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There is a growing body of research focused on developing and evaluating behavioral
training paradigms meant to induce enhancements in cognitive function. It has recently
been proposed that one mechanism through which such performance gains could be
induced involves participants’ expectations of improvement. However, no work to date
has evaluated whether it is possible to cause changes in cognitive function in a long-
term behavioral training study by manipulating expectations. In this study, positive or
negative expectations about cognitive training were both explicitly and associatively
induced before either a working memory training intervention or a control interven-
tion. Consistent with previous work, a main effect of the training condition was found,
with individuals trained on the working memory task showing larger gains in cognitive
function than those trained on the control task. Interestingly, a main effect of expecta-
tion was also found, with individuals given positive expectations showing larger cogni-
tive gains than those who were given negative expectations (regardless of training
condition). No interaction effect between training and expectations was found. Explor-
atory analyses suggest that certain individual characteristics (e.g., personality, motiva-
tion) moderate the size of the expectation effect. These results highlight aspects of
methodology that can inform future behavioral interventions and suggest that partici-
pant expectations could be capitalized on to maximize training outcomes.

cognitive training j working memory training j placebo effect j expectation effect

There is a great deal of current scientific interest as to whether and/or how basic cognitive
skills can be improved via dedicated behavioral training (1–3). This potential, if realized,
could lead to substantial real-world impact. Indeed, effective training paradigms would
have significant value not only for populations that show deficits in cognitive skills (e.g.,
individuals diagnosed with Attention Deficit Hyperactivity Disorder [ADHD] or Alz-
heimer’s disease and related dementias) but also, for the general public, where core cogni-
tive capacities underpin success in both academic and professional contexts (4–6). These
possible translational applications, paired with an emerging understanding of how to best
unlock neuroplastic change across the life span (7, 8), have spurred hundreds of behavioral
intervention studies over the past few decades. While the results have not been uniformly
positive (perhaps not surprising given the massive heterogeneity in theoretical approach,
methods, etc.), multiple meta-analyses suggest that it is possible for cognitive functions to
be improved via some forms of dedicated behavioral training (9–11). However, while
these basic science results provide optimism that real-world gains could be realized [and in
fact, real-world gain is already being realized in some spheres, such as a Food and Drug
Administration (FDA)–cleared video game–based treatment supplement for ADHD
(12, 13)], concerns have been raised as to whether those interventions that have produced
positive outcomes are truly working via the proposed mechanisms or through other
nonspecific third-variable mechanisms. Several factors have been proposed to explain
improvements in behavioral interventions, including selective attrition, contextual factors,
regression to the mean, and practice effects to name a few (14). Here, we focus on
whether expectation-based (i.e., placebo) mechanisms can explain improvements in cogni-
tive training (15–17).
In other domains, such as in clinical trials in the pharmaceutical domain for

instance, expectation-based mechanisms are typically controlled for by making the
experimental treatment and the control treatment perceptually indistinguishable (e.g.,
both might be clear fluids in an intravenous bag or a white unmarked pill). Because
perceptual characteristics cannot be used to infer condition, this methodology is meant
to ensure that expectations are matched between the experimental and control groups
(both in terms of the expectations that the participants have and in terms of the expect-
ations that the research team members who interact with the participants have). Under
ideal circumstances, the use of such a “double-unaware” design ensures that expecta-
tions cannot be an explanatory mechanism underlying any differences between the
groups’ outcomes [note that we use the double-unaware terminology in lieu of the
more common “double-blind” terminology, which can be seen as ableist (18)].
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It is unclear whether most pharmaceutical trials do, in fact,
truly meet the double-unaware standard (e.g., despite being
perceptually identical, active and control treatments nonetheless
often produce different patterns of side effects that could be
used to infer condition) (19, 20). Yet, meeting the double-
unaware standard is particularly difficult in the case of cognitive
training interventions (16). Here, there is simply no way to
make the experimental and control interventions perceptually
indistinguishable while at the same time, ensuring that the
experimental condition contains an “active ingredient” that the
control condition lacks. In behavioral interventions, no matter
what the active ingredient may be, it will necessarily produce a
difference in look and feel as compared with a training condi-
tion that lacks the ingredient.
Researchers designing cognitive training trials, therefore, typ-

ically attempt to utilize experimental and control conditions
that, while differing in the proposed active ingredient, will
nonetheless produce similar expectations about the likely out-
comes (16, 21–24). This type of matching process, however, is
inherently difficult as it is not always clear what expectations
will be induced by a given type of experience. Consistent with
this, there is reason to believe that expectations have not always
been successfully matched. In multiple cases, despite attempts
to match expectations across conditions, participants in behav-
ioral intervention studies have nonetheless indicated the belief
that the true active training task will produce more cognitive
gains than the control task (25–27). Critically, the data as to
whether differential expectations in these cases actually, in turn,
influence the observed outcomes are decidedly mixed. In some
cases, participant expectations differed between training and
control conditions, and these expectations were at least partially
related to differences in behavior (25). In other cases, partici-
pants expected to improve but did not show any actual
improvements in cognitive skill (28), or the degree to which
they improved was unrelated to their stated expectations (29).
Regardless of the mixed nature of the data thus far, there is

increasing consensus that training studies should 1) attempt to
match the expectations generated by their experimental and
control treatment conditions, 2) measure the extent to which
this matching is successful and if the matching was not success-
ful, and 3) evaluate the extent to which differential expectations
explain differences in outcome (16, 30). Yet, such methods are
not ideal with respect to getting to the core question of whether
expectation-based mechanisms can, in fact, alter performance
on cognitive tasks in the context of cognitive intervention stud-
ies in the first place. Indeed, there is a growing body of work
suggesting that self-reported expectations do not necessarily
fully reflect the types of predictions being generated by the
brain (e.g., it is possible to produce placebo analgesia effects
even in the absence of self-reported expectation of pain relief)
(31, 32). Instead, addressing this question would entail pur-
posefully maximizing the differences in expectations between
groups (i.e., rather than attempting to minimize differential
expectations and then, measuring the possible impact if the
differences were not eliminated, as is done in most cognitive
training studies).
One key question then is how to maximize such expecta-

