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Bisphenol A (BPA) has been used since the 1950s, in food packaging, industrial materials, dental sealants, and personal hygiene
products. Everyone is exposed to BPA through skin, inhalation, and digestive system. BPA disrupts endocrine pathways, because
it has weak estrogenic, antiandrogenic, and antithyroid activities. Despite the rapid metabolism, BPA can accumulate in different
tissues. Many researchers proved the impact of BPA on human development, metabolism, and finally reproductive system. There
is increasing evidence that BPA has impact on human fertility and is responsible for the reproductive pathologies, e.g., testicular
dysgenesis syndrome, cryptorchidism, cancers, and decreased fertility in male and follicle loss in female.

1. Introduction

Bisphenol A (BPA) (2,2-bis(4-hydroxyphenyl)propane; BPA)
is an organic synthetic compound, belonging to the group
of diphenylmethane derivatives and bisphenols. It has been
used since the 1950s, in food packaging, industrial materials,
dental sealants, and personal hygiene products [1]. Everyone
is exposed to BPA through skin, inhalation, and digestive
system. It is poorly soluble in water and soluble in organic
solvents. High temperatures cause the release of free BPA [2].
Epoxy resins containing BPA are used to line water pipes, as
coatings on the inside of many food and beverage cans and
in making thermal paper, such as that used in sales receipts.
In 2015, an estimated 4 million tons of BPA chemical was
produced for manufacturing polycarbonate plastic, making it
one of the highest volumes of chemicals produced worldwide
[3]. BPA absorbed by humans is metabolized by the liver,
with half-life of 6 h, and excreted with the urine in 24 h
[1, 2]. BPA disrupts endocrine pathways, because it has weak
estrogenic (1000-100,000-fold less than that of estradiol),
antiandrogenic, and antithyroid activities. Despite the rapid
metabolism, BPA can accumulate in different tissues [3]. Even
though the European Union and Canada have banned BPA
use in baby bottles, it was found in the serum of babies fed

by breast and fed by bottle alike. This finding shows our
ubiquitous vulnerability to BPA [3]. Many researchers proved
the impact of BPA on human development, metabolism, and
finally reproductive system [4].

BPA has been tested as an artificial estrogen already
in the early 1930s. Diethylstilbestrol (DES), a structurally
similar compound, was used as a synthetic estrogen drug in
women and animals until it was banned in the 1970s, due to
its risk of causing cancer [1-5]. Typically phenol-containing
molecules similar to BPA are known to exert weak estrogenic
activities; thus it is also considered an endocrine disrupter
(ED). BPA is a xenoestrogen, exhibiting estrogen-mimicking,
hormone-like properties, because of the similarity of phenol
groups on both BPA and estradiol, which enable this synthetic
molecule to trigger estrogenic pathways in the body. There is
increasing evidence that BPA has impact on human fertility
and is responsible for the reproductive pathologies, e.g.,
testicular dysgenesis syndrome, cryptorchidism, cancers, and
decreased fertility in male and follicle loss in female [4, 6-
8]. BPA has been found to bind to estrogen receptors (ERs),
ERa, and ERp, but still it is less potent than estradiol [4, 6-
8]. BPA is not only a selective estrogen receptor modulator
(SERM) but also a partial agonist of the ER [4, 6-8]. It can also
bind to the androgen receptor (AR) and act as its antagonist
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when its level is high [4, 6-8]. Moreover BPA has been
found to affect Leydig cell steroidogenesis, including affecting
17a-hydroxylase/17,20 lyase and aromatase expression and
interfering with LH receptor-ligand binding [4, 6-8]. In 2017
the European Chemicals Agency has listed BPA as a substance
of very high concern, due to its properties as an endocrine
disruptor.

2. Material and Methods

Pubmed (http://www.ncbi.nlm.nih.gov/pubmed) searches
for the years 2000-2018 were conducted using the following
key words: BPA, bisphenol A, fertility, reproduction,
female, and male. We focused on manuscripts published in
2000-2018, to expand upon previous review papers on the
same topic [4, 5]. Additionally, references included in other
review papers were examined for relevant information. 187
studies were identified, among them 97 were researching
human populations.

