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Abstract: The hair follicle dermal papilla is critical for hair generation and de novo regeneration.
When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable
growth patterns under the conventional culture condition: a self-aggregative three dimensional
spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with
different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-
specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned
dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected.
Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal
papilla cells and proved it was the culture condition that determined the dermal papilla growth
pattern. The two growth patterns could transit mutually as the culture condition was exchanged.
The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior
and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when
the culture condition was changed. In addition, the global gene expressions during the transition
from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways
involved in the recovery of 3D pattern and hair inducing capability.

Keywords: sika deer; dermal papilla cell; 3D pattern; 2D pattern; hair inducing capability

1. Introduction

Dermal papilla (DP) is a spherical or pear-shaped specialized mesenchymal conden-
sation that is embedded in the hair bulb at the base of the follicle, enclosed by epithelial
matrix keratinocytes [1]. The transplanting experiments of postnatal DP from various
origins, such as feathers, pelage, and hairs, proved DP plays a key role in inducing hair
follicle neogenesis in both follicular and non-hair-bearing skin [2–5]. In the process of hair
generation and regeneration, DP instructs the keratinocytes to constitute the hair shaft and
inner root sheath during the anagen phase [6–8]. The structure of DP is relatively simple,
consisting of a predominant single cell type: DP cells [9]. In vitro, DP cells from different
species demonstrate two distinctive patterns under conventional serum containing culture
conditions: two dimensional (2D) monolayer polygonal pattern and three dimensional (3D)
spheroidal pattern. In reported assays, DP cells from ovine wool follicles [10] and rodent
vibrissa follicles [11,12] can spontaneously aggregate, adopting embryonic-like properties,
and finally, form a papilla condensate-like 3D spheroidal clumps. The 3D patterned DP
cells maintain trichogenicity [9,13–18] and can retain this inductivity in much later pas-
sages [9,11]. However, human [9,19,20] and canine DP cells [21,22] show striking different
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growth patterns under the same culture conditions. They maintain 2D growth pattern,
which normally loses the ability to induce hair follicles after a few passages. Similarly, sika
deer (Cervus nippon) DP cells do not aggregate spontaneously but maintain 2D growth
patterns in the conventional medium [23]. Whether the loss of self-aggregative behav-
ior relates to species-specific differences or improper culture conditions remains elusive.
Previous studies tried to restore the lost key inductive properties of the fixed 2D-pattern
human DP cells through adding additional inducing entities [11,18,24–27] or forcing the
DP cells into a 3D state [9,19]. Whether the fixed 2D patterned DP cells can recover the
self-aggregative behavior is unclear. In the present study, we proved it was the culture
condition that determined sika deer DP cell growth pattern. We further detected the two
growth patterns could transit mutually as the culture condition was exchanged. The fixed
2D patterned sika deer DP cells could recover the self-aggregative behavior and transit
back to 3D pattern with restored hair inducing capability. To further reveal the mechanism
behind the transition, an RNA-seq based transcriptome analysis was conducted to compare
gene expression patterns between the fixed 2D patterned DP cells (UDP), the re-aggregating
DP cells (MDP) and the restored 3D patterned DP cells (ADP). The candidate genes and
regulating pathways contributing to the recovery of the 3D pattern and the hair inducing
capability were predicted and verified through real-time PCR analysis.

2. Results
2.1. Sika Deer Dermal Papilla Cell Culture

The DP tissues were isolated from individual furs from 15 sika deer for primary
culture (Figure 1A,B). Spindle-shaped DP cells began to migrate out from the attached DP
within 3–5 days (Figure 1C). The intact papillae eventually collapsed when the dish was
approaching 60% confluence on the 8th day on average (Figure 1D). The sub-cultured DP
cells of the first two generations in DMEM/deer serum showed monolayer growth-pattern
with flattened, polygonal, and fibroblastic morphology and maintained the pattern for the
rest passages (Figure 1E). Though in rare cases, some sub-cultured DP cell lines maintained
the self-aggregative behavior and finally formed the 3D pattern after reaching confluence
(less than 5%), the whole process is time consuming-normally lasting for one month and
the aggregative behavior is soon lost in two generations.

2.2. Restoration of 3D-Pattern DP Cells from Fixed 2D Patterned DP Cells

After sub-culturing the selected three 2D patterned DP cell lines for two passages
in 2D culture conditions, the 2D pattern was fixed. We first tried to change the 2D-
culture condition into a 3D-culture condition for the fixed 2D patterned DP cells from
different passages. The results showed the recovery duration of the self-aggregative
behavior correlated with the fixed time in 2D pattern. The second or third 2D patterned
DP cell passage normally recovered the self-aggregate behavior in 24–48 h (Figure 1F) and
grew into 3D spheroids in 3 days (Figure 1G) after the 3D-culture condition was applied.
The spheroids were 100–200 µm in diameter on average. However, the 2D patterned DP
cells over the fifth passage did not recover the self-aggregative behavior in the first two
passages when the 3D-culture condition was applied. They kept 2D flattened morphology
but had faster proliferating speed in the first passage (Figure 1H) compared to those
continually sub-cultured in 2D-culture conditions. The self-aggregative behavior appeared
in the second passage after the 3D condition was applied, as the DP cells reached confluence
(Figure 1I). Though 3D pattern could not form in most cases in this passage. Until the third
passage after the 3D condition applied, the DP cells restored the 3D spheroidal appearance
once they attached to the surface of the culture dish (Figure 1J). The restored 3D pattern
would retain for the rest passages under 3D-culture condition. On the contrary, when the
culture condition of fixed 3D patterned DP cells was changed into the 2D-culture condition,
DP cells no matter how long they had been cultured in 3D-culture conditions would lose
their behavior in one passage. The results of CCK-8 assay showed 2D-pattern DP cells had
more rapid cell expansion than restored 3D-pattern DP cells in general (Figure 1K). When



