
Elimination of HIV in South Africa through Expanded
Access to Antiretroviral Therapy: A Model Comparison
Study
Jan A. C. Hontelez1,2,3*, Mark N. Lurie4,5, Till Bärnighausen3,6, Roel Bakker1, Rob Baltussen2,

Frank Tanser3, Timothy B. Hallett7, Marie-Louise Newell3, Sake J. de Vlas1

1 Department of Public Health, Erasmus MC—University Medical Center Rotterdam, Rotterdam, Netherlands, 2 Nijmegen International Center for Health System Analysis

and Education, Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 3 Africa Centre for Health and

Population Studies, University of KwaZulu-Natal, Mtubatuba, South Africa, 4 Department of Epidemiology, Warren Alpert Medical School, Brown University, Providence,

Rhode Island, United States of America, 5 International Health Institute, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of

America, 6 Department of Global Health and Population, Harvard School of Public Health, Boston, Massachusetts, United States of America, 7 Imperial College London,

London, United Kingdom

Abstract

Background: Expanded access to antiretroviral therapy (ART) using universal test and treat (UTT) has been suggested as a
strategy to eliminate HIV in South Africa within 7 y based on an influential mathematical modeling study. However, the
underlying deterministic model was criticized widely, and other modeling studies did not always confirm the study’s
finding. The objective of our study is to better understand the implications of different model structures and assumptions,
so as to arrive at the best possible predictions of the long-term impact of UTT and the possibility of elimination of HIV.

Methods and Findings: We developed nine structurally different mathematical models of the South African HIV epidemic in
a stepwise approach of increasing complexity and realism. The simplest model resembles the initial deterministic model,
while the most comprehensive model is the stochastic microsimulation model STDSIM, which includes sexual networks and
HIV stages with different degrees of infectiousness. We defined UTT as annual screening and immediate ART for all HIV-
infected adults, starting at 13% in January 2012 and scaled up to 90% coverage by January 2019. All models predict
elimination, yet those that capture more processes underlying the HIV transmission dynamics predict elimination at a later
point in time, after 20 to 25 y. Importantly, the most comprehensive model predicts that the current strategy of ART at CD4
count #350 cells/ml will also lead to elimination, albeit 10 y later compared to UTT. Still, UTT remains cost-effective, as many
additional life-years would be saved. The study’s major limitations are that elimination was defined as incidence below 1/
1,000 person-years rather than 0% prevalence, and drug resistance was not modeled.

Conclusions: Our results confirm previous predictions that the HIV epidemic in South Africa can be eliminated through
universal testing and immediate treatment at 90% coverage. However, more realistic models show that elimination is likely
to occur at a much later point in time than the initial model suggested. Also, UTT is a cost-effective intervention, but less
cost-effective than previously predicted because the current South African ART treatment policy alone could already drive
HIV into elimination.
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Introduction

South Africa is home to the largest population of HIV-infected

individuals worldwide, with nearly 6 million people living with

HIV in 2010 [1]. Although extensive efforts to curb the epidemic

may have resulted in some decline in the number of new HIV

infections among young adults in the past few years [2,3],

incidence levels remain considerable. The proof of concept that

antiretroviral therapy (ART) can be used to prevent onward trans-

mission [4,5], created renewed excitement that a turning point in

the ever-growing HIV epidemic could be achieved by expanding

access to treatment. ‘‘Treatment as prevention’’ (treatment of all

HIV-infected individuals with ART, regardless of CD4 cell count,

in order to reduce transmission)—a hypothesized HIV prevention

intervention that is currently being tested in community randomized

trials [6]—was conceptually designed by mathematical models [7–

13]. In 2009, Granich et al. suggested that the HIV epidemic in

South Africa could be driven into an elimination phase (defined as

an incidence of below one new infection per 1,000 person-years)

after just 7 y of annual HIV screening for individuals aged 15 y and

older and immediate ART for all HIV-infected patients (universal

test and treat [UTT]) [9].

In response to these results, other modeling studies also examined

the potential impact of a UTT intervention in various settings [14–

19]. But there are as many different conclusions as there are models

that investigated the issue. As models are profoundly different in

many aspects—structure, parameterization, and assumptions about

the intervention—it is difficult to determine which factors are respon-

sible for the differences in the model predictions [20]. There are

several obvious reasons for these discrepancies, such as differences in

the time horizon of the analysis [14], less or more optimistic assump-

tions regarding programmatic efficacy [14,18], or different assump-

tions about HIV natural history, heterogeneity in transmission, and

ART effectiveness in reducing infectiousness [17]. For example,

Granich et al. assumed a 99.4% reduction in infectiousness of those

on ART [9], but later studies suggested that this reduction is likely to

be too optimistic [4,21–23]. The HPTN 052 trial showed a reduction

of 96% [4] with trial participants completely adhering to treatment,

which is unlikely in large-scale interventions. A Cochrane review

including all observational studies and the HPTN 052 trial reported a

Figure 1. Stepwise approach of developing nine structurally different models with increasing complexity and realism. Model A
resembles the deterministic model used by Granich et al. [9], now simulated using an event-driven approach. Models A and B are fitted to predict
UNAIDS prevalence levels for South Africa by tuning the HIV transmission probabilities and year of HIV introduction. In addition, similar to Granich et
al. [9], models A and B use a prevalence density function to explain the steady-state HIV prevalence observed in South Africa. Models C and D are
fitted to represent UNAIDS-predicted HIV prevalence by adjusting overall partner change rates and the year of HIV introduction. A prevalence density
function is no longer used, and the scaling-up of condom use in the late 1990s/early 2000s—introduced in model C2 and consistent with
observations [2,3]—is now used to explain the steady-state HIV prevalence in South Africa. Finally, models C and D allow for more realistic
assumptions on the effectiveness of ART in reducing infectiousness (infectiousness reduction of 90% [20–22] instead of 99.4%; survival twice as high
[26]).
doi:10.1371/journal.pmed.1001534.g001
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reduction in transmission of about 86% [21]. Also, the ongoing

treatment rollout following the 2010 World Health Organization

(WHO) treatment guidelines of ART at CD4 cell counts of #350

cells/ml [24] will already have a profound impact on the HIV

epidemic [25,26], making it important to compare the impact of

UTT with the current treatment scale-up. Nevertheless, these

obvious differences explain only part of the variation between model

predictions [20]. As modeling remains essential to further inform

public health decision-making, it is vital to better understand the

reasons for the discrepancies between models.

We examined the impact of model structure and parameteri-

zation on the estimated impact of UTT in South Africa in a highly

controlled experiment as follows: we developed nine structurally

different models of the South African HIV epidemic with a

standardized core set of assumptions but with gradated degrees of

model complexity and realism that span from the very simplest to

one of the most comprehensive representations of HIV epidemics

(Figure 1). In all models, we examined the impact of the UTT

intervention suggested by Granich et al. [9] and related this to a

baseline of no UTT (i.e., no ART in the simplest models, and

rollout of ART at CD4 count #350 cells/ml as currently applied in

South Africa in the most detailed model).