tions. In general, in those domains that have closely examined
placebo effects, expectations are typically induced through two
broad routes: an explicit route and an associative route. In the
explicit route, as given by the name, participants are explicitly
told what behavioral changes they should expect (e.g., “this pill
will improve your symptoms” or “this cognitive training will
improve your cognition”) (33). In the associative learning

route, participants are made to experience a behavioral change
associated with expected outcomes (e.g., feeling improvements
of symptoms or gains in cognition) through some form of
deception (34). For example, in an explicit expectation induc-
tion study, participants may first have a hot temperature probe
applied to their skin, after which they are asked to rate their
pain level. An inert cream is then applied that is explicitly
described as an analgesic before the hot temperature probe is
reapplied. If participants indicate less pain after the cream is
applied, this is taken as evidence of an explicit expectation
effect. In the associative expectation version, the study pro-
gresses identically as above except that when the hot tempera-
ture probe is applied the second time, it is at a physically lower
temperature than it was initially (participants are not made
aware of this fact). This is meant to create an associative pairing
between the cream and a reduction in experienced pain
(i.e., not only are they told that the cream will reduce their
pain, they are provided “evidence” that the cream works as
described). If then, after reapplying the cream and applying the
hot temperature probe a third time (this time at the same tem-
perature setting as the first application), if participants indicate
even less pain than in the explicit condition, this is taken as evi-
dence of an associative expectation effect. It remains to be clari-
fied how associative learning approaches may be best applied to
cognitive training; however, we suggest here that a reasonable
approach to this would be to provide test sessions where test
items are manipulated to provide participants with an experi-
ence where they perceive that they are performing better, or
worse in the case of a nocebo, than they did at the initial test
session. Notably, while there are cases where strong placebo
effects have been induced via only explicit (35) or only associa-
tive methods (36), in general, the most consistent and robust
effects have been induced when a combination of these meth-
ods has been utilized (37–39).

Within the cognitive training field, the corresponding literature
is quite sparse. Few studies have deliberately attempted to create
differences in participant expectations, and of those, all have used
the explicit expectation route alone, have implemented the manip-
ulation in the context of rather short interventions (e.g., utilizing
20 min of “training” within a single session rather than the multi-
ple hours that are typically implemented in actual training stud-
ies), or both. Of these, the results are again at best mixed, with
one study suggesting that expectations alone can result in a posi-
tive impact on cognitive measures (40), while others have found
no such effects (33, 41, 42). Given this critical gap in knowledge,
here we examined the impact of manipulations deliberately
designed to maximize the presence of differential expectations in
the context of a long-term cognitive training study.

Current Study

Here, we implemented a 2 (cognitive training vs. active con-
trol) × 2 (positive vs. negative expectation) factorial design to
directly estimate the combined effects of explicit and associative
placebos. As Fig. 1 shows, the design involved a typical pretest
! multisession training ! posttest design with two treatment
groups (n-back working memory training and trivia training);
however, it was fully intermixed with two expectation condi-
tions (placebo and nocebo). The primary goal of the current
study was to examine the extent to which expectation effects
can be induced in the context of a typical cognitive training
style intervention by focusing on a variety of common targets,
including working memory, cognitive flexibility, visual selective
attention, spatial cognition, and fluid intelligence. Thus, all
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methodological choices were made in the service of maximizing
the difference in expectations and thus, the potential magnitude
of the expectation effect across groups. For instance, a combi-
nation of the explicit and associative routes was utilized to cre-
ate both the “placebo” (i.e., expectations of improvement as a
result of training), and “nocebo” (i.e., expectations of dimin-
ished performance as a result of training) conditions. Further-
more, rather than utilizing what current empirical evidence
suggests might be the absolute most effective training paradigm
in terms of enhancing cognitive function (43), we instead uti-
lized a popular version of n-back training that has been shown
to have a positive impact in the past but just as importantly,
was a better match with our assumptions regarding what partic-
ipants imagine “brain training” to entail (e.g., more like a psy-
chology task than a video game). This was then paired with an
active control task that could also plausibly be expected to
improve cognitive function (a general knowledge/trivia task,
which takes advantage of naive participants often not distin-
guishing between crystallized knowledge and fluid cognitive
performance) (23). The use of these two training tasks not only
ensured that both training conditions could potentially produce
an expectation effect, but the use of one task that has more
active ingredients than the other (even if it is not what we
would consider the strongest possible training task) allowed us
to examine whether the presence of these active ingredients
interacted with expectations to further augment gains. Next,
because in many areas of medicine, there is increasing interest
in the use of placebos as treatment, we employed both an
immediate posttest at the conclusion of training and a second
posttest after participants were fully debriefed regarding the

true purpose of the study. This allowed us to examine not
only if expectation effects could be induced but if so, whether
these effects were resilient to knowledge about the true nature
of the intervention. Previous research has shown that placebo
effects persist after participants are made aware of their
expectations (44), even if they are not consciously aware of
their expectations (45). Finally, the extent to which there are
individual difference factors that predict placebo responsive-
ness has long been of interest to fields that have focused on
placebo effects. For example, placebo effects can be predicted
by a number of psychological constructs, including goal seek-
ing, self-efficacy, self-esteem, fun or sensation seeking, and
neuroticism as well as underlying brain activity (46–49).
While this previous research is related, no work to date has
examined the role of individual differences in placebo effects
in the context of cognitive training. As such, exploratory
analyses investigated whether individual characteristics, such
as those related to personality and motivation, might predict
which types of people are most susceptible to expectation
effects in cognitive training (50).

Results

Expectation Induction Manipulation Check. Participants’ stated
expectations about how their performance would change after cog-
nitive training aligned with the message they were given prior to
training. Those who received the placebo manipulation reported
higher expectations than those who received the nocebo manipula-
tion when asked how much cognitive training improves cognition
on a scale from 1 (completely unsuccessful) to 7 [completely suc-
cessful; placebo: M = 5.24, SD = 1.18; nocebo: M = 4.07,
SD = 1.22; t(123) = 5.48, P < 0.001], with a 4 on this scale
indicating neutral expectations about training. While the nocebo
group was intended to create negative expectations (i.e., less than
four), previous research has shown that the majority of individu-
als, even with no explicit expectation given, expect cognitive train-
ing to improve cognition (51). Thus, the nocebo manipulation
was effective in shifting those expectations to neutral.

