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Human diversity is one of the main pitfalls in the development of robust

worldwide biomarkers in oncology. Epigenetic variability across human

populations is associated with different genetic backgrounds, as well as

variable lifestyles and environmental exposures, each of which should be

investigated. To identify potential non-invasive biomarkers of sporadic

breast cancer in the Uruguayan population, we studied genome-wide DNA

methylation using Illumina methylation arrays in leukocytes of 22 women

with sporadic breast cancer and 10 healthy women in a case–control study.
We described a panel of 38 differentially methylated CpG positions that

was able to cluster breast cancer patients (BCP) and controls, and that also

recapitulated methylation differences in 12 primary breast tumors and their

matched normal breast tissue. Moving forward, we simplified the detection

method to improve its applicability in a clinical setting and used an inde-

pendent well-characterized cohort of 80 leukocyte DNA samples from BCP

and 80 healthy controls to validate methylation results at specific cancer-re-

lated genes. Our investigations identified methylation at CYFIP1 as a novel

epigenetic biomarker candidate for sporadic breast cancer in the Urugua-

yan population. These results provide a proof-of-concept for the design of

larger studies aimed at validating biomarker panels for the Latin American

population.

Abbreviations

BMI, body mass index; CpGDMs, differentially methylated CpG sites; MS-HRM, methylation-sensitive high-resolution melting.
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1. Introduction

Breast cancer is a complex and heterogeneous disease

caused by the interactions of both genetic and non-ge-

netic factors. Age, gender, and family history are the

major factors for breast cancer. The known high-risk

inherited mutations in breast cancer susceptibility

genes, such as BRCA1, BRCA2, P53, PTEN, CHEK2,

and ATM, together only explain 1.5–3% of all breast

cancer cases. Meanwhile, known variants with low-

penetrance risk to breast cancer only represent a pre-

dictive accuracy of 60% [1]. Therefore, genetic risk

factors are not enough to evaluate risk of breast can-

cer.

DNA methylation is a key process involved in the

regulation of gene expression. Interestingly, DNA

methylation is potentially modifiable and is related to

age, the strongest breast cancer risk predictor [2].

Alterations in DNA methylation patterns, both at the

global genomic level and loci-specific, have been suc-

cessfully explored as molecular biomarkers in cancer

management [3]. In our previous work, we reported

global DNA hypomethylation in leukocytes of spo-

radic breast cancer patients (BCP) compared with

healthy controls, supporting the potential use of DNA

methylation in leukocytes as a biomarker for cancer

[4]. Additionally, we found a negative correlation

between African ancestry and global DNA methyla-

tion in cancer patients, suggesting that the ancestral

genome structure generated by the admixture process

in the Uruguayan population influences DNA methy-

lation patterns [4]. This underscores the importance of

searching for population-specific DNA methylation

markers for sporadic breast cancer.

In addition, most studies that leverage DNA methy-

lation as potential biomarkers for cancer use primary

tumor tissues. However, a reliable biomarker should

meet criteria such as acceptable costs and feasibility in

preventive medicine to stratified population according

to risk scores or to detect cancer earlier. Detection of

CpG methylation changes in non- or minimal invasive

liquid biopsies including blood cells, saliva, or urine

would increase translation of molecular evidence into

clinical practice [3]. Several studies have investigated

peripheral blood DNA methylation biomarkers in dif-

ferent cancer types including head and neck, breast,

lung, bladder, gastric cancer, prostate, colorectal, and

ovarian cancers [5–10]. Few studies have attempted to

investigate the role of loci-specific DNA methylation

in leukocytes as a marker of breast cancer, most of

them by candidate gene approaches, and did not use a

validation set to confirm their results (reviewed in Ref.

[11,12]). However, the majority of the genome-wide

studies were carried out in Europe, Asia, and USA

and must be validated in each population, especially in

those with admixed genetic ancestry like the Latino

population [13].

In the current study, we aimed to identify novel can-

didate sporadic breast cancer epigenetic biomarkers in

peripheral blood from the Uruguayan population.

Consequently, we analyzed genome-wide DNA methy-

lation signatures in leukocytes from sporadic BCP and

healthy women in a well-defined discovery cohort in a

case–control study. Epigenetic biomarkers observed in

specific candidate genes were replicated using a large

validation cohort.

2. Materials and methods

2.1. Study population

For genome-wide DNA methylation profiling analysis,

24 DNA samples from peripheral blood leukocytes of

patients with sporadic breast cancer and 12 DNA sam-

ples from unaffected controls were selected from a

group of individuals originally recruited in a previous

study described in Bonilla et al. [14]. After a quality

control analysis, a discovery cohort composed of 22

patients and 10 controls were included in the methyla-

tion study (Table S1). To validate candidate CpG

sites, we selected a large and independent validation

cohort of the same previous study consisting of 80

DNA leukocyte samples from sporadic BCP and 80

DNA leukocyte samples from healthy controls, paired

by age, socioeconomic status, and educational level

(Table S2). The procedures followed were approved by

the ethics committee of the Facultad de Medicina of

the Universidad de la Rep�ublica, Uruguay (Reference

number: 071140-000303-12). After obtaining written

informed consent from all participants of the study,

peripheral blood was drawn for DNA extraction and

participants answered an interview-based questionnaire

to record medical and epidemiological information. All

human samples included in the study were handled in

accordance with the tenets of the Declaration of Hel-

sinki.