Int. J. Mol. Sci. 2021, 22, 4715 3 of 18

ADP began to aggregate on the first day and second day after seeding, their proliferation
rates were slightly higher than UDP (p < 0.05). However, after the spheroids formed
on the third day, the growth rate of ADP became moderate, whereas UDP reached their
logarithmic phase, showed robust expansion. The growth rate of UDP kept significantly
higher than those of ADP since the 4th day (p < 0.01).
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in primary culture (right). (D) The intact papillae eventually collapses when the dish is approaching 
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Figure 1. Sika deer dermal papilla isolation, cell culture, and cell proliferation test. (A) A slide of
back skin is divided into strips around 0.5 cm in width and 1 cm in length along the longitudinal
axis. (B) Bar = 100 µm. Isolated sika deer fur follicle (left) and longitudinal section of the sika deer
fur follicle with HE staining (right). (C–J): bar = 500 µm. (C) Dissociative dermal papilla (DP) tissue
sticks on the culture plate surface (left) and DP cells begin to migrate out from the attached DP tissue
in primary culture (right). (D) The intact papillae eventually collapses when the dish is approaching
60% confluence in primary culture. (E) The sub-culture DP cells in 2D culture condition show 2D
monolayer-growth pattern: flattened, polygonal, and fibroblastic morphology. (F) The sub-culture
DP cells of the second passage begin to aggregate in 24–48 h when they are changed into 3D culture
conditions. (G) The sub-culture DP cells of the second passage in 3D culture condition finally grow
into 3D spheroidal pattern in 3 days (average diameter = 100–200 nm). (H) The sub-culture 2D
patterned DP cells of the fifth passage kept 2D flattened morphology when they were cultured in
3D-culture condition for first passage. (I) The self-aggregative behavior begins to appear in the
second passage after the medium transition, as the DP cells reach confluence under 3D-culture
conditions. (J) The spheroidal appearance restores once DP cells attach the surface of the culture dish
in the third passage under 3D-culture condition. (K) Comparison of cell proliferation between fixed
2D patterned DP cells (UDP) and restored 3D patterned DP cells (ADP) through paired t test. Cells
(2000/well) are seeded and the proliferative rates were assessed using Cell Counting Kit-8 on the 1st,
2nd, 3rd, 4th, 5th, and 6th days. Y-axis represents the OD values at a wavelength of 450 nm. X-axis
represents the period of cell growth. * p < 0.05, ** p < 0.01.
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2.3. Identification of Hair Inducing Activity through Specific Expression of CD133, SOX2,
Versican, and ALPL on DP Cells

CD133 and versican are two important makers of hair follicle-inducing capability
in vivo [16,28,29]. Our results showed UDP did not express CD133 (Figure 2A) or versican
(Figure 2D). MDP became CD133/versican positive as the culture condition changed
(Figure 2B,E), and CD133 showed much lower expression level compared to versican in
MDP. Both markers showed a high expression intensity in ADP (Figure 2C,F). The results
confirmed that UDP lost hair-inducing capability. When DP cells restored aggregation,
their hair-inducing capability gradually restored and reached the strongest level when
spheroids formed.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Identification of hair inducing capability of cultured DP cells. Bar = 200 μm. Comparison 
of immunofluorescence staining of CD133 (A–C), versican (D–F), SOX2 (G–I) and alkaline phospha-
tase (ALPL, J–M) on fixed 2D patterned DP cells (UDP), the re-aggregating DP cells (MDP) and 
restored 3D patterned DP cells (ADP). (A) UDP do not express CD133 (red) and DAPI (blue) marks 
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(blue) marks all cell nuclei. (E) Versican begins to express in MDP and the expression intensity is 
strong. (F) ADP continually show strong versican expression intensity. (G) UDP have strong ex-
pression intensity of SOX2 (green) and DAPI (blue) marks all cell nuclei. (H) The expression inten-
sity of SOX2 (green) keeps strong in MDP. (I) ADP continually keep strong SOX2 expression (green). 
(J–M): bar = 500 μm. Comparison of Alkaline phosphatase (ALPL) staining during the process of 
ADP formation. (J) UDP do not show the ALPL staining. (K) DP cells do not express ALPL when 
they begin to aggregate. (L) MDP express strong expression of ALPL. (M) The ALPL expression 
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Figure 2. Identification of hair inducing capability of cultured DP cells. Bar = 200 µm. Comparison of
immunofluorescence staining of CD133 (A–C), versican (D–F), SOX2 (G–I) and alkaline phosphatase
(ALPL, J–M) on fixed 2D patterned DP cells (UDP), the re-aggregating DP cells (MDP) and restored
3D patterned DP cells (ADP). (A) UDP do not express CD133 (red) and DAPI (blue) marks all cell
nuclei. (B) CD133 begins to express in MDP, but the expression intensity is weak (red). (C) ADP
show strong CD133 expression intensity. (D) UDP do not express versican (red) and DAPI (blue)
marks all cell nuclei. (E) Versican begins to express in MDP and the expression intensity is strong.
(F) ADP continually show strong versican expression intensity. (G) UDP have strong expression
intensity of SOX2 (green) and DAPI (blue) marks all cell nuclei. (H) The expression intensity of
SOX2 (green) keeps strong in MDP. (I) ADP continually keep strong SOX2 expression (green). (J–M):
bar = 500 µm. Comparison of Alkaline phosphatase (ALPL) staining during the process of ADP
formation. (J) UDP do not show the ALPL staining. (K) DP cells do not express ALPL when they
begin to aggregate. (L) MDP express strong expression of ALPL. (M) The ALPL expression reaches
highest intensity in ADP.

