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Simple Summary: We identified the sequence encoding galectin-9 from Pagrus major and sub-
sequently investigated the molecular characteristics and changes in gene expression patterns in
response to artificial infection with major pathogens. Overall, our data suggest that galectin-9 plays
a pivotal role in the immune system of P. major. The findings of this study can potentially serve as
a reference for understanding the function of galectin-9 in the P. major immune system; moreover,
galectin-9 has been identified as a potential candidate for use as a disease-related molecular marker.

Abstract: Galectin (Gal) is a member of a family of β-galactoside-binding lectin. The members of
this family play important roles in the recognition of carbohydrate ligands and in various other
biological processes. In this study, we identified the gene encoding Gal-9 in Pagrus major (PmGal-9)
and analyzed its expression in various tissues after pathogen challenge. Alignment analysis revealed
that the two galactose-binding lectin domains of the deduced protein were highly conserved among
all the teleosts. Phylogenetic analysis revealed that PmGal-9 is most closely related to the Gal-9
gene of gilthead sea bream. PmGal-9 was ubiquitously expressed in all tissues analyzed but was
predominantly expressed in the spleen, head kidney, and intestine. After challenges with major
microbial pathogens (Edwardsiella piscicida, Streptococcus iniae, or red sea bream iridovirus) of red
sea bream, PmGal-9 mRNA expression was significantly regulated in most immune-related tissues.
These results suggested that PmGal-9 not only plays an important role in the immune system of red
sea bream but is also a possible inflammatory marker for pathogenic diseases.

Keywords: aquaculture; gene profiling; Streptococcus iniae; Edwardsiella piscicida; iridovirus

1. Introduction

Galectins (Gals) are a family of β-galactoside-binding lectin. They were formerly
known as S-type or S-lac lectins [1,2]. Gals play significant roles during innate immune
responses by mediating the recognition of pathogens by host cells and are involved in
the elimination of pathogens; they interact with carbohydrates on the surface of invading
microorganisms and function as pattern recognition receptors (PRRs) in both vertebrates
and invertebrates [3]. In addition, they are involved in many homeostasis and physiological
processes such as apoptosis, inflammation, immune responses, cell migration, proliferation,
adhesion, autophagy, and signal transduction [4–6]. Gals can be classified into three main
types: the proto type (Gal-1, -2, -5, -7, -10, -11, -13, -14, -15, and -16), the tandem-repeat type
(Gal-4, -6, -8, -9, and -12), and the chimera type (Gal-3), but they all have a highly conserved
structure [7].
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Gal-9 was first isolated from mouse embryonic kidneys in 1997, demonstrating the
family’s characteristically conserved sequence motifs and specific binding activity [8]. Gal-
9 is a ligand for the T cell immunoglobulin domain and mucin domain protein 3 and
is involved in autoimmune- and allograft-related apoptosis actions [9,10]. In addition,
previous studies confirmed the function of Gal-9 in human plasmacytoid dendritic cells and
B cells as well as its role in regulating TLR7/TLR9 signaling and its function as an eosinophil
chemotactic factor [11]. Interferon-gamma-induced production of Gal-9 has been shown
to play an important role in the immune response by regulating the interaction between
vascular walls and eosinophils, and researchers have reported the importance of Gal-9 as an
inflammatory mediator in acute dengue virus infection [12,13]. Gal-9 induced the expression
of apolipoprotein B editing complex 3 protein and mutated human immunodeficiency virus
(HIV), weakening its infectivity and triggering the expression of various other anti-HIV
factors [14].

Recently, there has been much interest in the correlation between Gal-9 and tumors
in humans, and many studies have reported its role as a prognostic factor [12,15,16].
In teleosts, Gal-9 has been subjected to gene expression profiling and evaluations of its
immunological function in a variety of species, but this research is still limited and has not
been previously reported in red sea bream [17–22].

Red sea bream (Pagrus major) has been an important aquaculture species for many
years in Korea and Japan. Although its production has increased due to the development of
aquaculture technology, the disease is still a problem, especially those caused by dangerous
pathogens that can lead to mass mortality, such as edwardsiellosis, streptococcosis, and
red sea bream iridovirus (RSIV) disease [23]. Therefore, in order to solve problems related
to pathogenic diseases, an understanding of the immune system and related research is
necessary.