All cases were originally selected according to the

following criteria: women with breast cancer over

35 years with no personal history of cancer and no

first-degree family history of breast and/or ovarian

cancer, and non-consanguineous parents. All patients

were sampled at the time of diagnosis and prior to sur-

gery and/or any therapy. The control group was

women over 35 years of age, with normal mammo-

grams, no first- or second-degree family history of
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cancer, and unrelated to any other project participant.

Controls were selected in the same hospitals as

patients. For inclusion in this study, all participants

were required to: (a) have a normal hemogram at the

time of sampling, and (b) have previous data of global

DNA methylation quantification by HPLC and indi-

vidual genetic ancestry [4]. Breast cancer cases and

controls were age- and individual genetic ancestry-

paired.

Genetic ancestry of all participants of this study was

previous determined by 59 ancestry informative mark-

ers (AIMs) selected from the AIMs panel for Hispanic

population described by Fejerman et al. [15]. Genotyp-

ing and individual admixture analysis were described

in Cappetta et al. [4].

Of all the epidemiological information collected

from the participants of the discovery and validation

cohorts, the following variables were analyzed in this

study: age, sex, genetic ancestry, body mass index

(BMI), smoking status (self-reported), and tumor char-

acteristics (Table S1,S2).

2.2. Genome-wide methylation analysis

Infinium HumanMethylation450 BeadChips were used

to analyze DNA methylation on a genome-wide scale

in the discovery cohort. DNA was extracted from

whole peripheral blood by standardized salting out

methods. Five hundred nanogram of DNA per sample

was first bisulfite treated using the Zymo EZ-96 DNA-

methylation kit (Zymo Research, Orange, CA, USA).

Next, about 200 ng of bisulfite-converted DNA was

used for hybridization on the HumanMethylation450

BeadChip (Illumina, San Diego, CA, USA) according

to the manufacturer’s protocol. Pre-processing and ini-

tial quality assessment of hybridizations was per-

formed using the Illumina BeadStudio METHYLATION

MODULE software, version 3.2 (Illumina, Inc.). Negative

control bead types were used to obtain an estimation

of the background intensity level that was subtracted

from the loci probe signals. Moreover, the distribution

of intensities at negative controls was used to compute

detection P-values which were assigned to each probe

as a measure of the signal-to-noise ratio. As quality

criteria, probes showing a detection P-value greater

than 0.001 in at least 6% of the samples and samples

with a detection P-value greater than 0.001 in more

than 10% of the probes were considered defective.

Thousand nine hundred and forty-seven probes (CpG

sites evaluated) did not reach these criteria and were

therefore excluded from further analysis. Beta values

were then computed from methylated and unmethy-

lated signals from each microarray assay, and potential

bias of dye in the array was corrected using the methy-

lumi R package [16] from Bioconductor [17]. The

methylation percentage of a CpG site was reported as

a beta value ranging between 0 (no methylation) and 1

(full methylation). Once the normalized beta values

were obtained, a second phase of quality control was

performed. Β values with a P-value detection > 0.01

and 23631 CpG sites exhibiting SNP with a frequency

of > 1% (1000 Genomes Project Consortium 2010) in

the probe sequence were removed from subsequent

analyzes. Since all DNA samples were from women,

the X chromosome probes were not removed. As a

result of the quality control process, we included in

subsequent analysis 459 999 probes (CpG sites) in 22

women with breast cancer and 10 control women. The

Infinium methylation data are available in the Gene

Expression Omnibus (GEO) database under the acces-

sion number GSE148663.

2.3. Independent public cohorts for in silico

studies

Methylation data for the independent European BCP

were obtained from the public data set GSE52865 [18].

This data set provided methylation from breast tumor

tissue samples and normal breast tissue of European

women hybridized to the Illumina HumanMethyla-

tion450 BeadChip array. We analyzed only 24 samples

corresponding to breast tumor tissue samples and their

paired adjacent normal breast tissue from this data set.

Clinical characteristics of these samples were provided

in Table S3.

DNA methylation and clinical data of 735 BCP of

The Cancer Genome Atlas (TCGA) database were

abstracted from GDC Data Portal of the National

Cancer Institute (https://portal.gdc.cancer.gov/). We

analyzed methylation data of 735 breast primary

tumors and 89 normal breast tissues.

2.4. Statistical analysis

All statistical analyses were carried out using the R

programming language (http://www.r-project.org/) and

no parametrical analyses. To identify consistently dif-

ferentially methylated CpG sites (CpGDMs) between

BCP and controls, Wilcoxon rank sum test was per-

formed for normalized beta values of each group. The

P-values were adjusted for multiple testing using false

discovery rate estimation (FDR), and those CpGs with

P-value < 0.05 were selected and termed ‘CpGDMs’.

Cluster analysis of the selected CpGDMs was per-

formed using unsupervised hierarchical clustering with

complete linkage and Euclidean distance as a measure
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of similarity between samples. We then used the

pvclust package in R using multiscale bootstrap resam-

pling (n = 10 000) to define statistically significant

samples clusters [19]. Furthermore, in order to explore

the similarity of methylation data between BCP and

unaffected control groups, an analysis of multidimen-

sional scaling was performed using variable methyla-

tion values (b value) of CpGDMs of each individual.