Sox2 is an important indicator of the stem cells which are important for tissue regener-
ation [30]. In pelage hair follicles, Sox2 also functions as specifying the hair types [28,31,32].
In postnatal skin, Sox2 is only expressed in the DP of guard/awl/auchene follicles, whereas
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DP of the zigzag follicle is Sox2 negative [32]. Our results showed UDPs were Sox2 positive
(Figure 2G). When the culture condition was changed, MDP and ADP continually kept
the strong SOX2 expression (Figure 2H–I). The findings confirmed the stem cell identity of
the cultured DP cells. Unlike versican and CD133, Sox2 expression in DP was an intrinsic
property, unrelated to morphological change or hair inducing capability.

Alkaline phosphatase (ALPL) activity correlates closely with DP trichogenicity, but its
changing pattern was mainly studied on DP tissues during hair cycle [18,33,34]. Our study
first visualized the change of ALPL staining pattern in DP cells. According to the re-
sults, UDP did not express ALPL (Figure 2J). When DP cells began to aggregate as the
culture condition changed, they did not express ALPL (Figure 2K) until MDP phase
(Figure 2L). The ALPL expression reached the highest intensity in ADP phase (Figure 2M).
The results further confirmed UDP lost hair-inducing capability, which is restored as DP
self-aggregation reformed.

2.4. Transcriptome Analysis Revealed Important Genes Contributing to Restored 3D Pattern

To reveal the regulating genes in transition from UDP to ADP, we conducted RNA-seq
analysis on UDP, MDP, and ADP. The hierarchical clustering was performed on the tran-
script signatures of UDP, MDP, and ADP. The results showed MDP and ADP independently
clustered together (Figure 3D), whereas UDP from each donor were clustered. In addition,
we calculated the correlation among UDP, MDP, and ADP (Figure 3C). The average correla-
tion coefficient between ADP and MDP was 0.98 (range: 0.97–0.98), whereas between ADP
and UDP it was 0.82 (range: 0.82–0.83), and between MDP and UDP, it was 0.83 (range:
0.826–0.829). Furthermore, in PCA analysis (Figure 3A), compared to PC2, PC1 explained
70.12% of the overall variation so that it could represent the overall trend. The distance
between ADP and MDP was significantly shorter than that between MDP and UDP in PC1.
The results of the three analyses together suggested compared to UDP, MDP showed a
more similar gene expression pattern with ADP. The distinctive expressed gene patterns
between UDP and MDP, ADP related to aggregative behavior.