In this study, we obtained the cDNA sequence of Gal-9 from P. major (PmGal-9) and
identified its molecular biological characteristics using its deduced amino acid sequence.
In addition, the expression pattern of PmGal-9 mRNA was confirmed in the healthy state
and after artificial infection by each pathogen.

2. Materials and Methods
2.1. Identification and Characterization of the Galectin-9 Gene

The coding sequence (CDS) of PmGal-9 was obtained by next-generation sequenc-
ing (NGS) analysis in our previous study [24]. Suitability of the designed polymerase
chain reaction (PCR) primers (forward: ATGGCTTTTAATCAGCAGTC, reverse: CTACAC-
CACCACAGATGTCA) was confirmed using the primer3 primer-design program of the
GENETYX software version 8.0 (GENETYX Corporation, Tokyo, Japan). Amplification of
PmGal-9 proceeded using ExPrime™ Tag Premix (GeNet Bio, Daejeon, Korea) according to
the manufacturer’s instructions. The PCR product was then cloned into a pGEM-T Easy
Vector (Promega, Madison, WI, USA), which was transformed into Escherichia coli (E. coli)
JM109 competent cells. Plasmids were extracted using an Exprep Plasmid SV mini kit
(GeneAll, Seoul, Korea). We confirmed the integrity of the sequence additional Sanger
sequencing and predicted the amino acid sequence by using the GENETYX software version
8.0. Gal-9 related amino acid sequences were retrieved from the National Biotechnology
Information Center (http://www.ncbi.nlm.nih.gov/blast) database and used for multiple
alignment analysis and phylogenetic analysis. Multiple alignment analysis of PmGal-9 with
deduced amino acid sequences of other species was performed with the ClustalX 2.1 pro-
gram, and the characteristic domains and sequences of Gal-9 were identified with the Expert
Protein Analysis System PROSITE Scan tool (http://prosite.expasy.org) and simple modular
architecture research tool (http://smart.embl-heidelberg.de/). For phylogenetic analysis,
a tree was created using the MEGA 6.0 program (http://www.megasoftware.net) with a
neighbor-joining algorithm. Support for each node was derived from 2000 resamplings.

http://www.ncbi.nlm.nih.gov/blast
http://prosite.expasy.org
http://smart.embl-heidelberg.de/
http://www.megasoftware.net
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2.2. Experimental Fish and Microorganisms

The red sea breams (weight: 173.2 ± 31.1 g, full length: 22.4 ± 0.9 cm) were provided
by the Gyeongsangnam-do Fisheries Resources Research Institute and acclimated for two
weeks in the laboratory. A total of 63 fish (21 individuals per group) were used to measure
PmGal-9 mRNA expression after pathogen challenge. The fish were randomly sampled
prior to use in the experiment to identify major pathogen infections. All animal experiments
were performed according to the guidelines of the Animal Protection and Use Committee
of Gyeongsang National University (Approval Number: 2020-0002).

Bacteria and virus strain used in the experiments to analyze transcript expression
levels after pathogen infection were obtained from the Fish Pathology Division of the
National Institute of Fisheries Science (NIFS, Korea). The strains used were Streptococcus
iniae (S. iniae) FP5228, Edwardsiella piscicida (E. piscicida) FSW910410, and RSIV.

2.3. Tissue Collection and Processing

For the analysis of PmGal-9 mRNA transcript levels under healthy conditions, tis-
sues from three independent fish were sampled after euthanasia via benzocaine (Sigma-
Aldrich, St. Louis, MI, USA) and stored at −80 ◦C until total RNA extraction. Total
RNA was extracted from the prepared tissues (brain, gills, head kidney, heart, intestine,
liver, muscle, skin, spleen, stomach, and trunk kidney) according to the manufacturer’s
instructions with RNAiso Plus reagent (Takara, Tokyo, Japan), and genomic DNA was
removed. The extracted total RNA was measured for concentration and purity using a
NanoVue spectrophotometer (GE Healthcare, London, UK) and synthesized into cDNA
using a PrimeScript™ 1st strand cDNA Synthesis Kit (Takara, Tokyo, Japan) according to
the manufacturer’s instructions. The PCR products were detected by electrophoresis on
ethidium-bromide-stained agarose gels and visualized under ultraviolet light.