Methods

We developed four structurally different main models (models

A, B, C, and D) and five sub-models (sub-models B1, B2, C1, C2,

and C3) of the South African HIV epidemic through a stepwise

approach of increasing complexity and realism (Figure 1; Table 1).

With all models, we compare the impact of UTT to a no-UTT

counterfactual (i.e., no ART in models A to C, and rollout of ART

at CD4 count #350 cells/ml as currently applied in South Africa

in model D). We used the STDSIM framework as a basis for all

nine models. STDSIM is a stochastic microsimulation model that

simulates the life course of individuals in a dynamic network of

sexual contacts [27]. Events like partnership formation and the

acquisition of infection are the result of random processes,

determined by probability distributions. Therefore, the results

are subject to stochastic variation, and the results in our study are

based on the average of 1,000 runs.

The STDSIM model consists of four modules: demo-

graphy, sexual behavior, transmission and natural history, and

interventions. The demography module covers the processes of

birth, death, and migration. Processes for initiation and dissolution

of sexual relationships, mixing according to age preference, sexual

contacts within relationships, and sexual contacts between female

sex workers (FSWs) and their male clients are defined in the sexual

behavior module. In the transmission and natural history module,

transmission probabilities per sexual contact are specified for HIV

and five other sexually transmitted infections (STIs): chancroid,

chlamydia, gonorrhea, syphilis, and herpes simplex virus 2. The

interventions module specifies the timing and effectiveness of

control measures in curbing transmission (e.g., condom use) or

enhancing survival (e.g., ART). STDSIM has been extensively

used to evaluate behavioral interventions [28–31], syndromic

treatment for STIs [32,33], male circumcision [34], different HIV

epidemics in sub-Saharan Africa [35], and, more recently, the

impact of ART on HIV epidemics [25,36–38]. STDSIM can be

used in various levels of complexity by adding or removing com-

ponents from the model. We exploit this flexibility to evaluate the

test and treat strategy with alternative model structures.

Model A
Model A fully resembles the deterministic model developed by

Granich et al. [9], but now simulated using an event-driven

stochastic approach. All individuals in the model constitute a

homogeneous mixture of people in which HIV spreads from

person to person. Individuals are assumed to have a one-off

sexual contact with a random individual of the opposite sex every

8.5 d. We simulate a population aged 15–65 y with a constant

background mortality rate of 0.025 per year. HIV is modeled in

four consecutive stages with equal duration (30 mo) and

transmission probabilities, and is introduced in the model by

randomly ‘‘infecting’’ ten men and ten women. ART is assumed

to decrease infectiousness by 99%, and the duration of the HIV

stages for patients on ART is twice the duration of the stages for

ART-naı̈ve individuals [9]. In addition, as in the Granich model,

transmission rates are further reduced by 40% because of

simultaneous scale-up of other prevention interventions [9]. In

accordance with Granich et al., we adjust transmission rates

according to HIV prevalence through a prevalence density

function to arrive at the observed steady state in HIV prevalence

[9]: p(t1) = p(t0)6e2xP; where p = HIV transmission probability and

P = HIV prevalence.

Table 1. Overview of successive addition of components and structures to each of the nine models.

Component Model A
Sub-Model
B1

Sub-Model
B2 Model B

Sub-Model
C1

Sub-Model
C2

Sub-Model
C3 Model C Model D

Prevalence density functiona X X X X X

Age-structured population X X X X X X X

Transmission probability by
disease stage

X X X X X X X

Heterogeneity in sexual
behavior

X X X

STI co-factors, male
circumcision, and condom use

X X X

Up-to-date ART effectiveness
assumptions

X X X

Current ART scale-up from 2003
onwards

X

aThis artificial prevalence density function was introduced by Granich et al. [9] to mimic processes that result in the observed leveling off of the HIV epidemic. In the
more comprehensive models of our analysis we replaced this prevalence density function by the actual processes that may be responsible for the leveling off.
doi:10.1371/journal.pmed.1001534.t001
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Model B
To arrive at model B, we extended model A by adding the age-

specific fertility and background mortality rates of South Africa

(sub-model B1), and different stages of HIV disease progression

(acute infection, asymptomatic infection, symptomatic infection,

and AIDS—sub-model B2). Births are assigned randomly to sexually

active women between the ages 15 and 49 y, and the probability of

having a child depends on the age of the woman. We parameterized

the model with Unite Nations–reported data on age-specific fertility

rates for South Africa (Table S1) [39]. The resulting initial total

fertility rate (defined as the expected lifetime number of births per

woman) equals 4.9 births per woman. We reduced all age-specific

fertility rates with equal factors in order to capture declines in fertility

rates as observed in South Africa (Figure S1A) [39]. At birth, the age

at (non-HIV) death of each individual is drawn from predefined sex-

specific survival curves. In order to obtain background mortality

rates in the absence of HIV for South Africa, we corrected the age-

and sex-specific mortality rates for South Africa reported by WHO

[40] using the cause-specific mortality estimates from WHO burden

of disease estimates [41]. The resulting survival curve is shown in

Figure S1B.

In sub-model B2, we added the following HIV disease progres-

sion: (i) early/acute infection with a median duration of 3 mo, (ii)

asymptomatic infection with a median duration of 5 y, (iii) symp-

tomatic infection with a median duration of 4 y, and (iv) AIDS

with a median duration of 8 mo. All stages are exponentially

distributed, and the resulting overall survival distribution has a

median of 10 y and an interquartile range of 8 to 13 y, consistent

with observations [42,43]. Relative to asymptomatic infection (second

stage), transmission probabilities are increased by a factor 15 during

early/acute infection, a factor three during symptomatic infection, and

a factor 7.5 during the AIDS stage [35,44]. In addition, we assumed

that the sexual activity of HIV-infected patients in the AIDS stage

(last 40 wk of life) is reduced by 50% because of ill health [45].

Model C
We extended model B with three components to arrive at model

C. We added heterogeneity in sexual behavior (sub-model C1) by

including different kinds of relationships. We use the same patterns

of mixing as recently used by Hontelez et al. for a rural South

African setting (the Hlabisa sub-district of KwaZulu-Natal)

[25,36,37]. The model contains three types of sexual relationships:

steady relationships, casual relationships, and commercial sex. The

formation of partnerships occurs according to a supply-and-

demand-based mechanism. People become available for a sexual

relationship at an ‘‘age of sexual debut’’ that is randomly drawn at

birth from a uniform distribution (Table S2). Each time the

partnership status of a person changes (e.g., a partnership is

formed or ended), a new duration until the person becomes

available for a new relationship (‘‘time until availability’’) is drawn

from a predefined exponential distribution with m being the mean

time until availability defined as: m= ts,r/(rs,a6p), with ts,r = time

interval by person’s sex (s) and relationship status (r), rs,a = specific

promiscuity factor by sex (s) and age (a), and p = personal promi-

scuity factor. The personal promiscuity factor (p) reflects the

heterogeneity between individuals in the tendency to form

partnerships, and is given by a gamma distribution with an

average value (pm) of 1.0, and a shape parameter of 1.5 [35].