The results of Venn analysis showed 267 DEGs between MDP and UDP, 327 DEGs be-
tween MDP and ADP, and 576 DEGs between ADP and UDP (Figure 3B, log2foldchange| ≥ 2,
adjusted p value ≤ 0.05). Among them, 11 co-expressed DEGs in UDP, MDP, and ADP were
further detected, including 6 gradually up-regulated genes and 5 gradually down-regulated
genes (|log2foldchange| ≥ 2, adjusted p value ≤ 0.01, Table 1). In view of the similar expres-
sion between ADP and MDP, 576 DEGs between ADP and UDP were selected for further
analysis. The DEGs included 317 up-regulated genes and 259 down-regulated genes of ADP
compared to UDP (Figure 4C). The results of the biological process of GO enrichment analyses
showed the up-regulated genes were mainly classified into the categories of cell adhesion,
collagen catabolic process, extracellular matrix disassembly, cell-matrix adhesion, positive
regulation of protein kinase B signaling and collagen fibril organization, etc. (p < 0.01, Figure
4A). The results of cellular component of GO enrichment analyses showed the up-regulated
genes were mainly classified into the categories of integral component of membrane, plasma
membrane, extracellular region, extracellular space, integral component of plasma membrane,
proteinaceous extracellular matrix and extracellular matrix, etc. (p < 0.01, Figure 4B). Further-
more, the up-regulated genes of UDP compared to ADP enriched in biological process of
GO terms were mainly related to cell proliferation, cell division, and regulation of cell cycle,
etc. (p < 0.01, Figure 4D). The up-regulated genes of UDP compared to ADP enriched in
cellular component of GO terms were mainly related to extracellular region, extracellular space,
neuronal cell body, and extracellular matrix (p < 0.01, Figure 4F). The KEGG pathway analysis
of all DEGs between ADP and UDP mainly included pathways in PI3K-Akt signaling path-
way, proteoglycans in cancer, neuroactive ligand-receptor interaction, focal adhesion, protein
digestion and absorption, cytokine-cytokine receptor interaction, ECM-receptor interaction,
Hippo signaling pathway, and cGMP-PKG signaling pathway (p < 0.05, Figure 4E). The gene
network of ECM-receptor interaction pathway was mapped to detect the specific regulating
process (Supplementary Figure S1).
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MDP is significantly shorter than that between MDP and UDP in PC1. (B) Venn analysis is performed on differentially
expressed genes (DEGs) of UDP, MDP, and ADP. In total, 267 DEGs are expressed between MDP and UDP, 327 DEGs are
expressed between MDP and ADP and 576 DEGs are expressed between ADP and UDP (|log2foldchange| ≥ 2, adjusted
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Figure 4. GO and KEGG analysis on DEGs between ADP and UDP. (A) GO analysis in BP is performed on the 214 up-
regulated DEGs of ADP compared to UDP. The vertical axis represents the top 10 ranked GO terms according to the gene
counts. The different colors from blue to red represent the −log 10 of adjusted p values (adjusted p values < 0.01). The
horizontal axis represents gene ratio, which is the percentage of total DEGs in the given GO term. (B) GO analysis in CC is
performed on the 214 up-regulated DEGs of ADP compared to UDP. The vertical axis represents the top 10 ranked GO terms
according to the gene counts. The different colors from green to yellow represent the −log10 value of adjusted p values
(adjusted p values < 0.01). The horizontal axis represents gene ratio, which is the percentage of total DEGs in the given GO
term. (C) Volcano plot shows the expression level of DEGs between ADP and UDP. X-axis represents the log2 fold change
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values of DEGs between ADP and UDP. The values ≥2 or ≤−2 are marked by green color. Y-axis denotes –log10 value of
adjusted p value (padj) of DEGs, padj < 0.01. (D) GO analysis in BP is performed on the 113 down-regulated DEGs of ADP
compared to UDP. The vertical axis represents the top 10 ranked GO terms according to the gene counts. The different colors
from blue to red represent the −log 10 of adjusted p values (adjusted p values < 0.01). The horizontal axis represents gene
ratio, which is the percentage of total DEGs in the given GO term. (E) KEGG pathway analysis is performed on all DEGs
between ADP and UDP. The blue bars of X-axis denote the gene counts of enriched KEGG pathway categories. The orange
curve denotes the −log10 values of adjusted p values on enriched KEGG pathway categories, adjusted p value < 0.05. Y-axis
represents the enriched KEGG pathway categories of all DEGs between ADP and UDP. (F) GO analysis in CC is performed
on the 113 down-regulated DEGs of ADP compared to UDP. The vertical axis represents all 4 ranked GO terms according
to the gene counts. The different colors from green to yellow represent the −log10 value of adjusted p values (adjusted
p values < 0.01). The horizontal axis represents gene ratio, which is the percentage of total DEGs in the given GO term. GO,
gene ontology; BP, biological process; CC, cellular component; ADP, restored 3D patterned DP cells; UDP, fixed 2D patterned
DP cells; DEG: differentially expressed genes. Gene counts: the number of genes enriched in a GO term, represented by the
different sizes of the circles.

2.5. Real-Time PCR Analysis Verified Transcriptome Results

Five up-regulated DEGs of ADP compared to UDP (COL4A5, COL7A1, MMP9, FN1,
TNC) were selected and validated by RT-PCR. The results showed that the expression levels
of those genes were significantly higher in ADP than UDP (p < 0.01). In addition, three
co-expressed DEGs from UDP, MDP, and ADP (ALPL, Cyp26b1c, CHRDL1) were validated
by qRT-PCR as well. The expression levels of ALPL and Cyp26b1c significantly increased
along with UPD, MDP, and ADP (p < 0.01) (Figure 3E). The expression level of CHRDL1
significantly decreased along with UPD, MDP, and ADP (p < 0.01). The q-PCR results were
the same as RNA-seq results.

Table 1. The 11 co-expressed DEGs † in UDP, MDP, and ADP ‡, including six gradually up-regulated genes and five
down-regulated genes (|log2foldchange| ≥ 2, adjusted p value ≤ 0.01).

Gene ID Gene Name Gene Symbol Log2FoldChange
ADP vs. MDP

Log2FoldChange
MDP vs. UDP

Celaphus_00014740 Alkaline phosphatase, tissue-nonspecific isozyme ALPL 2.1 4.3
Celaphus_00011342 Liprin-alpha-2 Ppfia2 2.2 2.8
Celaphus_00005746 Cytochrome P450 26B1 CYP26B1 2.2 2.1
Celaphus_00011343 Liprin-alpha-4 (Fragment) Ppfia4 2.7 2.1

Celaphus_00008669 Disintegrin and metalloproteinase
domain-containing protein 8 ADAM8 3.7 2.1

Celaphus_00001834 SLAM family member 8 SLAMF8 2.13 2.12
Celaphus_00005340 Kelch-like protein 29 KLHL29 −4.2 −2.4

Celaphus_00012937 Solute carrier organic anion transporter
family member 2A1 Slco2a1 −2.2 −2.5

Celaphus_00009791 Chordin-like protein 1 CHRDL1 −2.7 −2.6
Celaphus_00013117 Insulin-like growth factor II IGF2 −5.8 −3.1
Celaphus_00001878 Platelet endothelial aggregation receptor 1 PEAR1 −3.8 −3.5

† DEGs: differentially expressed genes; ‡ UDP: fixed 2D patterned DP cells, MDP: the re-aggregating DP cells, ADP: restored 3D
patterned DP cells.