To measure the expression changes in PmGal-9 mRNA after artificial infection by
major pathogens in the red sea bream aquaculture industry, the experimental fish were
divided into three groups, and S. iniae (1 × 105 CFU/fish), E. piscicida (1 × 105 CFU/fish)
or RSIV (1 × 106 copies/fish) were injected into their abdominal cavity. The control group
was intraperitoneally injected with the same volume of phosphate-buffered saline (PBS)
buffer. Then, the major tissues were aseptically extracted at various sampling times (1, 12,
24, 72, 120, and 168 h), and total RNA was extracted and synthesized into cDNA as in the
method described above.

2.4. Quantitative Real-Time PCR

The expression level of the PmGal-9 transcript was measured by quantitative real-time
PCR using the prepared cDNA samples and specific primer sets (forward: CAGGCA-
GAATGCAGACATTG and reverse: GCTGAAGGTAGAGCCAGCAG). The SYBR green
method was used, and real-time PCR was performed with TB Green™ Premix Ex Taq™
(Takara, Tokyo, Japan) and Thermal Cycler Dice Real Time System III (Takara, Tokyo, Japan)
according to the manufacturer’s instructions. The measured threshold cycle (Ct) values
were calculated using the Ct values of the red sea bream elongation factor 1-alpha gene
(forward: CCTTCAAGTACGCCTGGGTG and reverse: CTGTGTCCAGGGGCATCAAT)
and the delta-delta Ct method as the fold change relative to the control group. All experi-
ments were repeated three times, and statistical analysis was performed using one-way
analysis of variance (ANOVA) followed by Tukey’s multiple comparison test. The analysis
was conducted using SPSS software version 19 (IBM, Chicago, IL, USA). Significance was
indicated by the p-value (* p < 0.05 and ** p < 0.01).

3. Results
3.1. Identification and Characterization of PmGal-9 Sequence

The CDS of PmGal-9 is 1032 bp long (GenBank accession No. QLI33832), which
encodes a mature peptide of deduced 343 amino acids (aa) with a calculated molecular
weight of 37.43 kDa and a theoretical isoelectric point of 9.11. PmGal-9 has two putative



Animals 2021, 11, 139 4 of 11

galactose-binding lectin domains located at 16 to 148 and 217 to 343 aa (Figure 1). The
deduced amino acid sequence alignment of the PmGal-9 sequence with those from other
species indicated their high shared identity (Table 1). Multiple sequence alignment showed
that PmGal-9 had the highest similarity to rock bream Gal-9 (85.6%), followed by gilthead
sea bream Gal-9 (85.0%), large yellow croaker Gal-9 (79.0%), and Nile tilapia Gal-9 (72.9%).
There was a comparatively low level of identity with pig Gal-9 (45.4%), cattle Gal-9 (44.0%),
and human Gal-9 (43.4%). Furthermore, a phylogenetic tree was constructed using the
deduced amino acid sequences (Figure 2). PmGal-9 formed distinct clusters with the Gal-9
of teleosts, implying a closer relationship between PmGal-9 and that of other teleosts.
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Figure 1. Multiple sequence alignment analysis of the deduced amino acid sequence of PmGal-9 with fish Gal-9 sequences.
This analysis is based on the following sequence data: rock bream (ANN46244), gilthead sea bream (XP_030261557), large
yellow croaker (XP_010754381), Nile tilapia (XP_003458375), rainbow trout (ACO08221), Atlantic salmon (ACI67584), pig
(NP_999097), cattle (NP_001034266), and human (CAB93851). The predicted galactose-binding lectin domains are indicated
by the box. Black boxes: identity = 100%; gray boxes: 80% ≤ identity < 100%; light gray boxes: 50% ≤ identity < 80%.

Table 1. Similarities between deduced amino acid sequences of PmGal-9 and those of homologs in other species.

Common Name Species Protein Sequence
Length

GenBank Accession
No. Protein Similarity (%)

Rock bream Oplegnathus fasciatus 347 ANN46244 85.6
Gilthead sea bream Sparus aurata 361 XP_030261557 85.0

Large yellow croaker Larimichthys crocea 343 XP_010754381 79.0
Nile tilapia Oreochromis niloticus 324 XP_003458375 72.9

Rainbow trout Oncorhynchus mykiss 341 ACO08221 65.0
Atlantic salmon Salmo salar 344 ACI67584 64.1