The Effect of Expectations and Training on Cognitive Battery
Performance. Primary and exploratory analyses followed preregis-
tration on Open Science Framework (https://osf.io/5ve7q). To
determine whether there were any overall expectation or training
condition effects on cognitive performance, two 2 (positive vs.
nocebo) × 2 (cognitive training vs. control training) multivariate
analyses of covariance (MANCOVAs) were run on the posttest
and delayed test task batteries (n-back, O span, task-switching
task, countermanding tasks, useful field of view [UFOV], atten-
tional network test [ANT], mental rotation task, paper-folding
task, University of California Matrix Reasoning Test [UCMRT],
and Raven’s Advanced Progressive Matrices [RAPM]) with respec-
tive pretest scores as covariates to test several a priori–defined
directional hypotheses (i.e., that the placebo condition would out-
perform the nocebo condition and that the cognitive training con-
dition would outperform the control condition). Thus, we would
reject null hypotheses only if the tests reach the alpha-threshold
with respect to these directional hypotheses. At posttest, as shown
in Fig. 2, there was a significant effect of the expectation condition,
such that those who received the placebo manipulations performed
better than those who received the nocebo manipulations
[F(10,102) = 1.71, P = 0.044, ηp2 = 0.14]. There was also a sig-
nificant effect of the training condition, such that those who com-
pleted the working memory game performed better than those
who completed the control game [F(10,102) = 1.89, P = 0.027,

Fig. 1. A flowchart of the study procedure and assignment to one of four
experimental conditions.
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ηp2 = 0.16]. The interaction between expectations and training
was also not significant at posttest [F(10,102) = 0.82, P = 0.611,
ηp2 = 0.07]. At the delayed test, shown in Fig. 2, the effect of the
training condition remained significant [F(10,102) = 2.47, P =
0.006, ηp2 = 0.20], but the effect of the placebo manipulation no
longer showed a significant effect on cognitive performance
[F(10,102) = 0.99, P = 0.230, ηp2 = 0.09]. The interaction
between expectations and training was not significant at delayed
test either [F(10,102) = 0.38, P = 0.955, ηp2 = 0.04]. Follow-up
exploratory analyses were then conducted on a task by task basis. As
seen in Table 1, at posttest (again with pretest scores as covariates),
those individuals who received the placebo manipulation performed
significantly better than those who received the nocebo manipula-
tion on the RAPM, UCMRT, n-back, and task-switching task.
Training condition, meanwhile, had a significant effect on the n-
back and the paper-folding task. At the delayed test, as seen in
Table 2, the placebo manipulation remained only significant for the
task-switching task, and the training condition remained significant
for the n-back.

Further Explanation of the Training Effects. A recently pro-
posed mediation model (52) was tested to determine whether
gains on a far-transfer task on a fluid intelligence measure are
mediated by near-transfer gains on an untrained n-back task,
and indeed, we were able to replicate the earlier findings (not-
ing that because this mediation model has only recently been
published, a replication of the result was not among our prereg-
istered analyses). In short, the indirect effect of the training
group on posttest matrix reasoning performance through
n-back performance was significant (b = �0.18, SE = 0.07,
95% CI [�0.34, �0.05]), suggesting that the far-transfer gains
in the RAPM and UCMRT were due to gains in near-transfer
task performance on the n-back, thus supporting the previous
findings (SI Appendix) (52).

Moderator Analyses. A secondary aim of the study was to
examine possible moderating factors of expectation effects on
cognitive task performance. While there is a body of work in
outside domains examining individual difference factors related
to placebo responsiveness, we note from the outset that given
the paucity of data in the cognitive domain, these analyses were
planned to be exploratory in nature and thus, should be consid-
ered as hypothesis generating for future work rather than in
any way confirmatory. Because significant expectation effects
were found for posttest performance on overall performance as
well as specifically on the n-back, task-switching, RAPM, and
UCMRT tasks, moderator analyses focused on these variables
as the dependent variables, with their respective pretest scores
as covariates (SI Appendix has moderator analyses for all other
cognitive tasks). Moderators examined included gender, age,
subscale scores of the Big Five Personality Inventory (openness,
conscientiousness, extraversion, agreeableness, and neuroti-
cism), motivation subscale scores from the Behavioral Inhibi-
tion System (BIS) and Behavioral Activation System (BAS)
scales (drive, fun seeking, reward responsiveness, and BIS
total), Grit-scale score, metacognitive-scale score, fixed/growth
mindset–scale score, subscale scores of the Schutte Self-Report
Emotional Intelligence Test (SSEIT; emotion perception, uti-
lizing emotions, managing self-relevant emotions, and manag-
ing others emotions), and subscale scores of the Work and
Family Orientation (WOFO) scale (hard work, mastery, and
competitiveness). Simple moderations were conducted using
Hayes’ Process macro for SPSS using 5,000 bootstrap samples
for bias correction.

Fig. 3 and Table 3 show the interaction effects between each
moderator and the expectation manipulation on overall posttest
performance and performance on the n-back, task-switching tasks,
RAPM, and UCMRT. The effect of the expectation manipulation
on n-back performance was significantly moderated by extraver-
sion; for those who received the nocebo, n-back performance
increased as extraversion increased, while for those who received
the placebo, n-back performance slightly decreased as extraversion
increased. Additionally, this effect was also moderated by reward
sensitivity, with a similar pattern of results. The effect of the
expectation manipulation on task-switching performance was sig-
nificantly moderated by fun-seeking behavior on the BAS/BIS
scale (i.e., the motivation to find novel rewards spontaneously);
for those who received the nocebo, task-switching performance
increased as fun seeking increased, while for those who received
the placebo, task-switching performance decreased as fun seeking
increased. The effect of the expectation manipulation on RAPM
performance was significantly moderated by mindset; for those
who received the nocebo, RAPM performance decreased as
growth mindset increased, while for those who received the pla-
cebo, RAPM performance slightly increased as growth mindset
increased.

Discussion

The results in this study provide evidence that expectation
effects can be induced in at least some cognitive domains in the
context of a long-term cognitive training study. After partici-
pants were presented with a positive or negative explicit expec-
tation message and experienced outcomes consistent with that
same expectation through associative learning, their perfor-
mance on the posttraining cognitive battery significantly dif-
fered, regardless of training condition. While some previous
research has failed to observe such significant expectation effects
(30, 33, 45), there are several key differences as compared with
the current work, including whether the expectations were gen-
erated in the context of a multisession cognitive training study
with test batteries conducted on separate days prior to and after
training and the use of a negative expectation comparison con-
dition rather than a neutral expectation condition (which
should produce a bigger difference between expectation condi-
tions), that may explain the different outcomes.