3. Discussion

DP cells of several species, including human, maintain 2D pattern under conventional
culture conditions, accompanied by the loss of hair inductive competence [9,35]. Whether
the self-aggregative behavior is a species-specific capability and will the loss of the self-
aggregative behavior be recovered remain unclear. In view of DP tissue as a specialized
mesenchymal condensation [1], we considered using MSC medium to replace the conven-
tional serum-containing culture medium for retaining the stemness maximumly. The results
met our expectations and our study proved the sika deer DP cells in fixed 2D pattern could
recover the spontaneous aggregation and 3D pattern with restored hair inductivity when
the MSC medium was applied. It has been confirmed the expansion of mesenchymal
stem cells strongly depends on the culture condition. Compared to the medium supple-
mented with 10–20% FBS, serum-free medium can better preserve the original morphology,
function, and multipotentiality of the MSCs [36]. Our results suggested the spontaneous
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aggregation of DP cells was not a species-specific behavior, but closely correlated with
the culture environment. It was more like to be lost under the stemness-suppression
environments. When the suppression was released, the self-aggregative behavior would
be recovered. It would be intriguing to try the same culture condition on human DP
cells. Another interesting finding during the transition was the different proliferation
rates between ADP and UDP. ADP showed a significantly lower proliferation compared to
UDP according to the results of CCK8 test and transcriptome comparison. This finding
was the same as the studies using DP cells from other species, which proved cultured
aggregating DP cells had undergone comparatively few divisions and remained in low
mitotic activity [20,37–39]. During the natural hair cycle, DP demonstrated the same low
proliferative activity once established during embryonic development [40,41]. Our finding
gave more proof that 3D-pattern DP cells more resembled natural DP behavior compared
to 2D-pattern DP cells. The neogenesis of the hair follicles can be achieved by transplanting
cultured ADP to the sub-epidermal space [24,42]. However, cell transplanting recipe for
adult human hair-follicle neogenesis on a bald scalp has long been hampered by insufficient
ADPs due to their low proliferation rate [43]. The rapid DP cell expansion in 2D pattern
can theoretically be used for large-scale production of DP cells as seed bank. 3D-pattern
DP cells can be induced once needed so that to resolve the insufficient ADPs in clinics.

For further detecting the mechanism behind this spontaneous transition, we per-
formed global profiling of UDP and ADP. Previous studies proved the self-assembly of
dispersed cells into 3D pattern or 2D pattern on biomaterials was switchable [44–47]. The
formation of 3D pattern mainly depends on two factors: rate of cell collision and inter-
cellular adhesion, following migration–collision–aggregation process [43,47–50]. The ul-
trastructural study [51] and microarray study on DP [52] both suggested cell adhesion
contributed to DP aggregation. Another study found the formation of DP spheroids could
be enhanced by specific coating proteins increased cell–cell adhesive strength while simul-
taneously maintaining high cell motility. On the contrary, the dispersed DP cells would
not be able to aggregate if they cannot translocate to collide and adhere to each other [47].
Our results showed the largest amount of up-regulated genes of ADP compared to UDP
was enriched in the GO term of cell adhesion, which gave more proof that cell adhesion
played a vital role in DP cell aggregation. During natural hair development, the dispersal
of condensates leads to papilla miniaturization and finally the disruption of hair-follicle
morphogenesis [53]. Preventing the dispersal process through enhancing DP cell adhesion
may offer a new strategy for treating androgenetic alopecia. Among the up-regulated genes
in ADP relating to cell adhesion, fibronectin (FN1) may play an important role. FN1 coded
fibronectin is an adhesive glycoprotein, which is associated with cell adhesion and migra-
tion [54,55]. FN1 locates in the extracellular matrix of DP from the embryonic stage [56,57].
Blocking of FN1 leads to the interruption of epithelial-mesenchymal interaction and cell
proliferation [58]. During the pelage hair cycle, FN1 is prevalent in the DP during anagen
but is lost in catagen and telogen [59]. In vitro, FN1 coating is reported to significantly
increase the number of DP spheroids through increasing DP cell adhesion and maintaining
high cell motility simultaneously [47]. Our results showed the expression of FN1 signifi-
cantly increased in ADP compared to UDP. It may function as recruiting new cells (in vitro
neighbor DP cells/in vivo connective tissue sheath cells) to migrate, collide and adhere to
each other to form DP aggregation. Tenascin (TNC) is another important gene relating to
cell adhesion, which encodes hexameric glycoprotein [60]. TNC refers to mesenchymal
cell aggregation [61]. During the estimated gestational stage, it appears initially as focal
deposits on the mesenchymal side of the dermal-epidermal junction during estimated
gestational stage [58,60,62,63]. The follicle pre-germs develop subsequently at deposit
sites. During the development of hair follicle TNC remains intensely in follicle basement
membrane zone, interfollicular basement membrane zone, follicle health ECM and DP [64].
Our results suggested the TNC significantly up-regulated in ADP compared to UDP. It may
contribute to promoting DP aggregation through increasing cell adhesion.
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Furthermore, we are intrigued by detecting the molecular mechanism behind the
restored hair inducing capability contributed by the 3D spheroidal pattern. The results
of GO analysis in biological process and cellular component both suggested most of the
categories enriched by up-regulated genes of ADP compared to UDP correlated with
extracellular matrix (ECM) metabolism. This finding was consistent with a study on
human DP spheres [9]. ECM serves an important role in tissue and organ morphogenesis
and in the maintenance of cell and tissue structure and function [65]. In natural hair
development, ECM is produced far before hair follicle morphogenesis by pre-follicular
tissue. Early in the embryonic-fetal transition phase of gestational age, various ECM
molecules are produced to concentrate beneath the basal lamina of the embryo, which
cause the basement membrane to appear thickened and gradually form a broader, second
sub-epidermal zone of dermis, referred to as compact mesenchyme. As the mesenchyme
cells begin to aggregate to form condensed mesenchyme- DP precursors, some of the ECM
molecules distributed generally throughout the compact mesenchyme prior to follicle
initiation become restricted in distribution to DP [57]. During the hair cycle, the volume
of ECM changes periodically with DP cell numbers. At the onset of anagen, DP displays
synthetic activity and becomes separated by increasing ECM along with increased DP
cells mainly compensating by connective tissue sheath cells [66]. The volume of the ECM
reaches the largest amounts at the end of anagen [66], then are progressively reduced by
decreased DP cell numbers during catagen, and are finally poorly developed by minimal
DP cells on telogen [13]. In a study of de novo hair generation, the sub-dermal injection of
ADP initially formed a papillae condensate-like clump that synthesizes its own ECM [12].
ECM produced by DP is mainly related to direct matrix keratinocytes to differentiate into
distinct follicular layers during the hair cycle [67]. Therefore, we can reasonably speculate
that accumulated ECM would be the key step in restoring hair inducing capability of
3D-pattern DP cells. ECM is a complex mixture of matrix molecules, involving various
metabolic processes. Previous studies identified several molecules of the ECM produced
by DP, but they were detected individually [39]. Our study first offered a general view
of ECM relevant genes up-regulated in 3D-pattern DP cells compared to 2D-pattern DP
cells, including cell-matrix adhesion, extracellular matrix organization, extracellular matrix
disassembly, collagen catabolic process, and collagen fibril organization. We additionally
identified specific gene signaling pathways involving ECM metabolic processes, including
ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway. The genes and
signaling pathways may help to uncover the specific functions of ECM in hair restoring
ability of 3D cultured DP cells.