Pig Sus scrofa 355 NP_999097 45.4
Cattle Bos taurus 355 NP_001034266 44.0

Human Homo sapiens 355 CAB93851 43.4
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Figure 2. A phylogenetic tree of PmGal-9 and other known Gal-9 homologs based on the neighbor-
joining (NJ) method. The scale bar indicates a branch length of 0.2. Numbers are bootstrap per-
centiles from 1000 replicates. This analysis is based on the following sequence data: Human Gal-1
(NP_002296), Human Gal-2 (NP_006489), Human Gal-3 (BAA22164), Human Gal-4 (NP_006140),
House mouse Gal-6 (AAI60275), House mouse Gal-7 (NP_032522), Human Gal-8 (AAF19370), Gilt-
head sea bream Gal-9 (XP_030261557), Large yellow croaker Gal-9 (XP_010754381), Rock bream Gal-9
(ANN46244), Nile tilapia Gal-9 (XP_003458375), Atlantic salmon Gal-9 (ACI67584), Rainbow trout
Gal-9 (ACO08221), Cattle Gal-9 (NP_001034266), Human Gal-9 (CAB93851), Pig Gal-9 (NP_999097),
Human Gal-10 (NP_001819), Cattle Gal-11 (CBX54571), Human Gal-12 (NP_001136007), Human
Gal-13 (ACR09640), Human Gal-14 (ACR09644), Sheep Gal-15 (NP_001009238), and Human Gal-16
(NP_001177370).

3.2. Expression of PmGal-9 mRNA in Various Tissues

We used RT-qPCR to extract total RNA from three healthy fish to investigate the
distribution of PmGal-9 mRNA in various tissues (Figure 3). It was expressed ubiquitously
in all tissues (trunk kidney, head kidney, gill, spleen, heart, liver, brain, stomach, intestine,
skin, muscle, and peripheral blood lymphocytes) analyzed. Compared with the brain, the
spleen exhibited higher expression of PmGal-9 (422.7-fold), followed by the head kidney
(51.5-fold) and intestine (25.6-fold). In contrast, relatively low levels of expression were
observed in the liver, muscle, skin, and stomach.
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Figure 3. Expression level of PmGal-9 mRNA in various tissues of healthy red sea bream. The
PmEF-1α gene was used to normalize the RT-qPCR results. The expression level is expressed as the
fold change compared to the expression level of PmGal-9 mRNA in the brain. An agarose gel image
of the PCR products is shown at the bottom. All data are presented as the mean ± SD from three
independent cDNA samples with three replicates per sample.

3.3. Expression of PmGal-9 mRNA after Pathogen Infection

The mRNA expression levels of PmGal-9 in the gill, whole kidney, liver, and spleen
at 1, 12, 24, 72, 120, and 168 h after pathogen challenge (S. iniae, E. piscicida or RSIV) were
determined using RT-qPCR (Figure 4). The PmGal-9 transcript levels were significantly up-
or downregulated in all tested tissues and were increased more in response to bacterial
infection than in response to viral infection. After S. iniae inoculation and during the
initial stage of this artificial infection (between 1 and 24 h), PmGal-9 mRNA transcript
levels were highest in the gills, kidneys, and spleen and gradually declined thereafter.
In contrast, although hepatic PmGal-9 mRNA transcript levels were significantly upreg-
ulated at 1 h postinfection, the highest levels were achieved at 168 h, after a transient
intervening decrease. After artificial E. piscicida infection, all examined tissues exhibited
the highest PmGal-9 mRNA transcript levels at 1 h, followed by a transient decline before
re-upregulation at 72 and 120 h. After RSIV infection, gill PmGal-9 mRNA transcript
levels remained significantly downregulated for the duration of the infection period, and
they were maintained in the spleen until 168 h, when significant downregulation became
apparent. In the kidney, levels were significantly upregulated at 12 h postinfection, and
then declined to baseline, where they remained for the duration of the infection period.
Hepatic levels were significantly downregulated at 24 h postinfection, prior to significantly
increasing at 72 h and then declining again.
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4. Discussion