3. Female

Infertility in women results from various factors, environ-
mental, endocrine, lifestyle, and also physical problems, and
nowadays can reach up to 30% worldwide [8-10]. Environ-
mental factors cause the exposure to endocrine disrupting
chemicals, which can mimic or block the endocrine activity
of endogenous estrogen and affect reproduction [11]. BPA
is a xenoestrogen, exhibiting estrogen-mimicking, hormone-
like properties. Many animal studies show that BPA as a
toxicant has adverse effects on fertility, delays the onset of
female puberty, and has influence on estrous cycle [4]. BPA
has been found to bind to both of the nuclear estrogen
receptors (ERs), ERa, and ERf. BPA can both mimic the
action of estrogen and antagonize estrogen, indicating that it
is a selective estrogen receptor modulator (SERM) or partial
agonist of the ER [4, 6-8]. BPA seems also to interfere
with the steroidogenesis process by reducing StAR and P450
aromatase, whereby the production of E2 is blocked [12].
These changes are correlated with an increase in follicular
atresia and seen in human diseases that lead to infertility,
polycystic ovary syndrome, and endometriosis [12]. At the
level of ovary “BPA interfere with histone modification,
leading to the downward adjustment of lhcgr mRNA levels,
and probably with global methylation because of its ability to
interfere with the dnmt expression” [12].

Studies on animals showed that the negative impact of
BPA on female fertility derives from impaired cytoskeletal
dynamics of oocyte, induction of oxidative stress, increased
DNA damage, and changing of the status of epigenetic
modifications in oocyte [13].

3.1. Oocyte. The female germ cells produce a primordial
germ cell, which then undergoes mitosis, forming oogonia.
During oogenesis, the oogonia become primary oocytes. BPA
affects the maturing of the oocyte [8, 12]. Infertile women
have higher serum BPA levels compared to fertile women. In
women who undergo in vitro procedure, a higher level of BPA
in the urine negatively correlated with oocytes maturation
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and peak concentrations of estradiol [9]. Most probably, the
every-day exposure to BPA diminishes the ovarian reserve
[10]. Also in another cohort study by Ehrlich et al., higher
urinary BPA concentration correlated with the poor oocyte
yield and with lower serum E2 [14]. Bloom et al. also
observed association between higher BPA and lower serum
level of E2 but did not find the association between BPA and
the number of oocytes retrieved per cycle [15]. According
to Fujimoto et al,, in women undergoing intracytoplasmic
sperm injection, a higher concentration of BPA in the serum
was connected with a decreased probability of mature oocytes
[16]. Still Zhao et al. did not find correlation between BPA
and E2 in healthy adult women [17]. But in women with
polycystic ovary syndrome (PCOS) Kandaraki et al. found “a
significant association between BPA and elevated androgen
concentrations” [18]. Still, not all epidemiological studies
report an association between BPA exposure and fertility
outcomes. Buck Louis et al. did not find correlation between
total urinary BPA concentrations and impaired fecundity
in healthy women [19]. According to other human studies,
preconception concentrations of BPA in female urine were
associated with decreased fecundability [20]. Nevertheless, all
these studies did not take into account potential modifying
factors, such as coexposure to other chemicals.

3.2. Hypothalamic-Pituitary-Ovarian Axis. The uterus re-
sponds to the changing hormone levels produced by the
brain as well as the ovaries. This process is initiated in
the hypothalamus through the production and release of
GnRH, which leads to FSH and LH release from the anterior
pituitary gland. As a result, oocyte development takes place
in the ovaries, and estradiol is produced from the growing
ovarian follicle. BPA can affect the hypothalamic system.
The hypothalamic-pituitary-ovarian axis controls the ability
of the mammalian female to ovulate and to prepare the
reproductive organs to support potential pregnancy. BPA
exposure resulted in the decrease of the reproductive capacity
and delay or elimination of puberty [1]. In rats, in utero
BPA exposure resulted in irregular estrous cycles in mature
animals [21-23]. The exposure to 500 ug/kg/day BPA in rats
leads to anovulation and infertility [22]. Moreover, BPA may
target GnRH neurons and as a result cause the decrease in
GnRH mRNA expression [23, 24].

Only small number of human studies concerning the
association between BPA exposure and pituitary outcomes
can be found. Miao et al. reported “a positive association
between creatinine adjusted urine BPA levels and PRL and
a negative association with FSH levels in women exposed to
BPA in their work place” [25]. In contrast, Souter et al. found
“no association between specific-gravity adjusted BPA levels
and day-3 FSH levels in women undergoing IVF treatments”
[26]. These dissimilar results may be due to the differences
between two cohorts. The first examined female workers are
from manufacturers of epoxy resin in China and workers
from garment factories; the latter are women undergoing
infertility treatments at the Fertility Center.