Among the up-regulated ECM genes, genes from the collagen family and matrix
metalloproteinases (MMPs) family took high proportion. Collagens play structural roles and
contribute to mechanical properties, organization, and shape of tissues, whose superfamily
comprises 28 members in vertebrates [68]. Collagen I, III, IV has been widely reported to
express in DP [57,69]. Our results suggested the expressions of those collagen encoding
genes were up-regulated in 3D-pattern DP cells compared to 2D-pattern DP cells. Besides,
COL5A3, COL7A1, COL11A2, and COL27A1 showed the same expression pattern. COL7A1
encoding collagen VII can be assembled into anchoring fibrils [70–72]. COL27A1 encoding
collagen XXVII forms 10 nm nonstriated fibrils [73]. Different collagens can also be com-
prised into collagen fibrils based on their supramolecular assemblies and the cross-linking
is tissue-specific [74]. GO results suggested the collagen fibrils formed in DP aggregation
included COL1A2 encoding collagen I, COL3A1 encoding collagen III, COL5A3 encoding
collagen V and COL11A2 encoding collagen XI. The assembled fibrils may undertake the
mechanical properties that offer a stable environment for the interactions between cells
and ECM. MMPs are the main group of enzymes responsible for the collagen degradation
in ECM, involving in the processes of proteolysis, collagen catabolic process, and extracel-
lular matrix disassembly [75,76]. We detected that MMP9, MMP13 MMP15, MMP16, and
MMP19 were up-regulated in ADP compared to UDP. Among them, MMP-13 preferential
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cleaves collagen II [77], whereas collagen IV is the preferential substrate of MMP-9 [78].
MMP-15 and MMP-16 are reported to increase cell adhesion [76].