Possible confounding effects on methylation status

were evaluated using generalized linear regression

models including age, genetic ancestry, smoking status,

and leukocyte cell composition as covariables. The es-

timateCellCounts function of the minfi Bioconductor

package was utilized to determine the proportions of

the white blood cell types (CD4+ and CD8+ T cells,

CD56+ NK cells, B cells, monocytes, and granulo-

cytes) in each sample [20].

Age, BMI, and genetic ancestry were analyzed as a

continuous variable and were assessed using Student’s

t-test, while the remaining parameters of the study

were considered qualitative variables. Smoking status

was categorized as yes/no considering the individual as

a smoker whether it was at the time of sampling and/

or in the past. Data obtention was not possible for all

individuals included in the study.

Association between clusters in BCP and epidemio-

logical or clinical covariates (tumor stage, tumor histo-

logical type, hormone receptors) was assessed using

Kruskal–Wallis test and Fisher’s exact test.

Overall survival for BCP from the TCGA database

was evaluated using Kaplan–Meier analysis grouping

patients with methylation values above and below the

median, and a proportional hazard Cox regression

model adjusted for the methylation level of the candi-

date biomarker evaluated and age at diagnosis of the

disease.

The receiver operating characteristic (ROC) curve

was plotted with R package pROC version 1.16.1 [21],

to estimate the discriminatory power of methylation at

the candidate region of the CYFIP1 gene. The area

under the ROC curve (AUC) was calculated, and the

DeLong method was used to calculate the 95% confi-

dent interval (CI) for AUC.

2.5. Enrichment analyses of biological pathways

and common sequence features

The genes associated with CpGDMs sites were mapped

to discern their relation to cancer by gene ontology anal-

ysis using Genes to Systems Breast Cancer Database

(G2SBC, http://www.itb.cnr.it/breastcancer/) [22] and

searching in the COSMIC database (https://cancer.sa

nger.ac.uk/cosmic/) [23]. The Database for Annotation,

Visualization, and Integrated Discovery (DAVID v6.8)

[24] and Kyoto Encyclopedia of Genes and Genomes

(KEGG database) were used for an analysis of molecu-

lar pathways. In the DAVID analysis, the set of genes

represented on the Illumina HumanMethylation450

array was used as the reference set and the set of

CpGDMs composed the gene set tested. Using the mani-

fest file provided by Illumina, we classified CpGDMs

according to their position relative to CpGs islands

(Island, Shore, Shelf or Open sea) or relative to repeti-

tive elements; or their genomic compartments feature

(Promoter, TSS, Exon, intron, intergenic region). The

genomic location of the CpGDMs was compared to the

distribution of the CpGs in the whole methylation data

set. P values were computed using Fisher’s exact test to

determine over- or under-representation of the

CpGDMs.

2.6. Bisulfite-treated DNA sequencing

We amplified by PCR four CpGDMs using bisulfite-

treated DNA from four BCP and four controls. PCR

amplification reactions in a final volume of 15 µL,
containing: 109 PCR buffer EcoStart (Ecogen),

50 mM MgCl2 (Ecogen, Barcelona, Spain), 2 mM

dNTPs; 1 µM specific primers to amplify the gene

sequence and 3 U of DNA polymerase enzyme

(DNA polymerase EcoStart; Ecogen). Primers were

designed to amplify the selected CpGDM region and

flanking sequences of the transcription start site of

the corresponding gene (Table S4). PCR amplified

sequences were visualized by electrophoresis and

extracted from the agarose gel using the QIAquick

Gel Extraction Kit (Qiagen, Hilden, Germany). The

extracted DNA was cloned into competent

Escherichia coli bacteria (NovaBlue SinglesTM) using

the pGEM-T� vector. Estimation of methylation sta-

tus of each CpG site was performed by automated

sequencing of 10 colonies of each study sequence

(Applied Biosystems, Waltham, MA, USA). The aver-

age methylation throughout the region assessed for

each gene between patients and controls was com-

pared using Student’s t-test.

2.7. Methylation-sensitive high-resolution

melting (MS-HRM) assay

DNA obtained from blood samples was subjected to

bisulfite modification using the EZ DNA methylation

gold kit (Zymo Research) following the manufacturer’s

protocol. Primers used for amplifying flanking regions

of cg14024502, cg26568226, cg04890607, cg09580608,

cg01229567, cg19246761 and cg24840062 are listed in
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Table S4. PCR amplification and MS-HRM assay

were performed on Eco Illumina real-time PCR. The

final volume of each reaction system was 10 µL,
including 5 µL of 29 Epitec HRM PCR Master Mix

(Qiagen), 10 ngr of sodium bisulfite-modified template

DNA, and 0.4 mM of each forward and reverse pri-

mer. A series of methylated DNA standards (100%,

75%, 50%, 25%, 15%, 10%, 5%, 2.5% and 0%

methylated DNA) were constructed by mixing univer-

sal unmethylated (0% methylated) and methylated

(100% methylated) human whole genomic DNA sam-

ples (Qiagen). Fluorescence of each sample was nor-

malized as a differential signal against unmethylated

DNA control. Area under the curve from the normal-

ized, difference curves was used to generate a standard

curve and determine the degree of methylation of each

DNA sample [25,26].