The duration of the availability period of an individual is given

by an exponential distribution, with mean time to find (k) defined

as: d
rs,a|p

, where the value of d is 0.25 y for men and 2.25 y for

women (Table S2) [30]. rs,a and p are explained above. When a

person is available for a new relationship, he/she can be selected

by an individual of the opposite sex who is at the end of his/her

availability period. If a person has not been selected by the end of

his/her availability period, he/she will select a partner from the

pool of available persons of the opposite sex. The type of

relationship (steady or casual) that is formed when a partner is

selected depends on the age of the male partner, and is defined as

the probability of a steady relationship (Table S2). The probability

of a new relationship being a casual relationship is given by one

minus the probability of a steady relationship. A relationship starts

with a sexual contact. After each contact, the time until a new

sexual contact q within the relationship is drawn from an

exponential distribution with a mean frequency of sexual contact

depending on relationship type and the age of the male partner

(Table S2). Finally, the duration of a new relationship is drawn

from an exponential distribution, where the average relationship

duration depends on the relationship type (Table S2).

Partner selection at the end of the time to find k is guided

through an age preference matrix (Table S3), which defines the

probability of selecting a partner from a certain age class. When

there is no partner available in the preferred age class, immediate

resampling is done of a new preferred age class using the remain-

ing age groups with a probability larger than 0. If no partner can

be found in any of the age classes, a new k value is drawn from the

above described equation. Probabilities in the age preference

matrix are chosen to have men prefer slightly younger women.

Preference matrices for both sexes are given in Table S3.

In the model, men can have sexual contacts with FSWs. A

man’s frequency of sexual contacts with a FSW is determined by

defining frequency classes (in this study 0, 1, and 12 times per year

[25,35]). For each class, the proportion of men with and without a

steady relationship falling in that category can be specified. A

personal ‘‘prostitute-visiting inclination,’’ assigned to each male at

birth, determines which individual men are assigned to which

frequency classes. At sexual debut and at each sexual contact with

a FSW, the next sexual contact with a FSW is scheduled according

to an exponential distribution, with the mean duration until next

contact based on the FSW contact frequency class of the individual.

The number of FSWs in the model results from male demand.

New FSWs are recruited from sexually active women with a

defined age range. The number of available FSWs and their

predefined number of clients per week is checked each year and

matched with the number of male contacts with FSWs. If the

number FSWs is too low, new FSWs are recruited. If the number

is too high, a random selection of FSWs terminate their career. For

this study, we used the same values for number of FSWs and

number of male contacts with FSWs as previously used for

KwaZulu-Natal, South Africa [25] (Table S4).

In model C2, we added male circumcision (prevalence = 35%

[46,47]; reduces the risk of HIV acquisition by 50% [48–50]) and

STIs that act as co-factors for HIV transmission (chlamydia,

gonorrhea, chancroid, syphilis, and herpes simplex virus 2).

Natural history and transmission assumptions for all STIs are

described in Table S5. In addition, the model allows for increasing

rates of condom use in the late 1990s/early 2000s, consistent with

observations [2,3], to replace the prevalence density function used

in models A and B.

Sub-model C3 uses more up-to-date assumptions regarding the

effectiveness of ART in reducing HIV transmission and enhancing

survival. Granich et al. assumed that ART reduces infectiousness

by 99% [9]. However, recent observational studies and a

randomized controlled trial showed that effectiveness is likely to

be lower [21–23]. A meta-analysis of observational studies found

an average reduction of 92% [22], which was later also reported

by Donnell et al. [23]. The HPTN 052 trial showed a reduction of
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96% [4]; however, the participants in the trial were completely

adherent to treatment, which is unlikely in large-scale interven-

tions. A Cochrane review including all observational studies and

the HPTN 052 trial reported a reduction in transmission as a

result of ART of about 86% [21]. Here, we assume a 90% efficacy

in reducing transmission, implicitly allowing for imperfect

adherence. In addition, Granich et al. assumed that ART increases

survival of HIV-infected patients by a factor of two relative to their

remaining life expectancy without HIV treatment. We assume the

survival benefit of ART to be twice as high as assumed by Granich

et al. (i.e., a factor four increase), consistent with observations [51].

Model D
Model D resembles the full STDSIM model [25,35–38],

consisting of all of the features in model C but with two important

additions: CD4 cell count decline during disease progression and

the ART rollout in South Africa for the period 2004–2011. Based

on data from Orange Farm, South Africa, we assumed that the

initial (HIV-negative) CD4 cell count in the population follows a

lognormal distribution with median 7.02 (equivalent to 1,116

cells/ml) [52]. CD4 cell counts decline by 25% during acute

infection, and decline linearly over the other stages until the CD4

cell count reaches 0.5% of its initial value, after which an

individual dies of AIDS [9,25,52]. Therefore, based on average

HIV-negative CD4 cell counts and duration of HIV infection, an

individual will, on average, reach a CD4 cell count of #350 cells/

ml about 6 y following infection, and at that point will have a

remaining life expectancy of about 4 y.

In the model, ART coverage is the result of two components: (i)

an individual’s demand for ART as a function of HIV disease

stage, and (ii) the capacity of the health system to meet this

demand. ART coverage in our model is the ART demand met by

the capacity of the health system. We assumed the ART demand

function to be the same as previously estimated for the Hlabisa

sub-district of KwaZulu-Natal, South Africa [25], in which about

30% of all infected individuals first seek care for HIV well after

their CD4 cell count has dropped below 200 cells/ml. We fitted the

model predictions to observed ART coverage levels over the

period July 2004–July 2010 by performing a grid search on three

parameters: start year of ART scale-up, rate of ART scale-up, and

ART scale-up function (three options: linear, square-root, or

quadratic). We optimized predicted ART coverage by calculating

the mean squared error of predicted ART coverage in the model

compared to coverage data reported by WHO [53]. We assumed

that eligibility criteria changed from ART at CD4 count #200

cells/ml to ART at CD4 count #350 cells/ml in August 2011, and

that ART scale-up continued according to the estimated scale-up

pattern for the years 2012–2050 in the baseline.

Model Fitting and Parameter Uncertainty
We fitted all models to replicate the observed HIV prevalence in

South Africa as reported by the Joint United Nations Programme

on HIV/AIDS (UNAIDS) [1]. For each model, we used the

parameters of three aspects that link directly to three different

characteristics of the HIV epidemic in South Africa: (i) the start of

the epidemic, (ii) the growth of the epidemic over the 1990s, and

(iii) leveling off of the epidemic in the early 2000s. We obtained the

best fit by minimizing the squared errors of predicted and reported

HIV prevalence over the period 1990–2010.

