(Advanced Analytic Technologies, Inc., Ankeny, IA, 
USA) according to the manufacturer’s protocol. Frag-
ment lengths were scored using PROsize 3.0 software 
(Advanced Analytic Technologies, Inc., Ankeny, IA, 
USA), and were binned across samples to account for 
variation between plate runs. All loci were analyzed 
for null alleles, stuttering, or large allele dropout using 
Micro-Checker 2.2.3 [12]. The total number of alleles 
and observed and expected heterozygosity were calcu-
lated in GenAlEx 6.512b [13]. Deviations from Hardy–
Weinberg equilibrium (HWE) and detection of linkage 
disequilibrium among all loci pairs was determined in 
Genepop 4.2 [14] for each site separately.

Results  and discussion
Of the microsatellite loci screened in Somniosus micro-
cephalus samples, 24 successfully amplified consistently 
and yielded indications of allelic polymorphism on aga-
rose gels. Following initial agarose screening, 13 loci 
were further identified through fragment analysis as 

Table 1  Thirteen novel microsatellite markers developed 
for use in Somniosus microcephalus (n = 35)

Includes: Locus name, forward (F) and reverse (R) primer sequences, annealing 
temperature (TA), fragment length range in base pairs, repeat tetrasat motif, total 
number of alleles (NA)
a   indicates presence of null alleles

Locus Sequence (5′—> 3′) TA (°C) Range (bp) Motif NA

Smic1 F: TGC​CTA​GTA​GAC​GCC​CCT​
AA

52 157–189 CAGA​ 7

R: TGT​TCC​CAG​ATG​TGT​GCA​TT

Smic2 F: GCC​TAA​GCC​ACC​CTC​CTA​AT 57 159–167 ACAG​ 2

R: CTC​CGG​CAT​CTC​CAC​ACT​AT

Smic4 F: TAT​TTA​GTC​CCA​GCA​GTG​CG 55 205–233 TGAC​ 6

R: ACT​TCG​GCG​ACC​ATG​
TTC​TA

Smic5a F: TGT​TTC​AGG​AAT​AGG​GAT​
GCC​

55 224–244 TCAG​ 4

R: CAA​TCA​TTT​ATC​TTG​TGG​
AGCCA​

Smic10 F: ATG​CCT​ATG​ACA​CTC​CCC​TG 52 176–204 GACA​ 6

R: ACC​TGC​CAC​CCG​ATT​AGT​
AA

Smic12 F: TGT​CCG​ACC​GAA​ACG​
TAA​AT

52 173–189 AGAC​ 3

R: CCC​TCA​GCA​GAA​CCA​
TTC​AT

Smic13 F: CCC​ATA​AAC​AGC​GAA​
TGA​CC

55 152–164 AGAC​ 3

R: GCC​TTT​GAA​CCA​AGG​
ACA​GA

Smic15 F: ATG​CTT​AGG​ACG​GTT​CTG​
GA

52 196–220 AGAC​ 6

R: ATC​CCT​CAT​CCT​GTG​GAC​TG

Smic16 F: CAG​TGA​CAA​ACA​TCC​
CCA​AA

52 220–236 ATAG​ 5

R: AAA​CAG​CCT​TTC​CCC​
GTC​TA

Smic18 F: ACG​TAA​ATA​CGC​CGA​TGA​
CC

52 212–224 CAGA​ 4

R: GGC​CAT​GAA​CTT​ATC​CTC​CA

Smic20 F: TCC​GAA​CTC​TTT​TGG​CTG​
AC

55 243–259 GACA​ 4

R: CGT​TCT​CAG​CTC​AGG​
GAT​CT

Smic24 F: TCA​CTG​GTC​CGT​AAT​CGT​CA 55 205–213 GACA​ 4

R: CCA​CAT​CTT​CCG​GCT​CTA​
AA

Smic31 F: ATA​CGC​TTA​TGA​CCG​CTC​CG 57 243–259 GACA​ 3

R: GTC​CAA​AAC​ACA​GAG​
CAG​GG
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having clear fragment length peaks, and were then scored 
among 36 individuals. All other loci were deemed not 
suitable due to either monomorphic allele scoring, weak 
amplification, or the production of multiple (> 2) frag-
ments following PCR and thermal-cycler optimizations 
(Additional file 1: Table S1).

Each locus produced two to seven alleles within each 
site, with observed and expected heterozygosity rang-
ing from 0.063 to 0.750 and 0.117 to 0.770, respectively 
(Table 2). Four loci failed to conform to HWE following 
Bonferroni correction for multiple tests: Smic 24 at GF, 
and Smic1, Smic4, Smic16 at SV. Of the 13 loci, a single 
locus (Smic5) displayed signs of stuttering and possible 
scoring error, and homozygote excess in both sampling 
sites. Two additional loci (Smic4, Smic24) displayed 
homozygote excess in Grise Fjord samples as indicated by 
Microchecker.

Exact tests performed for each site resulted in devia-
tions from HWE for individuals at one locus from Grise 
Fjord and three loci from Svalbard (Table 2). Linkage dis-
equilibrium was not present at any locus pair in either 
site following Bonferroni correction. Cross-amplifica-
tion at each of the 13 loci was successful in 5 of the 10 S. 
pacificus samples using the same cycling conditions. Four 
samples failed to amplify at 1 locus (2 samples at Smic15; 
1 sample at Smic18; 1 sample at Smic1) and one sample 
at 2 loci (Smic1 and Smic18).

Due to the low sample sizes, it is not possible to make 
statements regarding the biological significance versus 
sampling artifacts for departures from HWE, homozy-
gosity excess, and presence of null alleles. Nonetheless, 

these markers will be useful for exploring genetic vari-
ation and stock structure in Greenland sharks through-
out their distribution. Furthermore, cross-amplification 
in the closely related Pacific sleeper shark (Somniosus 
pacificus) extends potential utility to other sleeper shark 
species.

Limitations

•	 Low sample size and/or a priori site-based popula-
tion designation may be contributing to deviations 
from HWE, excess homozygosity, and presence of 
null alleles.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1310​4-021-05447​-5.

Additional file 1:  Table S1. Eleven additional microsatellite loci primer 
sets that were not further developed due to either lack of polymorphism 
or greater than two peaks during PCR amplification screening.
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Number of alleles; HO: Observed heterozygosity; HE: Expected heterozygosity; 
TA: Annealing temperature; bp: Base pairs.
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Table 2  Mean descriptive statistics within each site at the developed microsatellite loci

Includes: number of alleles (NA), observed heterozygosity (HO) and expected (HE) heterozygosity for Grise Fjord (GF) and Svalbard (SV)

Italics values indicate significant departures from HWE following Bonferroni correction
a   indicates presence of null alleles

Grise Fjord (GF) Svalbard (SV)

Locus NA HO HE NA HO HE

Smic1 6 0.563 0.621 6 0.500 0.666

Smic2 2 0.125 0.117 2 0.150 0.219

Smic4 6 0.438 0.738 6 0.500 0.614

Smic5a 4 0.250 0.658 3 0.100 0.261

Smic10 5 0.500 0.523 6 0.600 0.736

Smic12 3 0.375 0.404 3 0.200 0.226

Smic13 3 0.375 0.314 3 0.300 0.261

Smic15 5 0.750 0.709 7 0.650 0.770

Smic16 5 0.688 0.645 4 0.450 0.571

Smic18 4 0.438 0.637 2 0.500 0.495

Smic20 3 0.188 0.361 2 0.200 0.420

Smic24 3 0.063 0.354 2 0.150 0.139

Smic31 3 0.438 0.361 3 0.500 0.406
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