We additionally identified co-expressed DEGs in UDP, MDP, and ADP, including
Cyp26b1, CHRDL1, ALPL, and ADAM8. The expression of Cyp26b1c increased along with
DP aggregation. Cyp26b1c is one of the retinoic acid (RA)-degrading enzymes of the
cytochrome P450 26 subfamily, which is specifically expressed in the dermis surrounding
the developing hair follicles [79,80] and DP [81]. Excess RA has been shown to induce
catagen-like hair follicle regression [82,83]. The ablation of Cyp26b1 in embryonic period
leads to excessive endogenous RA, resulting in the arrest of hair follicle growth at the
hair germ stage, which can be rescued by the normalization of RA level. The conditional
deficiency of Cyp26b1 in the dermis also leads to excessive endogenous RA resulting in
decreasing hair follicle density and a specific effect on hair bending [81]. The up-regulated
Cyp26b1c along with DP aggregation may function as degrading RA so that to promote
follicle growth. The ALPL is another important gene that showed significantly increased
expression during DP aggregation. The recovery of hair inductivity is accompanied by
restoration of ALPL expression in DP cells [9,20,84,85]. In the pelage follicles, AP activity is
constantly and uniformly detected in the DP during the hair cycle [33], whereas in vibrissal
follicles it dynamically changes, peaking in the early anagen phase [34]. In cell culture,
majority primary-cultured DP cells express ALPL during the first few days, but later they
began to lose ALPL expression. By the second passage, <5% were ALPL-positive [18].
Our results of ALPL staining and transcriptome analysis both suggested sub-cultured
2D-pattern AP cells lost ALPL expression. When they were reprogrammed into 3D pattern,
their ALPL expression recovered and reached the highest level as spheroids formed. The
results suggested the reforming ALPL in 3D-pattern DP cells might be one of the important
elements contributing to follicle generation. On the contrary, the expression of CHRDL1 was
decreased along with DP aggregation. CHRDL1 encodes secreted glycoprotein Chordin-
like 1 (x) [86]. CHRDL1 is known as a common bone morphogenetic proteins (BMP)
inhibitor, sequestering the BMP in the extracellular space [86–88]. The hair follicle bulb
microenvironment is rich in BMPs that act on DP cells to improve hair-inducing activity.
The declined expression of CHRDL1 in DP aggregation may increase BMP signaling so that
to improve hair-inducing activity. The ALPL expression is also highly specific to members
of the BMP family [18]. The over-expression of BMP receptors is reported to lead to robust
maintenance of AP activity in DP. The declined expression of CHRDL1 may also contribute
to the increasing level of ALPL through increase BMP signaling during DP aggregation.

To conclude, our study constructed two fixed growth patterns of sika deer DP cells
and proved it was the culture condition that determined sika deer DP growth pattern.
The two growth patterns could transit mutually as the culture condition was exchanged.
The fixed 2D-pattern sika deer DP cells could recover the self-aggregative behavior and 3D
pattern, accompanied by the restoration of hair inducing capacity when the appropriate
culture condition was applied. We additionally offered a general view of genes and
pathways regulating the transition process. Among them, cell adhesion relevant genes
played important roles in the formation of aggregation. ECM metabolism relevant genes
and regulating networks were essential for the restoration of hair-inducing capacity. These
findings represent a significant advance on recovering DP cell function so that to lay the
basis of cell transplanting therapy on hair regeneration.

4. Materials & Methods
4.1. Animals

The skin tissues were harvested through surgical operation on 15 farmed male sika
deer (Cervus nippon), with ages ranging from 2–3 years old immediately after the anes-
thetization in summer. After shaving the furs, the skin was sterilized through 75% ethanol
and iodine solution. A 1 × 2 cm2 [2] skin cut was made and placed into DMEM medium
(11965092, Gibco, Grand Island, NY, USA) with 5× penicillin-streptomycin (03-031-5B,
BI, Beit Haemek, Israel) solution, 4 ◦C, then taken back to the lab. The skin incision was
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surgically sewn up, coated with penicillin and streptomycin powder. Finally, the deer were
relieved from anesthetization.

4.2. Dermal Papilla Isolation

After washing by three consecutive PBS washes, the skin was divided into strips
around 0.5 cm in width and 1 cm in length along the longitudinal axis. The strips were put
into the 60 mm Petri dishes (P5481, Sigma, Darmstadt, Germany) containing 0.2% (w/v)
collagenase D (11088858001, Roche, Agawam, MA, USA) in DMEM medium (11965092,
Gibco) with 2× penicillin-streptomycin solution (03-031-5B, BI), 37 ◦C for 2 h. The surgical
microdissection was used for acquiring DP tissue. The hair follicles were separated first
from other tissues using a 27G needle and ophthalmic forceps. A slight cut was made at
approximately three-quarters of the end bulb of the follicle for squeezing the DP out. After
cutting through the stalk, an intact DP was transferred to a dish for primary culture.

4.3. Establishment of DP Cell Lines

The individual DP tissues were adhered to the base of the dish through a slight scratch
using the needle. Around 6–10 DPs were cultured together in each 60 mm Petri dish (P5481,
Sigma) containing 20% (v/v) in-house made sika deer serum in DMEM medium (11965092,
Gibco), with 1× penicillin-streptomycin solution (03-034-1B, BI). After the 15 sika deer
DP primary cell lines were established, the cells were sub-cultured for two generations
for obtaining more DP cells. Specifically, after approaching 60% confluence, the primary
DP cells were detached using 0.08% trypsin-EDTA and cultured in 25 flasks (CLS430372,
Corning®, Canton, NY, USA), containing 10% (v/v) in-house made sika deer serum in
DMEM medium (11965092, Gibco, 37 ◦C, 5% CO2). Half the amount of the cells from
the 15 sub-cultured DP cell lines were preserved in liquid nitrogen and the rest were
used for the pilot study. The formal experiments were conducted using three cell lines
randomly selected from the 15 DP sub-cultured cell lines. All the cells used for the pilot
study and the formal experiments were between passage two and eight. The DP cells in
2D pattern were established using DMEM medium (11965092, Gibco)/10% FBS (10099141,
Gibco), with 1× penicillin-streptomycin solution (03-034-1B, BI). The mesenchymal stem
cell (MSC) medium (T310jv, Yuanpei, Shanghai, China) with 1× penicillin-streptomycin
solution (03-034-1B, BI) was used for recovering the self-aggregative behavior and 3D
pattern. A schematic was drawn to visualize the establishment of different DP cell growth
patterns and the relevant analysis (Figure 5).