To identify differential methylation in flanking

regions of candidate CpGDMs between patients with

breast cancer and controls in the validation cohort,

Wilcoxon rank sum test was performed for methyla-

tion data from MS-HRM analysis of each group. Pos-

sible confounding effects on methylation status in

candidate genes were evaluated using generalized linear

regression models including age, BMI, smoking status,

and genetic ancestry.

3. Results

3.1. Blood DNA methylation profiling reveals a

panel of differentially methylated CpGs that

discriminates sporadic breast cancer patients and

healthy controls

We applied a case–control study to describe the key

genomic sequences involved epigenetically in the sus-

ceptibility to sporadic breast cancer in the Uruguayan

population. Consequently, we performed genome-wide

DNA methylation profiling in a discovery cohort using

DNA from leukocytes of women with sporadic breast

cancer (n = 22) and healthy women as control

(n = 10). Comparison of mean methylation values of

all CpGs sites analyzed between BCP and control

groups showed a high correlation across all CpGs

(Spearman, r2 = 0.997, P < 2.2 9 10�16), indicating

that global DNA methylation patterns in all samples

are very similar (Fig. S1A). In addition, to avoid spu-

rious relationships due to technical or sampling proce-

dures we applied hierarchical clustering of samples

using the methylation values of random 45 000 CpG

sites and we were unable to cluster samples according

to their disease status (Fig. S1B).

To identify CpGDMs between BCP and healthy

controls, we applied a Wilcoxon rank sum test, deter-

mining 77 CpGDMs positions after correction for

multiple testing (Table 1). This panel of identified

CpGDMs was able to cluster BCP and healthy con-

trols separately using a hierarchical cluster approach

(Fig. 1A). These results indicate the existence of CpG

methylation differences at specific sequences between

cancer patients and controls at the leukocyte level,

which can be easily visualized by unsupervised classifi-

cation techniques and could function as a breast can-

cer signature in blood. Since we detected 3 defined

subclusters among the patient samples group

(Fig. 1A), we analyzed whether these subclusters were

associated with tumor characteristics or epidemiologi-

cal variables. However, no association was found in

samples from cancer patients between age (P = 0.868),

smoking status (P = 0.852), genetic ancestry (Euro-

pean P = 0.064; African P = 0.675; Native American

P = 0.898), tumor stage (P = 0.716), histological type

of tumor (P = 0.187), hormone receptors (ER P = 1;

PR P = 0.112; Her2 P = 0.494) and the subgroups

derived from cluster analysis.

It has been shown that age, genetic ancestry, smok-

ing status, and possible disease-related cell heterogene-

ity in blood may act as potential cofounders when

investigating DNA methylation differences between

cases and controls. Adjusting our analysis for these

epidemiological variables and the predicted cell-type

proportion in leukocytes, 38 of the CpGDMs still

showed significant differences between BCP and

healthy women (P < 0.05 adjusted, Table 1). This

panel of 38 candidate CpGDMs sites also groups sam-

ples by separating cancer patients from healthy

women, using cluster analysis (Fig. 1B).

Most of the candidate CpGDMs (37 of 38) were less

methylated in the leukocyte DNA from cancer patients

compared to controls, with only one CpGDMs hyper-

methylated. Out of 38 CpGDMs, 29 were associated

with 28 different genes: 11 in gene promoters and 18

in gene bodies (Fig. 1C). The remaining nine

CpGDMs mapped to intergenic regions. Considering

density and regional composition of CpG, the majority

(81.6%) of CpGDMs was located outside CpG-rich

regions (CpG islands), with 34.2% located in CpG

shores flanking the islands (Fig. 1C). The genomic dis-

tribution of the CpGDMs in relation to gene context

(promoter, UTR, 1st exon, body gene, or intergenic

region) was not different compared to the whole array

CpG distribution (Fisher exact test, P = 0.480)

(Table S5). Gene ontology analysis revealed a func-

tional enrichment of candidate CpGDMs in biological

processes associated with signal transduction
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Table 1. Features of 77 differentially methylated CpG (CpGDM) among BCP and unaffected control group. CpG: identification of the probe

(from array). CHR: chromosome. TSS1500: 1500 bp of the start site of transcription. TSS200: 200 bp of the start site of transcription.