BPA interfere with the synthesis of gonadotropins.
According to Brannick et al. mice after the administration of
BPA had decreased levels of “gonadotropin mRNA, Gnrhr,
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and Nrb5al, key components of gonadotropin synthesis”
essential for signal transduction between the pituitary and the
hypothalamus [27].

3.3. Polycystic Ovary Syndrome. Nowadays the polycystic
ovary syndrome (PCOS) is the most common women
endocrinopathy. PCOS symptoms are hirsutism, dysfunction
of menstrual cycle, and infertility caused by hyperandro-
genism, anovulation, and insulin resistance [28]. Both human
and animal studies have suggested a possible role of BPA
in PCOS aetiopathogenesis [28-35]. Several studies show
that women with PCOS had a higher BPA concentration,
than healthy women [28-35]. Young Rodents exposed to
BPA, when matured, developed PCOS-like syndrome [28].
Moreover a negative correlation between the urinary BPA
concentration and the antral follicle count in women with
PCOS was found [26]. Also BPA levels were negatively cor-
related with AMH and day-3 FSH levels, but the differences
were statistically nonsignificant [8].

3.4. Oviduct and Uterus. The oviduct and uterus are part of
the female reproductive system and are specialized organs
that serve to transport oocytes to the site of fertilization
and implantation, to support fetal growth and nourishment.
BPA has also effects on oviduct and uterus, triggering
the formation of progressive proliferative lesions [1]. The
evidence on the effects of BPA exposure on the oviduct
is based on experimental studies in mice. The exposure of
prenatal mice to the low dose BPA resulted in formation of
progressive proliferative lesions in the oviduct and remnants
of the Wolffian duct in mature animals [36]. Other studies
indicate that high dose BPA exposure during prenatal life
delayed development and transport of the embryo compared
to controls [37]. This data indicates that gestational BPA
exposure affects morphology and function of oviduct. Both
prepubertal and gestational mice treated with BPA had
proliferative lesions in the oviduct, and prenatal exposure
of rodents to BPA caused atypical hyperplasia and stromal
polyps of the uterus and endometriosis [36-38]. In other
experimental studies, exposure to BPA diminished the uter-
ine receptivity, so important for implantation of an embryo
[36, 39-45]. These findings were only partially confirmed in
human so far [41]. According to Ehrlich et al., in women
undergoing in vitro fertilization, higher urinary BPA was
connected with higher implantation failure, but this trend
turned out to be statistically nonsignificant [46]. Sugiura-
Ogasawara et al. found higher level of serum BPA in women
who experienced recurrent miscarriages, and furthermore
“there was a trend of higher BPA in the women with abnormal
embryos” [47]. According to one study by Cantonwine et al.,
there is also association between BPA level and premature
delivery [48]. Contrary to this observations two experimental
studies report no effect of low or high doses (122 mg/kg/day)
of BPA, on the number of implantation sites [45, 46].

3.5. Gene Expression. BPA can also affect the gene expression
[49]. According to Caserta et al. who investigated women
affected by primary infertility “a positive correlation was

found between BPA levels and ESRI, ESR2 (nuclear recep-
tors), AR (androgen receptor), AhR (hydrocarbon recep-
tor), and PXR expression (pregnane X receptor), while
PPARy (peroxisome proliferator-activated receptor gamma)
expression did not show any meaningful difference” [50].
These findings support the hypothesis that BPA acts on
nuclear receptor, disturbing hormone response pathways and
steroidogenesis, affecting female infertility [1].

3.6. Ovary. 'The ovary progresses through many stages begin-
ning in the prenatal period through menopause; it secretes
hormones that play a role in the menstrual cycle and fertility.
Studies on animals found also the influence of in utero
or neonatal BPA exposure on ovary, which has changed
morphology and histology when compared to controls.
Experimental studies have shown that BPA also affect the
oocyte and granulosa cells, essential for oocyte survival and
nourishment [1]. In rodents and lambs exposed to BPA
postnatally, the ovarian follicular reserve was reduced, with “a
decline in the stock of primordial follicles, increase in antral
atretic follicles, higher incidence of multiple oocyte follicles,
and lower ovarian weight” [24, 51]. In other studies “murine
ovarian granulosa cells cultured with BPA had increased
granulosa cell apoptosis, decreased granulosa cell viability,
and increased follicular atresia” [52].