Although overall expectation effects were seen across the cog-
nitive battery, examining the effects on individual tasks suggests
that expectations did not affect all cognitive domains equally.
The results from this study suggest that measures of fluid intel-
ligence, cognitive flexibility, and working memory were more
susceptible to expectation effects than spatial cognition and
visual selective attention. Interestingly, in some cases, expecta-
tion effects were not only domain specific but also, task specific
within a domain. For example, the two cognitive flexibility
measures, the countermanding task and the task-switching task,
and the two fluid intelligence measures, RAPM and UCMRT,
showed marked differences in the strength of the expectation
effect, with the RAPM and task-switching task being more sus-
ceptible than their counterparts. Although it should be noted
that these findings should be replicated to determine whether
they are reliable, this raises an important issue in the convergent
validity of measures within the same domain, particularly with
regard to how participant expectations influence performance.
Future work should examine whether and why some tasks,
even when theoretically measuring the same construct, show
differences in placebo effects on performance. Our findings
may indicate that expectation effects are not consistently
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induced, even with such strong manipulations, and thus, it
raises the more general question of how pervasive expectations
really are in the context of cognitive training studies (30).
In this study, the effects of the positive and negative expecta-

tions were only seen on tasks during the posttest, which was com-
pleted between 1 and 3 d after the last training session. This effect
was no longer present after participants were debriefed and tested
again, suggesting that participants’ expectations may have only
influenced cognitive performance when they were unaware of the
manipulations. This is in contrast to other literature that has found
that placebo effects persist even after participants know they are
receiving a placebo (31). Here, we note that the debriefing was
confounded with a 1-wk gap between the posttest and delayed
test, which included no training sessions. Thus, the lack of expecta-
tion effects at the delayed test could have been due to participant
awareness, lack of active training, or a combination of both. Future
research should examine whether there are lasting effects of expect-
ations in cognitive training if participants are made aware of their
expectations both during and after training (31, 32).
Along with a main effect of expectations, there was also a

main effect of the training condition, such that those who were
trained on a working memory program improved more than

those who were trained on a trivia game on the cognitive bat-
tery overall. This suggests that differential placebo effects
between experimental and control training conditions cannot
fully account for differences in cognitive performance gains
between conditions, as some researchers have proposed (53).
Furthermore, the extent of transfer to fluid intelligence was
mediated by the improvement in near transfer (52). Along with
the lack of an interaction between the training condition and
the expectation condition, the most parsimonious descriptions
of the results are that there was an effect of training condition
regardless of the expectation and that the expectation and train-
ing conditions have additive effects on performance, with those
receiving the working memory training and placebo showing
the highest gains and those receiving the control training and
nocebo showing the lowest gains.

Although rigorous efficacy research aimed at assessing the
impact of certain mechanics within the interventions should seek
to reduce expectation effects in order to examine the true effects
of the intervention, the current work suggests that purely applied
interventions might instead be more powerful when combined
with the appropriate expectation. For example, the most effective
intervention should be one in which participants also expect the

Fig. 2. Effects of training and expectation conditions on overall performance on the posttest and delayed-test cognitive batteries, controlling for pretest
performance. Error bars represent SEM.

Table 1. Posttest cognitive battery expectation and training effects for all individual tasks included in the
MANCOVA with pretest results as a covariate

Task

Expectation effect Training effect Expectation × training interaction

F P value Partial η2 F P value Partial η2 F P value Partial η2

n-back 4.20 0.022 0.04a 12.59 <0.001 0.10 0.03 0.854 0.00
O span 0.17 0.340 0.00 0.21 0.323 0.00 2.16 0.144 0.02
Counter 1.04 0.156 0.01 2.27 0.068 0.02 0.02 0.901 0.00
Task switch 3.41 0.034 0.03 1.07 0.152 0.01 0.28 0.597 0.00
UFOV 0.03 0.428 0.00 0.90 0.172 0.01 0.77 0.382 0.01
ANT 1.00 0.160 0.01 0.02 0.441 0.00 0.47 0.494 0.00
Mental rotation 0.00 0.481 0.00 0.01 0.457 0.00 0.60 0.441 0.01
Paper folding 1.75 0.094 0.02 3.70 0.029 0.03 3.22 0.076 0.03
RAPM 8.39 0.003 0.07 2.25 0.069 0.02 0.57 0.451 0.01
UCMRT 2.93 0.045 0.03 1.43 0.117 0.01 0.27 0.603 0.00

aBold values indicate p-values < .05
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most improvement from the intervention in order to capitalize on
participants’ motivation to engage with the intervention. Thus,
adding an expectation as part of an intervention may help to
maximize improvements from the intervention. However, as men-
tioned, once participants were made aware of the study manipula-
tions during debriefing, these benefits diminished, suggesting that

placebo effects may only be effective when participants remain
unaware and/or that placebo effects might be relatively short lived
(54). Future work should examine how inducing participant
expectations can be leveraged to further increase the effectiveness
of interventions and whether they can be made more robust to
participant awareness.

Table 2. Delayed-test cognitive battery expectation and training effects for all individual tasks included in the
MANCOVA with pretest results as a covariate