We used the following parameters to fit the models/sub-models

A, B1, B2, B, and C3: (i) year of HIV introduction, (ii) transmission

probabilities in men with asymptomatic HIV; (iii) the x parameter

in the prevalence density function. We fitted sub-model C1 in 2

parts: (i) the initial growth of the epidemic in the 1990s, and (ii) the

leveling off of the epidemic in the 2000s. For step 1, we fitted three

parameters: year of HIV introduction, HIV transmission proba-

bilities in individuals with asymptomatic HIV, and relative partner

change rates (multiplying all values of sex- and age-specific

promiscuity—see above—by a certain factor). For step 2, we

assumed changes in the observed leveling off of the HIV epidemic

to be the result of behavior change—defined as changes in relative

partner change rates—and used three parameters: year of start of

behavior change, rate of change in behavior change, and end year

of behavior. The sexual behavior pattern resulting from the best fit

by sex and age for the year 1990 (start of the epidemic) is given in

Figure S2, and for the year 2003 (after above described reduction

in risk behavior) in Figure S3. We used the following parameters to

fit sub-model C2 to observed HIV prevalence levels: (i) year of

introduction of HIV, (ii) transmission probabilities in individuals

with asymptomatic HIV, and (iii) scale-up of condom use over

time. We assume a stepwise linear increase of condom use over

time, and estimate the start year, slope, and end year of the scale-

up that results in the best-fitting HIV prevalence. For models C

and D, we fixed the HIV transmission probability in individuals

with asymptomatic HIV at 0.001 for men and 0.0005 for women

[12]. In order to start the epidemic, we introduced HIV in six

FSWs. We used the following parameters to fit the model: (i) year

of HIV introduction, (ii) relative partner change rates, and (iii) start

year, rate, and end year of condom use scale-up in casual relations

and commercial sex. The best fit for model D resulted in a 30%

condom use rate in casual relationships, which is comparable to

data [54].

We calculated a range around the baseline estimates reflecting

the uncertainty in the parameters that were used to fit all nine

models. We developed uniform distributions with intervals wide

enough to capture all possible parameter values that could

produce a good fit (defined as a predicted HIV prevalence within

the uncertainty interval provided by UNAIDS for the period 1995

to 2010 [1]), and randomly drew values from these distributions to

serve as model input. We ran the model with these parameter

values, and accepted parameter value combinations only when

they produced a good fit. For all parameter value combinations for

which this was the case, we recalculated all the outcomes of the

study.

For model D (the most comprehensive model in our analysis) we

repeated this procedure until we arrived at 120 alternative

parameter values that were accepted based on the above

mentioned criterion, and calculated all main outcomes of this

study with these alternative parameter settings. We developed

ranges reflecting parameter uncertainty by discarding the three

highest and lowest values for each outcome. For all other models

and sub-models, we repeated the procedure until we arrived at 40

alternative parameter values that were accepted, and discarded

only the single highest and lowest outcome values in order to

crudely arrive at the interval. We incorporated the intervals

resulting from this parameter uncertainty analysis as bars and

ranges in graphs and tables. A visual representation of all

parameter combinations that were used to calculate uncertainty

ranges, including the combinations that produced the highest and

lowest values that were later discarded, is given in Figure S4.

Scenarios and Outcomes
For all nine models we predicted the impact of a hypothetical

UTT intervention with annual screening of individuals aged 15+ y

and immediate ART for those who are infected with HIV, as

modeled by Granich et al., i.e., the intervention is scaled up

linearly to 90% coverage in seven years’ time (2012–2019), and

there is a dropout rate of 8.5% in the first year of treatment and

Modeling Elimination of HIV in South Africa
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1.5% in subsequent years [9]. We assume no further scale-up of

other prevention interventions (e.g., condom use, circumcision)

after 2012 in all models. Following Granich et al. we defined the

‘‘elimination phase’’ of HIV to start when HIV incidence drops

below 1 new infection per 1,000 person-years [9].

Furthermore, we calculated the cumulative number of life-years

saved and cumulative net costs of UTT compared to continued

scale-up of ART at CD4 count #350 cells/ml in model D, the only

model that incorporates enough detail to be able to adequately

represent the current scale-up of ART at CD4 count #350 cells/

ml in South Africa as the baseline of no UTT. We analyzed costs

from the health care sector perspective, and assumed ART costs

similar to those in Hontelez et al. [25]—where annual ART costs

were stratified by CD4 cell count at initiation and thereafter

dependent on the number of years on treatment (Table 2)—which

were derived from ART programs in Cape Town, South Africa

[55,56]. Costs include costs for ART provision, treatment of

opportunistic infections, outpatient visits, and inpatient days. Costs

were stratified by CD4 cell count at initiation since those initiating

treatment at late stages (low CD4 cell count) are more likely to

have opportunistic infections and other complications, thus

requiring more additional care. This difference disappears after

subsequent years of successful treatment. We assumed annual

ART costs for those initiating ART at CD4 cell counts of .350

cells/ml to be similar to the costs for those who initiated at 200–350

cells/ml and were on treatment for more than 2 y. For the UTT

scenario, in which treatment initiation is not guided by CD4 cell

count, we lowered all cost input values in the first year of treatment

by US$104 to subtract the cost of a CD4 cell count test [25]. We

discounted future costs and life-years saved by 3% annually [57].

Finally, we performed a sensitivity analysis on all the results

from model D by varying parameters of HIV natural history,

heterogeneity in HIV transmission, the state of the HIV epidemic

in South Africa, more and less optimistic UTT intervention

outcomes, and the assumptions on overall cost and scale effects.

Details on the sensitivity analysis can be found in Text S1.

Results

Figure 2 (left panels) shows the fit of all models to the HIV

prevalence in South Africa as reported by UNAIDS [1], together

with the projected impact of annual screening of individuals aged

15+ y and immediate ART for all HIV-infected patients at 90%

coverage. All models replicate the HIV prevalence in South Africa

in the period 1990–2010. However, as a result of the difference in

underlying processes in the structurally different models, the

corresponding HIV incidence levels are substantially different

(Figure 2, right panels). For example, the predicted incidence in

2011 for model A was 2.0/100 person-years, while for model D

this was only 1.0/100 person-years (right panels of Figure 2). Also,

projections regarding the future course of the HIV epidemic in the

absence of UTT differ substantially. Future incidence and preva-

lence in the absence of treatment reach a steady state in models A

and B, as indicated by the dashed lines. In model C, the incidence

and prevalence of HIV already decline in the no-intervention

scenario because of the increase in condom use in the early 2000s.

Such a decline is even more profound in model D, where current

ART scale-up in South Africa is included.

All models are consistent in predicting that HIV will eventually

be eliminated by UTT. However, the timing of elimination

significantly differs between the models (Figure 2; Table 3). In

model A, the HIV epidemic is driven into an elimination phase

after 7 y (range: 6; 9), while in models B, C, and D the elimination

phase is reached only after 39 (range: 30; 49), 21 (range: 19; 30),

and 17 (range: 15; 23) y, respectively. For model D, the HIV

incidence is even projected to reach the elimination phase in 2041

(range: 2037; 2047) without the full UTT intervention, because of

the impact of the current scale-up of ART at CD4 cell counts of

#350 cells/ml.