CpG CHR UCSC REFGENE

Genomic

context

CpG island

context

D b value

(cancer patients -

controls)

P value

(FDR)

P value

adjusted*

cg01015663 1 TCEA3 gene body Open sea �0.0766 0.0494 0.0123

cg01229567 1 MIB2 TSS1500 Shore �0.1184 0.0494 0.0417

cg04400047 1 UBIAD1 TSS1500 Shore �0.0526 0.0494 0.0343

cg06432479 1 TAL1 gene body Island �0.0657 0.0494 0.0300

cg10159215 1 LPPR5 TSS200 Island �0.1014 0.0498 0.1404

cg14024502 1 MAP3K6 TSS1500 Shore �0.008 0.0498 0.0275

cg15452381 1 HIVEP3 5’UTR Open sea �0.0196 0.0498 0.0095

cg16727538 1 C1orf213 Shore �0.0714 0.0494 0.0271

cg19246761 1 MIB2 TSS1500 Shore �0.1116 0.0494 0.0353

cg26251270 1 GPX7 TSS1500 Shore �0.0571 0.0494 0.0197

cg26750487 1 CR1L TSS200 Island �0.0848 0.0494 0.9985

cg02537909 2 COBLL1 gene body Island �0.0604 0.0494 0.9979

cg02738156 2 LINC00487 intergenic Open sea �0.0785 0.0494 0.0807

cg09408768 2 KCNJ3 TSS200 Island �0.0621 0.0494 0.0635

cg17165836 2 AFF3 gene body Open sea �0.0701 0.0494 0.0687

cg24130711 2 CCDC85A gene body Shore �0.0541 0.0494 0.0596

cg26175971 2 CYP27A1 gene body Island �0.052 0.0494 0.1145

cg26874367 2 intergenic Open sea �0.0904 0.0494 0.0220

cg01615258 3 intergenic Shore �0.0521 0.0494 0.0202

cg01814969 3 QARS gene body Shore �0.0468 0.0498 0.9991

cg15450445 3 intergenic Open sea �0.0141 0.0143 0.9991

cg24840062 3 CDCP1 gene body Open sea �0.1073 0.0494 0.0218

cg25616514 3 intergenic Open sea �0.0315 0.0498 0.0399

cg03002688 4 intergenic Open sea �0.0598 0.0498 0.0137

cg18860310 4 SLC10A6 gene body Open sea �0.05 0.0494 0.0946

cg26994377 4 intergenic Open sea �0.0587 0.0494 0.4133

cg00608540 5 TRIM7 gene body Open sea �0.0388 0.0498 0.0319

cg01204911 5 ARHGAP26 gene body Open sea �0.0406 0.0494 0.0949

cg06527989 5 UNC5A gene body Shore �0.0735 0.0494 0.0291

cg07475151 5 LOC100268168 gene body Open sea �0.1005 0.0494 0.0648

cg11953913 5 C5orf32 5’UTR Open sea �0.0542 0.0494 0.6035

cg21550107 5 intergenic Open sea �0.0261 0.0494 0.9987

cg02174359 6 MRPS18A gene body Shore �0.0494 0.0494 0.9963

cg04334016 6 CNKSR3 gene body Open sea �0.0324 0.0494 0.3819

cg09639771 6 intergenic Open sea �0.0442 0.0494 0.9975

cg02377685 7 GBX1 TSS200 Island �0.0645 0.0494 0.9980

cg03761471 7 ZYX TSS1500 Shore �0.0661 0.0494 0.1001

cg04153882 7 WIPI2 gene body 0.0659 0.0494 0.1738

cg15602580 7 SDK1 gene body Shore �0.0553 0.0494 0.0258

cg18967180 7 DENND2A gene body �0.068 0.0494 0.9978

cg21252523 7 intergenic Shore �0.0394 0.0494 0.0345

cg27403098 7 KIAA1908 gene body �0.0119 0.0498 0.1343

cg14681767 8 ARHGEF10 5’UTR Island �0.0913 0.0494 0.0718

cg17588094 8 intergenic Shelf �0.0167 0.0498 0.9987

cg05616472 9 EHMT1 gene body �0.0475 0.0494 0.9983

cg14223444 9 TSTD2 5’UTR Shore �0.0367 0.0498 0.0253

cg01311537 10 C10orf128 gene body Open sea �0.026 0.0494 0.0350

cg08560387 10 TSPAN14 5’UTR �0.1142 0.0498 0.0174

cg14770293 10 intergenic Island �0.0763 0.0494 0.9992

cg24168991 10 ITPRIP 5’UTR Shelf �0.0308 0.0494 0.0198

cg03611487 11 LOC100126784 gene body Shelf �0.0486 0.0494 0.0149

cg10141801 11 GUCY2E TSS200 Open sea �0.0456 0.0494 0.9599
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(GO:0007165) (Fisher exact test, P = 0.024) and regu-

lation of stem cell population maintenance

(GO:2000036) (Fisher exact test, P < 0.01).

Among the candidate CpGDMs, we found eight

genes with differential methylation previously associ-

ated with breast cancer susceptibility and pathology in

the G2SBC and COSMIC Databases (AMOTL1,

CDCP1, CYFIP1, MAP3K6, MIB2, SDK1, TAL1,

and TYROBP) (Table S6). Broadening the search to

genes previously associated with other cancer types in

Cancer census, we identified three other genes overlap-

ping with CpG sites identified as candidate CpGDMs

(HMGA2, GNA13, and STK33) (Table S6). Except

CYFIP1, all CpGDMs in identified cancer genes are in

average hypomethylated in leukocytes of BCP com-

pared to healthy women. Furthermore, five CpGDMs

that show an average methylation difference > 10%

between patients and controls mapped to four different

genes: CDCP1, MIB2, TSPAN14, and HMGA2, three

of which were previously described as cancer genes

(Table 1).