Task

Expectation effect Training effect Expectation × training interaction

F P value Partial η2 F P value Partial η2 F P value Partial η2

n-back 2.05 0.078 0.02 16.75 <0.001 0.13 0.45 0.502 0.00
O span 0.20 0.329 0.00 0.22 0.320 0.00 0.30 0.586 0.00
Counter 0.36 0.274 0.00 0.09 0.382 0.00 1.10 0.297 0.01
Task switch 4.57 0.018 0.04a 0.19 0.332 0.00 0.30 0.585 0.00
UFOV 1.58 0.106 0.01 0.02 0.439 0.00 0.26 0.612 0.00
ANT 1.44 0.116 0.01 0.04 0.424 0.00 0.82 0.367 0.01
Mental rotation 0.59 0.223 0.01 0.06 0.407 0.00 0.011 0.744 0.00
Paper folding 0.09 0.384 0.00 2.08 0.076 0.02 0.71 0.406 0.01
RAPM 0.20 0.327 0.00 0.16 0.347 0.00 0.10 0.749 0.00
UCMRT 2.31 0.066 0.02 0.31 0.294 0.00 0.03 0.869 0.00

aBold values indicate p-values < .05

Fig. 3. Significant moderator analyses for (A) extraversion and the expectation effect on n-back performance, (B) the BAS reward subscale and the expecta-
tion effect on n-back performance, (C) the BAS fun-seeking subscale and the expectation effect on task-switching performance, and (D) mindset and the
expectation effect on RAPM performance. All moderation analyses controlled for respective pretest task performance.
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Future work should also more carefully examine interindivid-
ual differences. In the current work, those individuals with a
higher growth mindset (i.e., those who believe that attributes,
particularly intelligence, are amenable to change and are not
fixed traits) showed a larger expectation effect than those
with lower–growth mindset scores. These findings are in line
with theories of growth and fixed mindset, in which those with
more of a growth mindset appropriately increased or decreased
their performance on the RAPM after expecting to do so,
whereas those with more of a fixed mindset performed similarly
across the positive and negative conditions (23, 55). This is in
line with work in other domains examining the effects of place-
bos in medical interventions, such as pain and psychiatric disor-
ders (46–49). By examining individual differences, cognitive
training interventions may be customized to capitalize on
opportunities when expectations would lead to maximal bene-
fits for participants.
One limitation of this study is the expectation that manipula-

tion did not separate the explicit and associative learning routes.
Thus, it cannot be determined through which route(s) the expec-
tation effect was driven or whether both routes contributed
equally. Further, it is unclear the extent to which the placebo or
the nocebo independently impacted outcomes as our results are
for the combined effect of the placebo and nocebo. Future work
could determine which expectation routes are necessary or
whether one is stronger than the other in cognitive training. For
example, researchers could cross the positive, negative, and neutral
explicit expectations with the positive, negative, and neutral asso-
ciative routes to examine how all combinations of expectations
affect performance after a cognitive training intervention.
Another limitation of the study was the attrition rate of par-

ticipants. About 27% of participants who completed at least

one pretest session did not finish the study. However, this is
within reasonable standards as other remotely administered
training studies have seen about 40 to 50% attrition (56, 57).
Because of the low inclusion rate in the final analyses, the
study may have been underpowered to detect the full extent of
training or expectation effects at posttest or delayed test. Addi-
tionally, of those who completed the study, about 15% of
participants had to be excluded because they did not follow
training instructions at home, and overall training improve-
ment in the n-back group was slightly lower than previous
studies. Participants improved by about 1 n-back level on aver-
age, while improvement was closer to 1.5 n-back levels or even
higher in remote and in-laboratory studies (23, 42, 57). This
may suggest that there may be motivational factors to consider
when running a long-term study online. Nonetheless, consider-
ing that the study was run during the unprecedented global
pandemic in 2020, a compliance rate of 85% is respectable and
is in line with what we have observed in other remotely admin-
istered training studies before (56). However, it would be
important to examine whether these patterns of results are simi-
lar for laboratory studies.

Finally, because of the mixed findings of expectation effects
in cognitive training, it would be important for future work to
attempt to replicate these findings. It may be the case that
expectation effects are sizable only when a negative expectation
is induced rather than a neutral expectation. Further, we note
that the n-back task utilized here is a nongamified version of
the n-back that we often use as a control condition in other
studies (58) and was not designed to create maximal training
benefit. Future research may also want to focus on identifying
other populations that would more directly benefit from
expectations effects in cognitive training. For example, older

Table 3. Simple moderator analyses for posttest n-back, task-switching, RAPM, and UCMRT performance

Moderator

Overall posttest score n-back Task switching RAPM UCMRT

b p CI b p CI b p CI b p CI b p CI

Age 0.02 0.229 –0.02, 0.07 –0.00 0.995 –0.13, 0.13 –0.02 0.737 –0.11, 0.08 –0.01 0.782 –0.12, 0.09 –0.01 0.870 –0.12, 0.10

Gender 0.11 0.367 –0.13, 0.35 0.40 0.316 –0.39, 1.20 0.17 0.549 –0.40, 0.75 –0.17 0.576 –0.79, 0.44 0.20 0.548 –0.46, 0.87

Big 5

Extra. 0.05 0.075 –0.01, 0.10 0.19 0.035 0.01, 0.36a –0.01 0.828 –0.14, 0.11 –0.02 0.825 –0.16, 0.13 –0.12 0.112 –0.27, 0.03

Agree. 0.01 0.772 –0.06, 0.08 –0.03 0.796 –0.26, 0.20 0.06 0.454 –0.10, 0.23 –0.09 0.303 –0.27, 0.09 0.03 0.754 –0.16, 0.22

Consci. –0.01 0.750 –0.08, 0.06 0.00 0.972 –0.23, 0.23 –0.04 0.674 –0.20, 0.13 –0.05 0.610 –0.23, 0.13 –0.12 0.218 –0.31, 0.07

Neurot. –0.05 0.142 –0.10, 0.02 0.00 0.980 –0.19, 0.20 0.02 0.786 –0.12, 0.16 0.10 0.202 –0.05, 0.25 –0.04 0.675 –0.20, 0.13

Open. –0.03 0.301 –0.09, 0.02 0.04 0.659 –0.15, 0.24 0.09 0.204 –0.05, 0.24 0.00 0.970 –0.15, 0.16 –0.04 0.603 –0.21, 0.12

BAS/BIS

Drive 0.03 0.144 –0.01, 0.08 0.13 0.079 –0.02, 0.27 –0.05 0.382 –0.15, 0.06 0.04 0.462 –0.07, 0.16 –0.06 0.305 –0.19, 0.06

Fun seek 0.02 0.386 –0.03, 0.02 0.06 0.503 –0.11, 0.23 0.13 0.032 0.02, 0.25 0.04 0.579 –0.10, 0.17 0.03 0.716 –0.12, 0.17

Reward 0.01 0.795 –0.04, 0.06 0.17 0.032 0.02, 0.32 –0.00 0.945 –0.12, 0.11 0.01 0.820 –0.11, 0.14 –0.10 0.130 –0.24, 0.03