3.7 Progeny. Maternal or paternal exposure to BPA can affect
the birth weight of newborns [14]. Miao et al. observed that
babies born to mothers exposed to BPA had significantly
lower birth weight. Lower birth weight was also observed
in children of fathers exposed to BPA but in this case the
difference was not statistically significant [53]. Moreover
Chou et al. found that a higher level of BPA in mother
serum increased a risk of having a male infant with low birth
weight [54]. Contrary to that observation, Philippat el al.
found “a positive association between maternal BPA and both
weight/size and increased head circumference with higher
maternal urinary BPA” [55]. Earlier studies from 2008 did not
find correlation between birth weight of a child and maternal
serum or urine BPA [56, 57].

4. Male

It is not debatable that BPA disrupts spermatogenesis [8,
58]. At high concentrations, BPA binds to and acts as an
antagonist of the androgen receptor (AR) [59]. In addition
to receptor binding, the compound has been found to
affect Leydig cell steroidogenesis, including affecting 17«-
hydroxylase/17,20 lyase and aromatase expression and inter-
fering with LH receptor-ligand binding [59]. Among couples
in need of treatment of infertility, in 98% of patients, BPA was
found in the urine samples, and its level negatively correlated
with sperm count and motility [60]. In vitro BPA has also
been linked to reduction of sperm reserves, shorter transit
time of sperm, and lower mitochondrial activity [61, 62].
The same effects of BPA were noticed in rats and mice in
vivo [63, 64]. Also higher rate of apoptosis of Sertoli cells
was recognized [65]. In addition BPA as a toxicant alters
the energy metabolism [66]. BPA exposure is related to a



decrease in the activity of the antioxidant system, resulting
in oxidative stress, the most common cause of damage to
the sperm [67, 68]. However, we should emphasize that BPA
exposure is not the only disruptor of sperm production. Still,
there are some observations yielding contrary results; e.g., a
large study by Chen did not prove the association between
BPA and infertility in men with idiopathic infertility [69].
This study subjects were volunteers consecutively recruited
from affiliated hospitals. They were the male partners of
couples with problems with conception. In another cross-
sectional study of healthy men recruited for military service,
urinary BPA concentrations were inversely associated with
progressive sperm motility but, there were no associations of
BPA with other sperm parameters [58]. Meeker et al. explored
the association of urinary BPA concentrations with semen
parameters and DNA damage in male partners of subfertile
couples and reported that “urinary BPA concentrations were
negatively associated with sperm concentration, normal mor-
phology, and sperm DNA damage” [70].

4.1. Testosterone Levels. Testosterone plays a key role in the
development of male reproductive tissues such as testes and
prostate, as well as promoting secondary sexual characteris-
tics. Nakamura et al. in their experiment on rats found that
higher doses of BPA positively correlated with the decrease
of serum levels of testosterone and LH generating hypogo-
nadotropic hypogonadism [71]. Moreover the expression of
GnRH receptor was higher, and according to Wisniewski et
al. “the observed pattern of gene expression is indicative of
an attempt by the pituitary to reestablish normal levels of LH,
FSH, and testosterone serum concentrations” [6]. According
to Meeker et al., males with elevated urinary BPA had higher
FSH and lower inhibin B levels, and BPA exposure “was
associated with a higher FSH:inhibin B ratio and a lower
estradiol:testosterone ratio” [70]. Mendiola et al. found that
increase in BPA urine level correlated also with decreased
free androgen index, and this association was statistically
significant [72]. Many authors stressed the association of
exposure to phenols and idiopathic male infertility [69, 73].

4.2. Progeny. In prenatal life our drug metabolizing system
is immature, and moreover the placenta is not a barrier to
maternal BPA [74]. Higher levels of BPA prenatally are found
to be connected with the lower birth weight and smaller
size for gestational age (SGA), more expressed in males [54].
Contrary to that, Lee et al. observed association between high
birth weight and elevated levels of maternal BPA [75]. In a
study by Bloom a higher level of paternal but not maternal
serum BPA was connected with reduced embryo quality,
which suggests “a role for sperm quality related to BPA
exposure of the father on early reproductive development in
the offspring” [76].

4.3. Sexual Function. Sexual function, erectile function and
ejaculation in male, is regulated by complex mechanisms.
Several central and peripheral neurological factors in addi-
tion to molecular, vascular, psychological, and endocrine
factors are involved. It is worth noting that BPA exposure
probably can also influence sexual function of men. In China
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workers exposed to BPA, self-reported sexual function was
significantly decreased when compared with the control
group [77, 78].