Gal-9 forms a dimeric structure with a linker peptide bond, and a specific region at the
N-terminus is known to be highly conserved between the Gal family [25–27]. Moreover,
the structural features of PmGal-9 were consistent with our results, as observed in previous
reports where Gal-9 was highly conserved throughout the teleost Gal-9 sequence [19,22];
however, certain sequences in the galactose-binding lectin domains were missing compared
to those in mammalian Gal-9, and in particular, the sequence of the linker peptide (151
to 249 aa) connecting the two galactose-binding lectin domains was confirmed to vary
distinctly between species (Figure 1). In a study by Nishi et al., the lack of a linker peptide
in Gal-9 indicated more stability against proteolysis; however, some sequence mutations
occurring in the galactose-binding lectin domain and changes in the sugar-binding activity
were not confirmed [28]. Similarly, these were also reported in Gal-7, demonstrating that
the mutation was not related to the ability of the protein to regulate apoptosis; instead, the
activation of the galactose-binding lectin domain was required to inhibit the invasiveness
of cancer cells [29]. On the other hand, compared to the wild type, the mutated Gal-9
protein found in the canine gastrointestinal nematode parasite considerably decreased its
affinity for carbohydrates or lost its activity [30]. Although the obtained results differ from
those reported for the Gal homolog and are in conflict with the study purpose, they suggest
the importance of the conservation of major residues—such as polar amino acids—within
the galactose-binding lectin domain.

Gal-9 is highly expressed in many immune organs, including the kidney, bone marrow,
lymph nodes, spleen, and thymus. It is known to have a direct role in immune-related
cells and systems [31–34]. In mammals, Gal-9 interacts with the T cell immunoglobulin
and mucin domain-containing protein 3 (TIM-3), a marker of various immune cells, and is
involved in the apoptosis of T cells and the activation of dendritic cells [9,35,36]. In healthy
Pelteobagrus fulvidraco and Labeo rohita, PfGal-9 and LrGal-9 mRNAs are most abundantly
distributed in the blood, spleen, kidney, or intestine and least abundantly distributed in
the muscle, skin, or brain [19,21]. In healthy rainbow trout, abundant expression was
also found in lymphoid organs such as the thymus, head kidney, and spleen, all of which
contain macrophages and lymphocytes [37]. On the other hand, different results have been
reported for the fish species Rhodeus uyekii, Larimichthys crocea, and Oreochromis niloticus,
and the differences in expression patterns were confirmed [18,20,22]. However, overall,
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the results clearly indicate that Gal-9 mRNA expression is relatively abundant in major
immune and peripheral lymphoid tissues in fish, which may be related to its previously
reported immunological correlation with lymphoid cells. In addition, Gal-9 can promote or
inhibit T cell differentiation in the mammalian thymus; however, studies on teleost thymus
are limited [9,31,38]. Since the teleost thymus also functions similarly to that of mammals,
further studies should evaluate the role of Gal-9 expression in the thymus.

In previous studies on teleosts, Gal-9 mRNA expression levels were significantly
upregulated in immune-related tissues after bacterial infection [19–22]. In addition, Gal-9
mRNA in Labeo rohita was upregulated in muscle and heart, which is thought to be an
immunologically important function of Gal-9, requiring it to be expressed in various tissues
throughout the body in response to bacterial infection [21]. Gal-9 stimulates neutrophils
during bacterial infections and contributes to the removal of bacteria, but in mouse model
studies, Gal-9 exacerbates the inflammatory response during sepsis caused by pulmonary
Francisella novicida infection [39,40]. These findings suggest the need for Gal-9 in vivo
functional analysis during different stages of illness in fish models, especially those of
pathogen infection. In rainbow trout, Gal-9 was upregulated in leukocytes during viral
hemorrhagic septicemia virus infection [17], and our results showed that it was also
upregulated in the kidney and liver. However, the expression level of Gal-9 mRNA was
significantly downregulated after artificial infection in the spleen and gills. After viral
infection with megalocytivirus and RSIV, a lot of the virus was found to accumulate in the
gills and spleen, which could be associated with the survival rate [41–44]. Downregulation
of Gal expression due to viral infection has been reported in previous studies [45–47],
and hence, it may be considered an indicator of interference between viral infection and
immunomodulation. RSIV inclusion bodies are mainly found in the gills and spleens of
infected fish [44,48]. Moreover, the gills and spleen of Pagrus major are believed to have
decreased PmGal-9 mRNA expression due to the mobilization or activity of PmGal-9 protein
in the immune system. The functional studies of Gal-9 against viral diseases in teleosts are
still very limited, and further research is needed. These additional studies will be important
to properly and effectively control and treat disease by understanding pathogen-derived
diseases and the immune system.

5. Conclusions

We confirmed the sequence of PmGal-9 from red sea bream and characterized its
deduced amino acid sequence and conserved sequences. Expression profiling of PmGal-
9 mRNA confirmed its expression characteristics and significant changes in expression
immune-related tissues in response to pathogen infection.
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