The sub-models B2, C1, and C3 do not predict elimination of

HIV by 2050 (Table 3; Figure S5). The combination of a high

background mortality and heterogeneity in HIV transmission

(model B2) results in a disproportionate contribution of acute

infection to the overall epidemic (as many HIV-infected patients

die because of other causes), thereby limiting the potential impact

of UTT. Heterogeneity in sexual behavior also prolongs the

predicted time to elimination (sub-model C1), as it accounts for

high-risk individuals who continue to spread HIV even in the

presence of ART. Finally, it is obvious that more up-to-date

assumptions on ART effectiveness result in a lower predicted

impact of UTT (sub-model C3), as the reduction in infectiousness

is lower (90% versus 99.4%) and survival is higher (twice as high

compared to Granich et al. [9]). On the other hand, explicitly

modeling background prevention interventions and STI co-factors

(sub-model C2) instead of using a simple prevalence density

function shortens the time until elimination, as the interventions

scaled up before 2012 affect the dynamics of the epidemic in the

long run, reducing incidence even without UTT or further scale-

up of other interventions (dashed line for model C in Figure 2).

There are substantial differences in the impact of UTT

compared to the no-UTT baseline in the different models, which

has important consequences for the effectiveness of the interven-

tion. By 2050, a cumulative total of 1,800 new infections per

100,000 person-years (range: 1,600; 2,500) would be averted in

model A, while this value is only 100 (range: 83; 150) in model D

(Figure 3A). Consequently, the predicted efficiency of ART in

Table 2. Cost input values used in this study.

CD4+ Count (in Cells/Microliter)
at ART Initiation Per Patient Annual ART Costs (US Dollars)

First Year Second and Third Year Subsequent Years

0–100 3,664 1,435 1,095

101–200 3,060 1,284 1,095

201–350 2,304 1,095 1,095

.350 1,095 1,095 1,095

Costs are stratified by CD4+ count at ART initiation, and include costs of diagnostic testing, ART provision, treatment of opportunistic infections, outpatient visits, and
inpatient days.
doi:10.1371/journal.pmed.1001534.t002
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Figure 2. Predicted impact of universal testing and immediate ART for all HIV-infected patients (UTT) on HIV prevalence and
incidence in adults (aged 15+ y) for four main models of the South African HIV epidemic over the period 1990–2050. Left panels: HIV
prevalence; right panels: HIV incidence. All models are structurally different. Solid lines represent the impact of the UTT intervention; the dashed lines
represent the no-UTT counterfactual. Colored lines are the average result of 1,000 simulations, and the gray areas represent the probability intervals
illustrating 95% of the stochastic variation around the baseline estimate. UTT is implemented as annual screening of the adult population (aged 15+
y), and immediate ART for all HIV-infected patients. The intervention is scaled up linearly, starting in 2012 and reaching 90% coverage in 2019 (similar
to Granich et al. [9]). The vertical dotted lines give the timing of the start of the intervention. The horizontal dotted lines in the right panels indicate
the elimination phase, defined as incidence below 1/1,000 person-years. Structures and components of the different models are explained in Figure 1.
doi:10.1371/journal.pmed.1001534.g002
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saving lives also differs substantially between models (Figure 3B).

Model A predicts about 5.7 cumulative life-years saved per

treatment year by 2050 (range: 4.7; 7.2), while in model D this

value is only 1.7 (range: 1.2; 2.6), almost four times lower.

Model D shows that cumulative net costs peak at US$3.8 billion

(range: 3.1 billion; 4.7 billion) at around 2020, and decline

thereafter as the impact of UTT on HIV incidence is translated

into a lower number of patients on treatment (Figure 4A).

Cumulative net costs reach about US$1.8 billion in 2050 (range:

0.25 billion; 3.5 billion). The effects of UTT will become apparent

only around the year 2020, when the prevented infections translate

into life-years saved (Figure 4B), and life-years saved increase

linearly to 10.4 million by 2050 (range: 5.6 million; 16.1 million).

The resulting incremental cost-effectiveness ratio is US$170/life-

year saved (range: 19; 406) (Table 4). All results are robust to

alternative assumptions and parameterizations (see sensitivity

analysis in Text S1 and Tables S6, S7, S8).

Discussion

Our study confirms previous reports that an intervention of

universal voluntary counseling and testing for individuals aged 15+
y and immediate ART for all HIV-infected individuals (UTT) at

90% coverage will eventually result in the elimination of HIV,

even in a highly endemic setting such as South Africa and with

realistic assumptions about the efficacy of ART in reducing HIV

transmission and enhancing survival. However, the predicted

timing of the elimination of HIV (defined as an incidence of below

one new infection per 1,000 person-years) differs substantially for

the different models in our study, and HIV elimination is likely to

take three times longer than the mere 7 y predicted by Granich

et al. [9]. In addition, the relative impact of the UTT intervention

compared to the baseline differs substantially. Whereas 1,800

infections are averted per 100,000 person-years (range: 1,600;

2,500) in the simplest model, this value is only 100 (range: 83; 150)

in the most comprehensive model. In fact, the latter model shows

that the current scale-up of ART for patients with CD4 cell counts

of #350 cells/ml already leads to elimination of HIV without the

additional UTT intervention. However, the considerable number

of life-years saved makes UTT at 90% coverage still a highly cost-

effective intervention, with an incremental cost-effectiveness ratio

of US$170/life-year saved (range: 19; 406).

Our sub-model analysis shows that choices in model structure

and assumptions have an important impact on the predicted

impact of UTT. It makes sense that more up-to-date assumptions

on the overall efficacy of ART in reducing infectiousness (90%

versus 99.4%) lead to delayed HIV elimination. Also, incorporat-

ing high infectiousness during the acute stage results in a less

profound impact of UTT, since relatively many transmission

events will then occur during this short period of high infec-

tiousness, which is difficult to target in UTT interventions [17,58].

Adding heterogeneity in sexual behavior and sexual networks to

the model also increases the time until elimination—this is because

the relative force of infection of HIV is high in certain high-risk

groups (e.g., FSWs) and therefore the impact of UTT is less

profound in these subgroups. Finally, explicitly modeling male

circumcision, condom use, and STI co-factors, and using increases

in condom use to quantify the HIV epidemic in South Africa [2,3],

decreases the time until HIV elimination, since the counterfactual

of no UTT already shows a substantial decline in incidence,

despite the fact that these interventions are not further scaled up in

the model after 2012. A model that relies on implicit modeling of

these interventions to capture the steady state (e.g., through a

prevalence density function, as was used by Granich et al. [9]) will

therefore overestimate the impact of UTT. Finally, it appears vital

to incorporate the current ART rollout in the counterfactual

scenario. The availability of ART in South Africa and many other

African countries is now a fact of life, and the rollout that generally

started in 2003–2004 is already affecting the epidemics through

increased survival and decreased transmission [2].

Given that the stepwise inclusion of model components

appeared to change the predicted impact of a UTT intervention,

Table 3. Year of HIV elimination (incidence ,1/1,000 person-years) under universal testing and immediate ART for all HIV-infected
patients (UTT) and number of life-years saved through UTT compared to the baseline of no UTT.