To validate methylation status determined by the

microarray, we analyzed in four patients and four con-

trol methylation status of four candidate CpGDMs and

their flanking regions by bisulfite-treated DNA sequenc-

ing. Selection criteria were CpGDMs located in regula-

tory regions of genes previously associated with breast

cancer. Hypermethylation of CYFIP1 gene (only

CpGDM hypermethylated in patients) was observed in

patients with breast cancer (P = 2.22 9 10�12), while

MAP3K6 and MIB2 gene promoters showed a slight

hypomethylation in BCP (Fig. S2).

Next, we studied whether methylation at leukocytes

could recapitulate concomitant methylation changes in

the primary tumor. Because methylation data on pri-

mary breast tissues were not available for the Urugua-

yan BCP and there are no public methylation profiling

data of Latin American patients, an independent pub-

lic cohort of European BCP was used to validate

in silico the CpG differential methylation previously

identified in blood (Table S3). We analyzed methyla-

tion data of the 38 CpGDMs panel in primary breast

Table 1. (Continued).

CpG CHR UCSC REFGENE

Genomic

context

CpG island

context

D b value

(cancer patients -

controls)

P value

(FDR)

P value

adjusted*

cg13100962 11 intergenic Open sea �0.0544 0.0498 0.0233

cg17679104 11 STK33 TSS1500 Island �0.0612 0.0494 0.0351

cg22623080 11 AMOTL1 TSS200 Island �0.0437 0.0498 0.0314

cg23460961 11 intergenic Open sea �0.0752 0.0494 0.0227

cg04890607 12 HMGA2 gene body Open sea �0.1331 0.0498 0.0356

cg27292547 12 intergenic Open sea �0.0539 0.0498 0.0339

cg11398020 13 KLF5 gene body Island �0.0766 0.0494 0.0667

cg01972418 14 PAX9 TSS1500 Island �0.0386 0.0498 0.0272

cg18581173 15 CT62 TSS1500 Shore �0.0673 0.0494 0.9997

cg20172862 15 intergenic Island �0.0309 0.0498 0.9981

cg24359188 15 BUB1B TSS200 �0.0758 0.0494 0.1524

cg26568226 15 CYFIP1 5’UTR Island 0.0733 0.0494 0.0470

cg04470044 16 WFDC1 gene body Shelf �0.0259 0.0498 0.0274

cg10155261 16 LOC23117 gene body Open sea �0.0499 0.0494 0.0581

cg26591162 16 SRL 3’UTR Open sea �0.0149 0.0494 0.9956

cg07777703 17 TUBG2 gene body Shore �0.0491 0.0498 0.9984

cg07848706 17 intergenic Island �0.0722 0.0494 0.9987

cg08960549 17 intergenic Open sea �0.0198 0.0494 0.9984

cg09580608 17 GNA13 1stExon Island �0.0852 0.0494 0.0142

cg22163463 17 PITPNM3 gene body Shore �0.056 0.0494 0.0489

cg01823541 19 GNG7 5’UTR Island �0.0744 0.0498 0.0641

cg03363633 19 TYROBP TSS1500 Open sea �0.0515 0.0494 0.0185

cg22313519 19 KIAA1683 TSS1500 �0.0386 0.0498 0.0496

cg20477147 20 NPEPL1 gene body Shore �0.0712 0.0494 0.0211

cg26468205 20 PCMTD2 TSS200 Island �0.015 0.0494 0.0487

Bold values indicate adjusted P value < 0.05.

*P value adjusted by age, genetic ancestry, smoking status, and cellular heterogeneity.
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tumors samples and their paired-normal breast tissue

of this independent cohort. We found that the 38

CpGDMs previously identified in blood were capable

of clustering tumor breast samples and normal tissues

separately using hierarchical cluster analysis (Fig. 1D).

More interestingly, methylation levels of 38 CpGDMs

were able to separate primary tumor tissue from nor-

mal breast tissue in patients with familial breast cancer

mutation in the BRCA2 gene (pairs N4/T4, N5/T5,

N11/T11) (Fig. 1D, Table S3). In addition, 9 of the 38

candidate CpGDMs showed differential methylation

between tumor tissues and paired healthy tissues in the

European cohort (Wilcoxon test, FDR adjusted P-

value < 0.05; Table S7).

3.2. Validation of aberrant CpG methylation at

the CYFIP1 gene as a sporadic breast cancer

candidate biomarker

With the aim to simplify the CpGDM panel for a

more suitable use in a clinical environment, we selected

seven candidate CpGDMs sites located at regulatory

sites of genes previously reported as associated with

cancer and/or having an average methylation differ-

ence > 10% between patients and controls. These CpG

sites correspond to the following selected regions:

MAP3K6 promoter region (cg14024502), 50UTR of

CYFIP-1 (cg26568226), HMGA2 body gene

(cg04890607), 1st exon of GNA13 (cg09580608), MIB2

promoter region (cg01229567, cg19246761), and intron

1 of CDCP1 (cg24840062). To validate the differen-

tially methylated regions selected, we used a larger and

independent Uruguayan leukocyte cohort of 80 spo-

radic BCP and 80 healthy controls using MS-HRM

PCR assay (Table S2). CYFIP1 and CDCP1 were dif-

ferentially methylated in patients compared to controls

in the validation cohort (Wilcoxon test, P < 0.01 and

P < 0.05 respectively, Table 2 and Fig. 2). Methylation

analysis of 147 bp containing nine CpG sites in the

evaluated region of the 50UTR of CYFIP1 showed sig-

nificant consistent DNA hypermethylation in the can-

cer patients compared with healthy controls (Fig. 2),

while analysis of 124 bp containing two CpG sites in

intron 1 of CDCP1 showed significant hypomethyla-

tion in cancer patients. Next, we analyzed whether

methylation levels in these regions were associated

with some epidemiological variables. Adjusting our

analysis for age, smoking status, and genetic ancestry

with methylation levels in evaluated regions of the six

candidate genes selected, CYFIP1 still showed a signif-

icant difference between BCP and healthy women

(P = 6.1 9 10�6, Table 2).