BIS –0.01 0.368 –0.04, 0.02 0.06 0.247 –0.04, 0.15 0.01 0.848 –0.06, 0.08 0.03 0.427 –0.05, 0.11 0.01 0.845 –0.07, 0.09

Grit –0.00 0.656 –0.02, 0.03 0.02 0.533 –0.05, 0.09 –0.04 0.117 –0.09, 0.01 –0.01 0.762 –0.06, 0.05 –0.03 0.318 –0.09, 0.03

Metacog. 0.00 0.226 –0.00, 0.01 0.01 0.251 –0.01, 0.03 –0.00 0.754 –0.02, 0.01 –0.00 0.945 –0.02, 0.02 –0.01 0.407 –0.03, 0.01

Mindset –0.01 0.057 –0.03, 0.00 –0.01 0.744 –0.06, 0.04 –0.00 0.851 –0.04, 0.03 –0.05 0.018 –0.08, –0.01 –0.04 0.056 –0.08, 0.00

SSEIT

Percept –0.01 0.231 –0.03, 0.01 –0.01 0.673 –0.07, 0.04 0.02 0.445 –0.02, 0.05 –0.00 0.887 –0.02, 0.02 –0.01 0.545 –0.06, 0.03

Utility 0.02 0.350 –0.02, 0.05 –0.02 0.624 –0.12, 0.07 –0.03 0.470 –0.10, 0.05 0.00 0.953 –0.08, 0.08 –0.07 0.095 –0.15, 0.01

Self –0.01 0.231 –0.03, 0.07 0.00 0.927 –0.06, 0.07 –0.01 0.625 –0.06, 0.04 –0.01 0.619 –0.07, 0.04 –0.02 0.406 –0.08, 0.03

Others 0.00 0.954 –0.03, 0.03 0.02 0.651 –0.06, 10 0.05 0.096 –0.01, 0.11 –0.00 0.915 –0.07, 0.06 –0.06 0.062 –0.13, 0.00

WOFO

Work 0.02 0.334 –0.02, 0.01 0.03 0.666 –0.09, 0.14 –0.02 0.608 –0.11, 0.06 –0.03 0.476 –0.13, 0.06 0.03 0.567 –0.07, 0.13

Mastery 0.02 0.094 –0.00, 0.04 0.03 0.459 –0.05, 0.11 –0.03 0.414 –0.08, 0.03 0.02 0.523 –0.04, 0.08 0.00 0.880 –0.06, 0.07

Compete –0.01 0.594 –0.04, 0.02 –0.01 0.873 –0.11, 0.09 –0.00 0.983 –0.07, 0.07 –0.03 0.477 –0.11, 0.05 –0.05 0.276 –0.13, 0.04

aBold values indicate p-values < .05. Extra = Extraversion; Agree = Agreeableness; Consci = Conscientiousness; Open = Openness; Metacog = Metacognition
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adults who are experiencing age-related cognitive decline not
only may benefit from cognitive training but may also have a
higher desire to improve. Thus, research is needed in popula-
tions with greater cognitive needs to determine whether they
gain greater benefits from interventions that incorporate posi-
tive expectation manipulations. In contrast, it would also be
important to identify those individuals who are most suscepti-
ble to negative expectations and in particular, whether such
expectations might result in long-term negative effects.
Additionally, it will be important to understand the underly-

ing mechanisms of how expectations improve subsequent cog-
nitive performance. One proposed model is through changes in
motivation and/or attention. That is, expectations may increase
motivation and attention during training or during the cogni-
tive battery itself, which in turn, improves performance during
the cognitive battery. Alternatively, adding the expectation
manipulation after training could reveal whether expectations
interact with training or whether they independently increase
motivation to perform differently on the outcome measures. In
sum, our results suggest that it is possible to induce expectation
effects in the context of long-term cognitive training using care-
ful manipulations; however, those effects are not consistent
across measures and are unlikely to be the only drivers for
transfer in cognitive training.

Materials and Methods

Method.
Study overview. The procedure across all sites involved in the study was
approved by the University of Wisconsin–Madison Minimal Risk Research Institu-
tional Review Board, and participants provided written informed consent to
participate in the study. Over the first 2 d of the study, participants completed a
sizable pretest battery of tasks measuring various cognitive abilities (with multi-
ple measures per cognitive ability) as well as a host of individual-difference
questionnaires. Participants were then randomly assigned to their respective
expectation conditions (placebo or nocebo) and were given the corresponding
explicit expectation information (i.e., that the training they were about to take
part in would increase or decrease their performance on the types of tasks they
just underwent). They then completed ten 20-min sessions of training across the
course of several weeks before completing an associative learning “midtest.”
Importantly, this midtest was not meant as an actual evaluation. Instead, it was
meant to provide evidence consistent with the explicit expectations that the par-
ticipants had been initially provided (i.e., that their performance would either
improve or worsen). The midtest thus involved the same basic tasks as they had
completed at pretest, but the tasks were manipulated to either be easier (pla-
cebo) or be more difficult (nocebo) than what was experienced at pretest (with
the manipulation being done in such a way that participants could not tell that
the tasks themselves had been altered in these ways). Participants then
completed an additional ten 20-min sessions of training before returning for a
posttest (same 2 d as pretest). Participants were then debriefed as to the true
purpose of the study (i.e., were made aware of their assigned expectation and
whether it was true relative to their training), after which they completed the cog-
nitive battery one final time. The study was completed completely online via the
participants’ personal computers and/or mobile devices, with a researcher pre-
sent over video conference during all pre-, mid-, and posttesting sessions. The
procedure was preregistered on ClinicalTrials.gov (https://clinicaltrials.gov/ct2/
show/NCT04344028).
Participants. In this study, 263 participants were initially recruited across three
sites located at two West Coast universities (n = 94 and n =104) and one mid-
western university (n = 94), of which 193 participants (n = 60, 84, and 49,
respectively) completed all sessions. There were 60 participants assigned to the
placebo/working memory training condition, 59 assigned to the placebo/control
training condition, 62 assigned to the nocebo/working memory training condi-
tion, and 54 assigned to the nocebo/control training condition; 57 participants
who completed the pretest and were randomly assigned a training and expecta-
tion condition dropped out at some point during the study. Critically, the