Model Sub-Model Year of Eliminationa (Range)
Life-Years Saved per ART
Treatment Year in 2050 (Range)

Model A 2019 (2018; 2021) 5.7 (4.7; 7.2)

+ Age structure (B1) 2019 (2018; 2020) 3.8 (3.1; 4.3)

+ Heterogeneity in HIV transmission
by disease stageb (B2)

2053 (2048; .2060) 2.6 (2.1; 3.3)

Model B (B1 and B2 combined) 2053 (2042; .2060) 3.0 (2.6; 3.5)

+ Sexual network (C1) .2060 (2058; .2060) 2.6 (1.8; 2.9)

+ Background prevention
interventions (C2)

2042 (2037; 2050) 2.8 (2.1; 3.2)

+ Up-to-date ART assumptions (C3) .2060 (2054; .2060) 2.9 (2.5; 3.1)

Model C (C1, C2, and C3
combined)

2032 (2030; 2041) 1.8 (1.1; 2.0)

Model D (STDSIM) 2029 (2027; 2034) 1.7 (1.2; 2.6)

Model D baseline (ART at CD4
count #350 cells/ml)

2041 (2037; 2047) N/A

UTT is scaled up linearly, starting in 2012 and reaching 90% coverage in 2019. Ranges reflect the variation in outcome due to the uncertainty in the parameter values
that were quantified based on fitting the model to the data.
aIncidence below 1/1,000 person-years.
bWe assumed four different stages: acute, asymptomatic, symptomatic, and AIDS.
N/A, not applicable.
doi:10.1371/journal.pmed.1001534.t003
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the model that incorporates all these components (model D) gives

the most accurate prediction of the impact. In addition, although

all models were able to accurately replicate the UNAIDS-reported

HIV prevalence in South Africa, model D was the only model that

was also able to capture the observed decline in incidence over the

past decade [2,3]. In model D, incidence in the population aged

15–49 y declined from 1.9/100 person-years in 2002 to 1.3/100

person-years in 2008, which is nearly the same as the observed

reduction from 2.0/100 person-years in 2002–2005 to 1.3/100

person-years in 2005–2008, as reported by Rehle et al. [3].

Incidence rates in the other models remained constant over the

same period (models A to C). In addition, model D was able to

replicate data on demographic structure, age-specific HIV

prevalence, sexual behavior, STI prevalence, and ART coverage

in South Africa (Figure S7; Text S2). Finally, previous studies with

STDSIM have shown that the model is capable of reproducing

HIV prevalence (overall and age- and sex-specific), incidence, and

mortality data from a population-based HIV and demographic

surveillance site in KwaZulu-Natal, South Africa [25,36,37,59,60].

The simulated impact of ART in this highly endemic area of

South Africa [25] was very similar to what was recently observed

by Tanser et al. [5], providing reassurance that our model predic-

tions are accurate.

To our knowledge, this is the first study that shows that the

current rollout of ART for all HIV-infected patients with CD4 cell

counts of #350 cells/ml will eventually eliminate HIV. This raises

questions about the value for money of the additional investments

required to implement UTT. Although we show that the UTT

intervention proposed by Granich et al. [9] is highly cost-effective,

the required number of health workers and financial resources for

such a strategy far exceeds the current availability in South Africa

[61]. Also, the assumed rates of HIV testing, ART uptake,

retention in care, and treatment adherence are rather optimistic

[62,63]. Adherence and retention are likely to decrease when

treatment is initiated at higher CD4 cell counts [64], while the

number of patients lost to follow-up increases when treatment

programs are scaled up [65]. Both these issues are especially

important in UTT strategies, where patient numbers increase

substantially, and many patients initiate ART at high CD4 cell

counts. In addition, maintaining screening coverage levels at 90%

for 40+ y seems not very plausible. It is likely that test refusal will

be substantially higher than the 10% assumed in our analyses [66],

increase over time [67], and be more common among people with

HIV [67], resulting in a lower and declining screening coverage

over time. Still, our sensitivity analysis shows that UTT would

remain a cost-effective strategy, even with coverage rates of only

60%. A recent study on the cost-effectiveness of ART provision in

South Africa showed that cost savings will be achieved after just

5 y of UTT at 90% coverage [68], while our modeling indicates

that there will be no net savings from this UTT intervention in

South Africa. The underlying compartmental transmission model

Figure 3. Number of infections averted per 100,000 person-
years and cumulative number of life-years saved per ART
treatment year for universal testing and immediate ART for all
HIV-infected patients (UTT) in South Africa over the period
2010–2050. The intervention consists of annual screening of the adult
population (aged 15+ y), and immediate ART for all HIV-infected
patients. Intervention is scaled up linearly starting in 2012 and reaching
90% coverage in 2019. (A) Difference between cumulative numbers of
new infections per 100,000 person-years in the UTT intervention
scenario versus the baseline (for models A, B, and C, the baseline is no
ART; for model D, the baseline is ART at CD4 count #350 cells/ml). (B)
Cumulative number of life-years saved per person-year on ART
treatment in the UTT intervention compared to the baseline (for
models A, B, and C, the baseline is no ART; for model D, the baseline is
ART at CD4 count #350 cells/ml). Error bars reflect ranges due to the
uncertainty in the parameter values that were quantified based on
fitting the model to the data.
doi:10.1371/journal.pmed.1001534.g003

Figure 4. Cumulative net costs and cumulative number of life-
years saved of universal testing and immediate ART for all HIV-
infected patients (UTT) compared to the current rollout in
South Africa of ART at CD4 count #350 cells/ml, as predicted
with model D. (A) Cumulative net costs; (B) cumulative number of life-
years saved. Grey lines represent 100 individual model runs illustrating
stochastic variation; black lines are averages over 1,000 model runs.
Error bars reflect ranges due to uncertainty in the parameter values that
were quantified based on fitting the model to data. Costs and life-years
saved were discounted at an annual rate of 3%.
doi:10.1371/journal.pmed.1001534.g004
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in that study [68] is essentially the same as that previously used by

Granich et al. [9,68], and thus resembles our model A. We show

that these types of models, which ignore sexual networks and

background prevention interventions underlying the current South

African epidemic, predict a far more optimistic impact of UTT

compared to the baseline. Cost-effectiveness and economic impact

studies based on such models should therefore be interpreted with

caution. More research with comprehensive models of the impact

of more modest UTT interventions is necessary in order to

determine whether universal treatment for HIV really is a cost-

effective intervention.

Our study has a number of limitations. We defined elimination

as incidence below 1/1,000 person-years. However, real elimina-

tion is achieved when both incidence and prevalence reach 0%.