In order to study CYFIP1 as a candidate sporadic

breast cancer biomarker in blood, we evaluated the

Fig. 1. Definition of genome-wide CpG profiles in sporadic BCP. (A) Hierarchical heatmap clustering of 77 CpGDMs in 22 BCP (purple) and

10 healthy controls (blue) analyzed on methylation array. CpGDM were ordered by the difference in mean betas values between patients

and controls. Methylation level is color coded (green: lowest methylation level; red: highest methylation level). (B) Hierarchical heatmap

clustering of 38 selected candidate CpGDMs in 22 BCP (purple) and 10 healthy women (blue). Candidate CpGDMs were ordered by the

difference in mean betas values between patients and controls. Methylation level is color coded (green: lowest methylation level; red:

highest methylation level). (C) Genomic distribution of 38 candidate CpGDMs regarding their respective location to genes and CpG context.

(D) Hierarchical heatmap clustering of 38 candidate CpGDMs in 12 primary breast tumor samples (T, purple) and their matched normal

breast tissues (N, blue) analyzed on methylation array. Methylation level is color coded (green: lowest methylation level; red: highest

methylation level).

Table 2. DNA methylation in candidate genes evaluated in the independent validation cohort. TSS1500: 1500 bp of the start site of

transcription.

Gene Genomic context

Methylation breast

cancer (mean)

Methylation controls

(mean) P value P value adjusted*

MAP3K6 TSS1500 0.717 0.710 0.915 0.799

CYFIP1 50�UTR 0.39 0.10 7.29 3 10�7 6.1 3 10�6

HMGA2 Body 0.469 0.433 0.277 0.515

GNA13 1st exon 0.0035 0.0035 0.878 0.947

MIB2 TSS1500 0.024 0.030 0.100 0.128

CDCP1 Body 0.807 0.758 0.044 0.088

Bold values indicate adjusted P value < 0.05.

*P value adjusted by age, smoking status, and genetic ancestry.
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strength to predict BCP against controls using ROC

curves in the validation cohort. Methylation of candi-

date CpGDM and the flanking region in the 50UTR of

CYFIP1 showed a good predictive ability with an area

under the ROC curve (AUC) of 0.732 (95% CI,

0.649–0.815) (Fig. 3).
With the aim to elucidate the possible functional

role of our candidate biomarker in breast cancer, we

analyzed in silico methylation data of CYFIP1

(cg26568226) in tissue samples from BCP from TCGA

Program. Comparing 735 primary breast tumors with

89 healthy breast tissues, we detected significant differ-

ential methylation of the candidate CpG site located in

CYFIP1 (Wilcoxon test, P value = 9.3 9 10�4,

Table S8, Fig. S3). This result suggested a potential

functional role of CYFIP1 methylation in breast can-

cer development. Next, we wondered whether CYFIP1

could be contributing to the overall survival of

patients with breast cancer. Since we do not have fol-

low-up data on Uruguayan patients, we studied overall

survival in BCP from the TCGA database in relation

to CYFIP1 methylation in primary samples and age at

diagnosis of the pathology (Fig. S4). The results of

these analysis (Cox Regression, P value = 0.681) sug-

gest that 50UTR CYFIP1 methylation would not be a

prognostic marker for BCP.

4. Discussion

Patients with localized breast cancer have a 5-year sur-

vival rate of 98%. However, if it is diagnosed after

metastasis, the survival rate drops dramatically to

27%. These results mark the benefit of screening and

early detection, and the vital importance of finding

new markers to supplement mammography results.

For sporadic breast cancer, a variety of changes in

DNA methylation were detected both in primary can-

cer samples [27] and in blood of BCP [11,13,28]. In

spite of the preclinical data, a meta-study to find stan-

dard candidate markers with potential clinical use has

not been performed. These difficulties may be attribu-

table to differences in the subject populations and

tumor pathologies, but most likely due to low power

in each of these studies. Genetic ancestry should also

be considered especially in populations with a high

admixed genetic background like Latino ones [4,29].

In this line, our study described for the first time

DNA methylation profiling in leukocytes from spo-

radic BCP in a Latin American population.

Fig. 2. Validation of methylation

differences at candidate genes in an

independent cohort (validation

cohort). DNA methylation level of

MAP3K6, CYFIP1, HMGA2, GNA13,

MIB2, and CDCP1 genes in

leukocytes from 80 BCP and 80

healthy controls. The boxes represent

the interquartile ranges, and the lines

across the boxes indicate the median

value. Statistically significant

differences between cancer patients

and healthy controls were determined

using Wilcoxon rank sum test

(*P < 0.05; **P < 0.01).