number of participants who voluntarily dropped from the study at any point (n
= 57) did not significantly differ by condition [χ2 (3, n = 235) = 3.90, P =
0.273] (SI Appendix, Fig. S1 shows the participant attrition chart). Additionally,
28 participants were excluded due to clear noncompliance with the training
directions (e.g., did not complete training sessions on time, completed too
many), 13 participants had missing data due to computer errors on at least one
task, and 27 participants scored outside of three SDs from the mean on at least
one task. These participants were excluded from the MANCOVAs as complete
data are required for the analysis. In total, 125 participants were included in the
final data analyses (mean age = 20.18, range = [13, 37], SD = 2.91) (SI
Appendix has participant inclusion details per condition). The final sample was
73.6% female, 24.8% male, 0.8% nonbinary, and 0.8% unspecified. Participants
were 49.6% Asian, 30.4% White, 9.6% multiracial (two or more races), 0.
8% Black or African American, and 9.6% unspecified. Additionally, 77.6% of par-
ticipants were Hispanic, 21.6% were not Hispanic, and 0.8% did not specify their
ethnicity. Participants were recruited using mass emails and flyers targeted to
the undergraduate research participant pools at all universities, and thus, the
gender/racial/ethnic composition of our sample reflects the student population
that typically participates in psychology experiments at the three study sites. Par-
ticipants were compensated $170 for completing the study.

Materials.
Cognitive task battery: Pretest, posttest, and delayed posttest. Cognitive
skills across multiple cognitive domains, including working memory, cognitive
flexibility, visual selective attention, spatial cognition, and fluid intelligence,
were measured using 10 tasks. z scores were first calculated for each cognitive
task on the pretest. Standardized scores for each task on the posttest and
delayed test were then calculated using the mean and SD from the respective
pretest task z-score distribution [(X – μpretest)/SDpretest]. Composite scores for the
10 tasks on the posttest and delayed test were also calculated. Tasks in which
the inverse efficiency score (IES) was the dependent variable were reversed
coded to ensure that higher scores indicated improved performance for all meas-
ures. Two vocabulary measures were included as control measures, as crystallized
intelligence should not be influenced by either working memory training or
expectation induction (33).

Working memory tasks. The n-back task and a standard complex span task,
the O span, were used to measure working memory. In the n-back task, partici-
pants were presented with individual letters sequentially for a brief amount of
time (500 ms). Their task was to indicate whether the current letter matched the
letter presented N items back. The n-back levels varied between two and four
back (i.e., target letters matching two, three, or four items previously). Partici-
pants completed three blocks of each n-back level in a random order. Each block
contained 15 trials, of which five letters were targets plus N letters at the begin-
ning of the sequence that could not be targets. The task took about 10 min to
complete. The dependent measure was the proportion of hits minus false alarms
overall (59, 60). In the O-span task, participants viewed sequences of stimuli
that alternated between simple math equations (e.g., [(8 × 2) � 8 = ?]) and
single letters. For each math problem, participants were asked to click the screen
after they had mentally solved the problem. They were then presented with a
number as the solution to the problem and indicated whether it was true or false.
A letter was then briefly presented (1,000 ms). At the end of each sequence of
math problem/letter pairs, which ranged between three and seven pairs, they
were asked to recall all the letters that they had seen in the presented order. Par-
ticipants completed three trials of each sequence length in a random order. Partic-
ipants were asked to make sure their math accuracy remained above 85% correct
for the duration of the task. The task took about 14 min to complete. The depen-
dent measure was the sum of all letter sets recalled perfectly (24).

Cognitive flexibility tasks. Cognitive flexibility was measured with a task-
switching task and a countermanding task. In the task-switching task, partici-
pants were shown letter–number pairs (e.g., K7) displayed in one of four
quadrants on the screen. The quadrant location indicated to the participants to
either categorize the letter as a vowel or consonant (top quadrants) or categorize
the number as odd or even (bottom quadrants). The letter–number pairs were
presented in a predictable clockwise pattern across each of the four quadrants.
Trials in the top right and bottom left quadrants were “nonswitch trials,” in which
the participant was asked to perform the same task as on the previous trial, while
the trials in the other quadrants were “switch trials,” in which the participant was
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asked to perform the opposite task as on the previous trial. Participants com-
pleted 72 trials, and the task took about 5 min to complete. The dependent
measure was reaction time (RT) and accuracy on switch trials minus nonswitch
trials (61). An overall IES (IES = RT/proportion of correct trials) was calculated,
with lower IESs indicating better performance. In the countermanding task, par-
ticipants were presented with two types of stimuli (i.e., a heart or a flower) on
either the right or left side of the screen. Their task was to tap one of two buttons
on either the same side as the stimulus (e.g., heart; congruent trials) or on the
opposite side of the stimulus (e.g., flower; incongruent trials). Participants com-
pleted 48 trials, and the task took about 5 min to complete. The dependent vari-
ables were RT and accuracy on switch trials minus nonswitch trials (62), and an
overall IES was calculated.

Visual selective attention tasks. The two visual selective attention measures
were the UFOV task and the ANT. In the UFOV task, participants were briefly pre-
sented with a central object (car or truck) and then, a display consisting of 48 items
on each of the four radial spokes and the four obliques evenly spaced. One of the
items located on a radial or oblique was a target (a car), while the remaining items
were distractors (black triangles). The participants’ task was to indicate which central
object was presented and upon which of the eight spokes the target appeared.
Participants completed an adaptive number of trials, which terminated after nine
reversals in correct/incorrect responses and took about 9 min on average to com-
plete. The dependent measure was the presentation duration threshold (63). In
the ANT, participants were first presented with a fixation cross in the center of the
screen. Then, one of three cues appeared: no cue, a single-star cue located in the
center that indicated the arrow(s) would appear shortly, or a double-star cue
located above or below the center that indicated where the arrow(s) would appear.
After the cue, an arrow pointing either left or right appeared above or below the
center fixation cross. The arrow was flanked on either side by congruent arrows
(i.e., arrows facing in the same direction as the center arrow), incongruent arrows
(i.e., facing the other direction), or no arrows. The participants’ task was to indicate
the direction the center arrow was pointing. Participants completed 96 trials, which
took about 8 min to complete. The dependent measures were RT and accuracy
(64), and an IES was also calculated.