Microsimulation allows for such an analysis, and we found that in

a model population of about 35,000 people, by 2080, 99% of all

model runs predict that HIV prevalence reaches 0% in model A

(Figure S5). In model D this point is reached only in year 2116 for

the UTT scenario, and in year 2164 for continued scale-up of

ART at CD4 count #350 cells/ml (Figure S5). In addition, we did

not model the development and transmission of drug-resistant

strains. Both acquired resistance (development of resistance within

an individual on treatment) and transmitted resistance (spread of

drug-resistant strains) will have an impact on the effectiveness of

treatment programs, and will consequently result in a less

profound effect of the current ART scale-up or UTT in South

Africa. It is currently unclear, however, to what extent the fears of

rapidly spreading drug resistance expressed at the start of the ART

scale-up were justified [69]. The prevalence of drug resistance

remains low in South Africa after nearly 10 y of scaling up ART

[70,71]. In addition, adherence to treatment is as high as in many

high-income countries [72], and survival of patients on treatment

in sub-Saharan Africa approaches general life expectancy [73],

suggesting that resistance may not become a major problem in

South Africa in the near future.

Elimination of HIV in South Africa will have huge implications

for public health and socioeconomic development in the country.

The current ART rollout is already resulting in a substantial

increase in the life expectancy of the general population [74] and

in the employment rates of HIV-infected people [75]. Finally,

elimination of HIV will also substantially reduce the tuberculosis

burden in South Africa, given the close link between the two

epidemics [76].

In conclusion, our results from a series of structurally different

models support the main message from previous studies that HIV

in South Africa can be eliminated through a strategy of annual

screening of individuals aged 15+ y and immediate ART for all

HIV-infected patients at 90% coverage, but elimination will occur

substantially later than previously predicted. Importantly, the most

comprehensive model suggests that HIV incidence in South Africa

can reach the elimination phase even if the current treatment

scale-up of ART at CD4 count #350 cells/ml continues without

the addition of a UTT intervention. Results from upcoming

community randomized trials of treatment as prevention will need

to be evaluated with models that allow for sufficient detail in

assumptions in order to adequately project the population-level

impact and overall cost-effectiveness of the UTT intervention.

Supporting Information

Figure S1 Demographic input parameters. (A) Total

fertility rates (lifetime number of births/woman) over time. Data

obtained from the UN World Fertility Data 2008 database [39].

(B) Background mortality (mortality in the absence of AIDS)

obtained from WHO [40]. All cause mortality rates were corrected

using WHO burden of disease estimates of HIV mortality rates in

South Africa [41] in order to obtain estimates of non-AIDS-related

mortality rates in South Africa.

(TIF)

Figure S2 Distribution of number of partners (steady
and casual) in the last 12 mo by age and sex. Results follow

from parameter settings described in Tables S2–S4.

(TIF)

Figure S3 Distribution of number of partners in the last
12 mo (steady and casual) by age and sex in 2003 (after
change in overall partner change rates). Results follow from

parameter settings described in Tables S2–S4 and above described

adjustment in overall partner change rates.

(TIF)

Figure S4 Parameter combinations used to create
uncertainty ranges around the baseline estimates for
models A to D. Because of underlying structural differences,

different parameters were used to fit the models to UNAIDS-

reported HIV prevalence data. Our approach to developing

parameter combinations and uncertainty ranges is described in the

Methods (‘‘Model Fitting and Parameter Uncertainty’’). Light-blue

dots and lines indicate parameter combinations that produced the

highest and lowest estimates of impact; these estimates were

omitted to create 95% uncertainty ranges. For models A and B, we

used the HIV introduction year and HIV transmission probabil-

ities (left panels) and the x parameter in the prevalence density

function p(t1) = p(t0)6e2xP, where p = HIV transmission probability

and P = HIV prevalence (right panels), to fit the model. For models

C and D, we used the relative partner change rates and

Table 4. Effects, cost, and cost-effectiveness of universal test and treat versus continued scale-up of ART at CD4 count #350 cells/
ml in South Africa over the period 2012–2050 (Model D).

Strategy
Cumulative Life-Years
(Millions) (Range)

D Life-Years (Millions)
(Range)

Cumulative Costs
(Millions of US Dollars)
(Range)

D Cost (Millions of
US Dollars) (Range)

Incremental Cost-
Effectiveness Ratio (US
Dollars/Life-Year Saved)
(Range)

ART at CD4 count
#350 cells/ml

1,290 (1,200; 1,360) — 76,900 (67,700; 90,100) — —

UTT 1,300 (1,210; 1,380) 10.4 (5.6; 16.1) 78,600 (69,100; 93,200) 1,780 (250; 3,470) 170 (19; 406)

Costs and effects are discounted at an annual rate of 3%. Life-years concern the total life-years lived in South Africa of the entire population. Of these total life-years, 7%
are life-years lived with HIV. Ranges reflect the variation in outcome due to the uncertainty in the parameter values that were quantified based on fitting the model to
the data.
doi:10.1371/journal.pmed.1001534.t004

Modeling Elimination of HIV in South Africa

PLOS Medicine | www.plosmedicine.org 10 October 2013 | Volume 10 | Issue 10 | e1001534



introduction year of HIV (left panels) and the increase in condom

use rates (right panels).

(TIF)

Figure S5 Cumulative distribution of year of achieving
0% incidence and prevalence of individual model runs
for all main models. Results are based on 400 model runs.

(TIF)

Figure S6 Predicted impact of universal testing and
immediate ART for all HIV-infected patients (UTT) on
HIV prevalence (left panels) and incidence (right panels)
in adults (aged 15+ y) for five sub-models of the South
African HIV epidemic over the period 1990–2050. Colored

lines are the average result of 1,000 simulations, and the grey areas

represent the probability intervals based on the stochastic variation

between individual model runs. UTT is implemented as annual

screening of the adult population, and immediate ART for all

HIV-infected patients. The intervention is scaled up linearly,

starting in 2012 and reaching 90% coverage in 2019 (similar to

Granich et al. [9]). The vertical dotted lines give the timing of the

start of the intervention. The horizontal dotted lines in the right

panels indicate the elimination phase, defined as incidence below

1/1,000 person-years. The same figures for the four main models

are given in Figure 2.

(TIF)

Figure S7 Model fit compared to data (model D). (A)

Projected demographic structure of South Africa in 2011: model

compared to UN data [77]. (B) Age-specific HIV prevalence

(model compared to data [78]) in 2008. (C) Age-specific

distribution in number of partners in the last 12 mo for men.

(D) Age-specific distribution in number of partners in the last

12 mo for women. (E) Trend in prevalence of STIs in men: model

compared to estimates from Johnson et al. [79]. (F) Trend in

prevalence of STIs in women: model compared to estimates from

Johnson et al. [79]. (G) Projected ART coverage in South Africa:

model versus WHO data [53]. (H) Projected total number of

people on ART in South Africa: model versus WHO data [53]. (I)

Cumulative distribution of CD4 cell counts at first HIV test: model

compared to data from KwaZulu-Natal, South Africa [25,80]. (J)

Average remaining life expectancy at treatment initiation by CD4

cell count at treatment initiation: model compared to data [51].

(TIF)

Figure S8 Predicted HIV prevalence for all sensitivity
analyses (except for alternative economic and UTT
performance assumptions) compared to UNAIDS-re-
ported HIV prevalence in South Africa [1]. Parameter

assumptions are given in Tables S6 and S7.