Fig. 3. ROC curve assessing the discriminative power of the

methylation in 50UTR region of CYFIP1 for validation cohort. Area

under the curve (AUC) of 0.732 (95% CI: 0.649–0.815), with an

optimal cutoff point of 14.28% of methylation (red point).
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Accordingly with the described global hypomethyla-

tion in primary breast cancer tissues and in peripheral

blood of BCP [4], we have also detected almost exclu-

sively hypomethylated CpGDMs in leukocytes taken

from cancer patients. Each tissue has a unique epige-

netic signature, which often reflects its differential

function [30,31]. Although the greatest variation in

DNA methylation is observed between tissues,

interindividual differences in DNA methylation of

internal tissues are correlated with blood cells for a

group of CpG sites [27,32–34]. This reinforces the

hypothesis that variation in DNA methylation at a

systemic level in many tissues could be associated with

predisposition to certain diseases, allowing to detect

differential DNA methylation in blood associated with

breast cancer several years before diagnosis [35,36].

Furthermore, in studies like our work that use breast

cancer cases recruited at diagnosis we must consider

the possibility that the cancer itself is causing the epi-

genetic changes detected in the blood DNA, including

circulating tumor DNA. Unfortunately, primary tumor

samples from the Uruguayan BCP were not available.

As a closer approach, we confirmed that the panel of

38 CpGDMs detected in leukocytes could be validated

in breast cancer tissue of women of European origin,

which supports the sensitivity of our current approach

using non-invasive specimens.

To our knowledge, DNA methylation blood

biomarkers associated with breast cancer have not

been previously described in Latin American countries.

If we compared the panel of 38 CpGDMs detected in

the Uruguayan population with CpGDMs detected in

blood samples of European BCP (GSE37965 [37],

GSE51057 [36]), none of our candidate CpGDMs

coincides with these panels (data not shown). The dif-

ferent genomic context in admixed populations such as

Uruguay as well as different lifestyles could determine

differences in epigenetic cancer biomarkers detected.

This reinforces the need for each population to detect

their own markers associated with breast cancer.

Although most CpGDMs detected have average dif-

ferences between patients and controls < 10%, these dif-

ferences are consistent. Blood biomarker identification

has the challenge of blood cell-specific events that can-

not be entirely excluded, and the marginal methylation

levels introduced by circulating tumor DNA. Therefore,

alterations are expected to present changes of small

magnitude between cancer patients and controls. Even

in the study of Heyn et al. [37], in which genetic noise

is removed and other sources of confounders are

reduced by analyzing identical twin pairs discordant for

breast cancer, they detected 403 differentially methy-

lated sites in blood DNA between discordant twins, all

with < 8% differences between the two groups. Despite

the small change in magnitude, the integration of multi-

ple epigenetic biomarkers as a predictive signature and/

or in combination with genetic markers could be of

high translational value [9].

Importantly, among the CpGDMs panel detected in

leukocytes, CpG sites in genes previously associated

with breast cancer are described, including Cytoplasmic

FMR1 interacting protein 1 (CYFIP1), reinforcing the

utility of this approach in the search for biomarkers

associated with breast cancer in peripheral blood.

CYFIP1 may play an important role in the occurrence

and development of cancers. Loss of CYFIP1 expres-

sion has been found in a number of human cancers,

including breast cancer, colon cancer, lung cancer,

bladder cancer, cutaneous squamous cell carcinoma,

nasopharyngeal carcinoma, and acute lymphoblastic

leukemia [38–41]. CYFIP1 expression was correlated

with tumor progression in epithelial cancers and it

raised the possibility that loss of CYFIP1 might corre-

late with clinical outcome [39]. Specifically, CYFIP1

would play a role in the suppression of breast cancer

cell migration/invasion and metastasis [42], although

its suppressive role has been contradicted in other

studies [43]. In sum, the functional role of CYFIP1 in

tumor development is still unclear and controversial.

Finally, we are aware that our study should be com-

plemented with validation of the proposed candidate

on large sample size. Although methylation of candi-

date CpGDM and flanking region in 50UTR of

CYFIP1 in blood showed a good predictive ability of

sporadic BCP against healthy women, additional epi-

demiological factor information including genetic fac-

tors and age and is needed to evaluate its potential

value as an independent biomarker. The cost of the

methylation array-based technologies limits its use as a

screening tool, but the identification of a panel of a

limited number of CpG sites as a cancer biomarker

would allow evaluation of it with other less expensive

technologies.

5. Conclusions

In summary, this work represents the first study in

Latin America that describes the search for epigenetic

markers in peripheral blood in a well-characterized

cohort of patients with sporadic breast cancer.

Although not yet adequate for use in clinical settings,

the description of a panel of 38 CpGDM associated

with breast cancer in the discovery sample and the val-

idation of CYFIP1 as candidate biomarker in a larger

sample demonstrates the potential of blood DNA

methylation for development of non-invasive
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applications for detection of sporadic breast cancer

biomarker in a Latin American population. Future

studies should be aimed at continued exploration of

blood DNA methylation biomarkers using prospective

studies.
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