Spatial cognition tasks. The two spatial cognition measures were a mental
rotation task and a paper-folding task. In the mental rotation task, participants
were shown two images side by side. The images were either identical but with
one rotated relative to the other or were mirror reversed and rotated copies of
one another. The participants’ task was to indicate whether the two items were
identical or were mirror-reversed copies. Participants completed 36 trials, and
the task took about 6 min to complete. The percentage correct was the depen-
dent measure (65). In the paper-folding task, participants were shown a piece of
paper in a series of images being folded various ways before a hole was
punched in the paper. They were then asked to indicate from five alternative
answers what the paper would look like when unfolded. The task consisted of 10
trials, with a maximum of 3 min to complete. The percentage of correctly solved
items was the dependent measure (66).

Fluid intelligence assessments. The two measures of fluid intelligence
were RAPM (67) and UCMRT (68). In both tasks, the participant was presented
with a grid of elements with one of the elements missing and was asked to iden-
tify the missing element that completes the grid pattern. The RAPM consisted of
14 problems and had a maximum time limit of 9 min. The UCMRT consisted of
16 problems and had a maximum time limit of 8 min. The dependent variable
for both tasks was the percentage of correctly solved items.

Control tasks. Two vocabulary control tasks were used as control measures:
the vocabulary sections of the Mill Hill Vocabulary Scale (69) and the Shipley
Institute of Living Scale (70). These require participants to select the appropriate
synonym for a target word among several alternatives. The Mill Hill Vocabulary
Scale consisted of 24 words, and the Shipley Institute of Living Scale consisted of
15 words. The dependent variable for both tasks was the percentage of cor-
rect responses.
Questionnaires. Participants completed a series of questionnaires to provide
demographic variables (e.g., age, gender, race/ethnicity, socioeconomic status)
as well as to assess other individual difference factors that may be predictive of
placebo responsiveness. Personality traits were measured using the Big Five
Inventory - 10 item (BFI-10), which included items assessing conscientiousness,
agreeableness, neuroticism, openness to experience, and extraversion (71). The
WOFO scale measured achievement motivation and included 19 items in

separate scales for work (positive attitudes toward hard work), mastery (prefer-
ence for difficult, challenging tasks), and competitiveness (72). The Grit scale was
an eight-item scale that measured the tendency to sustain effort toward long-
term goals (73). Sensitivity to reward and avoidance was measured using the
BIS/BAS (74). Dweck’s Intelligence scale measured the extent to which people
believe that intelligence is fixed or malleable (55). The SSEIT measured the abil-
ity to know and understand one’s own emotions and the emotions of others,
which included subscales of emotion perception, utilization of emotion, manag-
ing self-relevant emotions, and managing others’ emotions (75). Lastly, the
Meta-Cognitive Skills Scale measured the ability to understand one’s own abili-
ties, strengths, and weaknesses (76).
Training tasks.

Working memory training. Participants who were assigned to the true cog-
nitive training condition completed a nongamified version of Recollect the
Study, which was based on the n-back task (https://www.youtube.com/watch?v=
GMGiDnJ53RU&ab_channel=BrainGameCenterUCR). During each training ses-
sion, participants were sequentially presented with individual colored circles.
Their task was to tap the screen when the current circle’s color matched the one
presented N items back. The circles were presented for 2,500 ms (interstimulus
interval [ISI] = 500 ms), of which 30% were targets and another 30% were lures
(e.g., items that occur N � 1 or N + 1 of the target position). Each training ses-
sion was broken into short ∼2-min training blocks, with typically 7 to 10 blocks
per session. Visual feedback and auditory feedback were presented on all trials,
indicating correct and incorrect answers. The task difficulty was adaptive and
adjusted the n-back level based on the player’s performance. Participants com-
pleted twenty 20-min sessions over the course of 2 to 4 wk. Participants were
allowed to choose which days they completed sessions, with restrictions of com-
pleting only one session per day and to have no more than 3 d between consec-
utive sessions. The outcome measure was average N level per day (59).

Control training. Participants who were assigned to the control training con-
dition played a trivia game, Knowledge Builders. In this game, participants were
presented with multiple-choice questions consisting of general knowledge,
vocabulary, social science, and trivia, and it has been used in previous research
(23, 33, 59). Like the working memory training, participants also completed
twenty 20-min sessions with the same completion requirements. This game was
adaptive and adjusted the difficulty of questions based on the performance on
the previous level. This task was used as the active control activity as it taps into
crystallized intelligence, and performance is not expected to be influenced by
working memory training, as previously shown (77).
Expectation inductions.

Explicit expectations. Participants assigned to the placebo group received
information that suggested that cognitive training improved cognitive skills,
including performance both on the trained task and on the untrained tasks in
the study. Conversely, participants assigned to the nocebo group received infor-
mation that suggested that while cognitive training might improve performance
on that trained task, performance on all other untrained tasks would decrease.
In both conditions, participants were presented with a short explanation of why
the cognitive training is expected to improve or decrease their cognitive perfor-
mance, which included exaggerated or false scientific studies to support these
expectations (SI Appendix).

Associative learning–based expectations. The midtest consisted of altered
tasks from the Cognitive Task Battery except the n-back task as it would be
expected to interact with the working memory training. Those in the placebo
group received tasks that were manipulated to be easier than the original tasks,
while those in the nocebo group received tasks that were manipulated to be
more difficult than the original tasks. Critically, in all cases, this was done in a
way where it would be difficult, if not impossible, for participants to identify the
changes. For example, in the mental rotation task, the placebo version was
manipulated such that it included more trials with small-angle rotations (e.g.,
10° to 90°; which are “easier”—they can be completed faster and more accu-
rately) and fewer trials with large-angle rotations (i.e., 110° to 190°), while the
nocebo version included the opposite. SI Appendix has descriptions of each
midtest task manipulation.

Knowledge of hypothesis survey. As a manipulation check, a knowledge of
hypothesis survey was administered to determine whether the explicit expecta-
tions given to participants indeed created the appropriate expectations about
the outcomes of the cognitive training they completed. Participants were asked
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to rate how much they thought they knew the researchers’ hypotheses and to
describe what the specific hypotheses were. Additionally, a similar survey was
administered to all research assistants after each session in which they interacted
with participants to determine whether researchers also remained unaware of
participants’ expectations (SI Appendix).

Data, Materials, and Software Availability. Cognitive battery results have
been deposited in Open Science Framework (https://osf.io/bder4/files/) (78).
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