(TIF)

Table S1 Annual probability of a woman having a child,
by age group. Distribution over age groups according to UN

data [39].

(DOCX)

Table S2 Sexual behavior parameters. Justification for the

age distribution in promiscuity, frequency of contact, and duration

of partnerships can be found in Orroth et al. [35] and Korenromp

et al. [30]. All age-specific promiscuity values (i.e., overall partner

change rates) were adjusted with the same factor in order to

represent the HIV epidemic observed in South Africa.

(DOCX)

Table S3 Age preference matrix for men and women.
Same as in previous STDSIM studies [25,30,35]. Justification for

the values can be found in Korenromp et al. [30].

(DOCX)

Table S4 Parameter settings for commercial sex. Same

as in previous STDSIM studies [25,35]. Justification can be found

in Orroth et al. [35].

(DOCX)

Table S5 Parameter settings for natural history of
simulated STIs. Same as previously used in other studies

[25,35]. ‘‘Lack of circumcision’’ effect represents factor increase in

susceptibility to the STI for men who are not circumcised, i.e.,

uncircumcised men are twice as likely to get infected during an

unprotected sex act with an infected partner. Justification can be

found in Orroth et al. [35].

(DOCX)

Table S6 Alternative assumptions on HIV natural
history and transmission probabilities for sensitivity
analyses. Infectiousness in the asymptomatic stage, condom use,

and the year of HIV introduction are used to fit predicted HIV

prevalence to the UNAIDS data [1].

(DOCX)

Table S7 Input parameters for sensitivity analysis on
the course of the epidemic.

(DOCX)

Table S8 Results of the sensitivity analysis. The year of

elimination is defined as the first year HIV incidence drops below

1/1,000 person-years. UTT is universal testing of individuals aged

15+ y and immediate treatment for all HIV-infected patients,

starting in 2012 and scaled up to 90% coverage in 2019.

(DOCX)

Text S1 Sensitivity analysis.

(DOCX)

Text S2 Model fit to data.

(DOCX)
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Editors’ Summary

Background. About 34 million people (mostly in low- and
middle-income countries) are currently infected with HIV, the
virus that causes AIDS, and every year another 2.5 million
people become infected. HIV, which is usually transmitted
through unprotected sex with an infected partner, gradually
destroys CD4 lymphocytes and other immune system cells,
leaving infected individuals susceptible to other infections.
Early in the AIDS epidemic, people infected with HIV often
died within ten years of infection. Then, in 1996, antiretro-
viral therapy (ART) became available, and, for people living in
affluent countries, HIV/AIDS became a chronic condition.
However, ART was expensive, so HIV/AIDS remained a fatal
condition for people living in resource-limited countries. In
2006, the international community set a target of achieving
universal ART coverage by 2010, and ART programs were
initiated in many resource-limited countries. Although
universal ART coverage has still not been achieved in South
Africa, where nearly 6 million people are HIV-positive, 80% of
people in need of ART were receiving a World Health
Organization–recommended ART regimen by October 2012.

Why Was This Study Done? ART is usually started when a
person’s CD4 count falls below 350 cells/ml blood, but it is
thought that treatment of all HIV-positive individuals,
regardless of their CD4 count, could reduce HIV transmission
by reducing the infectiousness of HIV-positive individuals
(‘‘treatment as prevention’’). Might it be possible, therefore,
to eliminate HIV by screening everyone annually for infection
and treating all HIV-positive individuals immediately? In
2009, a mathematical modeling study suggested that seven
years of universal test and treat (UTT) could eliminate HIV in
South Africa. The deterministic (nonrandom) model used in
that study has been widely criticized, however, and some
subsequent modeling studies have reached different con-
clusions, probably because of differences in the models’
structures and in the assumptions built into them. A better
understanding of the reasons for the discrepancies between
models would help policy-makers decide whether to
introduce UTT, so, here, the researchers developed several
increasingly complex and realistic models of the South
African HIV epidemic and used these models to predict the
long-term impact of UTT in South Africa.

What Did the Researchers Do and Find? The researchers
developed nine structurally different mathematical models
of the South African HIV epidemic based on the STDSIM
framework, a stochastic microsimulation model that simu-
lates the life course of individuals in a dynamic network of
sexual contacts and in which events such as HIV infection are
random processes. The simplest model, which resembled the
original deterministic model, was extended by sequentially
adding in factors such as different HIV transmission rates at
different stages of HIV infection and up-to-date assumptions
regarding the ability of ART to reduce HIV infectiousness. All
the models replicated the prevalence of HIV in South Africa
(the proportion of the population that was HIV-positive)
between 1990 and 2010, and all predicted that UTT (defined
as annual screening of individuals age 15+ years and
immediate ART for all HIV-infected adults starting in 2012

and scaled up to 90% coverage by 2019) would result in HIV
elimination (less than one new infection per 1,000 person-
years). However, whereas the simplest model predicted that
UTT would eliminate HIV after seven years, the more
complex, realistic models predicted elimination at much
later time points. Importantly, the most comprehensive
model predicted that, although elimination would be
reached after about 17 years of UTT, the current strategy
of ART initiation for HIV-positive individuals at a CD4 cell
count at or below 350 cells/ml would also lead to HIV
elimination, albeit ten years later than UTT.

What Do These Findings Mean? These findings confirm
previous predictions that UTT could eliminate HIV in South
Africa, but the development of more realistic models than
those used in the past suggests that HIV elimination would
occur substantially later than originally predicted. Impor-
tantly, the most comprehensive model suggests that HIV
could be eliminated in South Africa using the current
strategy for ART treatment alone. As with all modeling
studies, the accuracy of these findings depends on the
assumptions built into the models and on the structure of
the models. Thus, although these findings support the use of
UTT as an intervention to eliminate HIV, more research with
comprehensive models that incorporate factors such as data
from ongoing trials of treatment as prevention is needed to
determine the population-level impact and overall cost-
effectiveness of UTT.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001534.

N This study is further discussed in a PLOS Medicine
Perspective by Ford and Hirnschall

N Information is available from the US National Institute of
Allergy and Infectious Diseases on HIV infection and AIDS

N NAM/aidsmap provides basic information about HIV/AIDS
and summaries of recent research findings on HIV care and
treatment

N Information is available from Avert, an international AIDS
charity, on many aspects of HIV/AIDS, including informa-
tion on HIV and AIDS in South Africa, on HIV treatment as
prevention and the possibility of HIV elimination (in
English and Spanish)

N The 2012 UNAIDS World AIDS Day Report provides up-to-
date information about the AIDS epidemic and efforts to
halt it

N The World Health Organization provides information about
universal access to AIDS treatment (in several languages);
its 2010 ART guidelines can be downloaded

N The PLOS Medicine Collection ‘‘Investigating the Impact of
Treatment on New HIV Infections’’ provides more infor-
mation about HIV treatment as prevention

N Personal stories about living with HIV/AIDS are available
through Avert, through NAM/aidsmap, and through the
charity website Healthtalkonline
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