4.4. Cryptorchidism. Undescended testicle, with an incidence
of 2 to 5% in boys born on term, is one of the most
common genitourinary tract malformations in males, leading
to surgical intervention, which does not completely do away
with higher risk of infertility and malignancy. During the
process of descending to the scrotum, which is starting in
prenatal life, testicles are guided by the gubernaculum, and
this process should be finished in boys born on term. Some
authors link the BPA with cryptorchidism. The aetiology
of cryptorchidism is multifactorial, genetic, hormonal, and
environmental factors playing a role [79-82]. According to
Komarowska et al., higher levels of serum BPA in boys with
unilateral cryptorchidism “reflect the continuous exposure to
BPA in our patients, connected with environmental sources”
[3]. Contrary to that, other authors found that levels of uBPA
are similar in boys with cryptorchidism and with testicles
in the scrotum. Virtanen et al. did not find correlation
between bisphenols in the placenta and interrupted testicular
descent [83]. Moreover Hosie et al. studying serum levels of
BPA did not find statistical differences between boys with
cryptorchidism and controls [84]. A study by Fenichel et al.,
investigating cord blood in newborn males with or without
their testicles in the scrotum, found a positive correlation
between unconjugated cord blood BPA and total T and
inhibin in controls [85].

In boys with cryptorchidism, according to Chung, “the
reduction in germ cell count starts as early as 6 months of
age and is dependent on the position of the testis” [86].
Study by Wilkerson et al. who compared fertility potential of
undescended testes by age groups in children revealed that
“the higher the testicular position at the time of treatment,
the fewer the number of germ cells” [87]. According to
human studies “spermatogenic index decreases significantly
by 9 months of age™ so operation of undescended testes
at this age or before may stop testicular degeneration and
improve chances for future fertility [83]. Moreover, Tasian et
al. reported “a significant 2% risk per month of severe germ
cell loss and 1% risk per month Leydig cell depletion for each
month a testis remains undescended” [88]. According to the
same research “the odds of germ cell loss almost double for
each age range at the time of orchidopexy” [88].

4.5. Genital Abnormalities. The human fetus is undifferenti-
ated sexually until 8" week of gestation and contains both
male and female genital ducts. In male Wolfhan structures
differentiate into the vas deferens, epididymis, and seminal
vesicles, the genital tubercle enlarges to form the penis,
the genital folds become the shaft of the penis, and the
labioscrotal folds fuse to form the scrotum. Differentiation
occurs during 12-16 week of gestation and is regulated
by testicular hormones. Because BPA is an antiandrogenic
disruptor, more genital abnormalities could be expected in
boys born to parents exposed to BPA. According to Miao
et al. “boys from BPA exposed parents had shorter AGDs
(anogenital distance), and boys from exposed mothers had
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a statistically significant correlation to BPA exposure, in both
pre- and postpubertal analyses” [53].

4.6. Male Fertility. Sperm production in the testis depends on
equilibrium between division and loss of germ cells. During
spermatogenesis, apoptosis limits the quantity of germ cells
and eliminates those which carry DNA mutations, occurring
through chromosomal crossing over during the first meiotic
division. Cohort studies investigating the correlation between
male urinary BPA concentrations and couple reproductive
outcomes often yield opposing results. Dodge et al. examined
“the associations of paternal urinary BPA concentrations with
fertilization, embryo quality, implantation, and live birth”
among couples who underwent intrauterine inseminations
and in vitro fertilization cycles and found no correlation
[89]. Buck Louis et al. did not find association between
paternal urinary BPA concentrations and time to pregnancy
[19]. However, in the last study, higher paternal urinary BPA
concentrations were significantly associated with fewer male
births. Contrary to that, according to Radwan et al. higher
urinary concentration of BPA increases the percentage of
immature sperm [90]. This study provides evidence that
exposure to BPA is associated with poorer semen quality [90].
There is more reliable evidence in relation to the negative
effect of BPA on sperm quality and motility [91], but accord-
ing to the same review of in vitro, in vivo, and epidemiological
studies, “no unambiguous results were obtained in relation to
the evaluation of associations between BPA and implantation
failure in women, (...) sexual dysfunction in men, impact
(...) on birth rate, birth weight and length of gestation” [91].

The effects of BPA exposure on fertility, reported by
different authors, are dependent on the study design, timing
and route of exposure to BPA, species being examined, and
dose of BPA. Other modifying factors, such as study location
and study sample may play a role. Studies on human popula-
tion have certain limitations; e.g., different populations have
various exposure levels of BPA, so comparing the results from
the literature, one should know all confounding factors, since
itis well known that the health outcomes are affected by many
determinants. Still the literature on this topic is growing, so
does our knowledge.

5. Conclusion

Broadening our knowledge of the effects of BPA may urge the
reduction of its use and so lessen its impact on human fertility,
reproductive system, and development.
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