4.4. Cell Counting Kit-8 Assay

The comparison of cell proliferation rates between ADP and UDP was conducted
using the Cell Counting Kit-8 (C0037, Beyotime, Shanghai, China) according to the manu-
facturer’s instructions. 2000 cells from each cell pattern were seeded into each well of a
96-well plate with a volume of 100 µL medium. Three biological replicates were performed
for each type of cell. The 1st day, 2nd day, 3rd day, 4th day, 5th day, and 6th day were
set as the test time points. After adding 10 µL CCK-8 reagent to each well, the plate was
incubated for 2 h at 37 ◦C and 5% CO2. The absorbance of each well was measured at
450 nm and the optical density (OD) was determined via a microplate reader. A paired
two-tailed t test was used to calculate the difference between samples and p value < 0.05
was considered as significant.

4.5. Immunofluorescence Staining

The cultured DP cells were fixed using 4% (w/v) paraformaldehyde fixation for
10 min. The cells were permeabilized for 5 min using PBS with 0.3% Triton X-100 (T8787,
Sigma). Blocking was performed for 30 min using 3% (w/v) bovine serum albumin in PBS.
The primary antibodies including rabbit anti-CD133 (1:500; Abcam, Cambridge, MA, USA),
mouse anti-SOX2 (1:200; SantaCruz, Santa Cruz, CA, USA) and rabbit anti-Versican (1:500;
Bioss) left overnight at 4 ◦C. The next day, the primary antibodies were washed off using
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three consecutive PBS washes. The secondary antibody, Alexafluor 594 goat anti-rabbit
(1:1000; Thermo, Agawam, MA, USA)/Alexafluor 488 rabbit anti-mouse (1:1000; Thermo)
was applied for 1 h at room temperature. The nuclei of cells were counterstained with
DAPI (C1005, Beyotime) for 5 min at room temperature after removing the secondary
antibody using three consecutive PBS washes. The coverslips were mounted using anti-
fade reagent and the cells were visualized on a Zeiss Exciter fluorescent microscope. The
specific information on all the antibodies used is listed in Supplementary Table S1.
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4.6. Alkaline Phosphatase Stain

The cultured DP cells were fixed using 4% (w/v) paraformaldehyde fixation for 10 min
and washed by PBS. The cells were incubated in BCIP/NBT staining solution (Beyotime,
P0321) for 4 h in the dark at room temperature. The reaction was stopped by washing
with PBS, and the cells were examined under a bright field microscope. Dark blue staining
indicates positive signal for alkaline phosphatase stain (ALPL).

4.7. RNA Isolation and Real-Time PCR

The cells were briefly washed three times by PBS. Total RNA was isolated and purified
using RNeasy mini kit 50 (151043752, Qiagen, Germantown, MD, USA), according to the
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manufacturer’s instructions. The RNA was quantified by measuring optical absorbance
at 260 nm using Pro2000, Tecan, Switzerland and 200 ng was reverse transcribed cDNA
using PrimeScriptTM RT reagent Kit (RR047A, Takara, Shiga, Japan) and oligo dT primers
following the manufacturer’s instructions. Real-time PCR was performed using SYBR
green I Master mix (4707516001, Roche) on an Applied Biosystems 7300 Real-Time PCR
System. GAPDH were used in each reaction as a baseline control. Fold changes were
calculated using the delta-delta CT algorithm, relative to GAPDH. A paired two-tailed t test
was used to calculate the differences between samples and p value < 0.05 was considered as
significant. Three biological replicates were performed for each gene of interest. GraphPad
Prism ver. 8.2.0 (H. Motulsky, San Diego, CA, USA) was used to analyze data. The primer
information is listed in Supplementary Table S2.

4.8. Transcriptome Analysis

Total RNA of UDP, MDP, and ADP were extracted using a Trizol reagent (Invitrogen
Inc., Camarillo, CA, USA) according to the manufacturer’s procedure. RNA integrity was
evaluated using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
The samples with RNA Integrity Number (RIN) ≥ 7 were subjected to the subsequent
analysis. The libraries were constructed using TruSeq Stranded mRNA LTSample Prep Kit
(Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. Then these
libraries were sequenced on the sequencing platform (Illumina HiSeq X ten, OEbiotechCo.,
Ltd., Shanghai, China) and 125 bp/150 bp paired-end reads were generated. Raw reads
were processed using Trimmomatic [89]. The reads containing ploy-N and the low quality
reads were removed to obtain the clean reads. The clean reads were then mapped to
reference genome of Cervus elaphus hippelaphus using hisat2 [90]. The counts of the
mapped reads were obtained by eXpress [91]. FPKM value of each transcript was calculated
using bowtie2 [92].

4.9. Bioinformatics Analysis on Gene Expression Pattern and Differentially Expressed Genes

The gene expression patterns of UDP, MDP, and ADP were compared through hierar-
chical clustering analysis, Pearson correlation analysis, and PCA analysis. The hierarchical
clustering analysis was performed used the hclust function of R package stat and visualized
with heatmap 2 function of R package gplots [93]. The Pearson correlation analysis was
performed with rcorr function of R package Hmisc [94] and visualized with corrplot R pack-
age [95]. The PCA analysis was performed using the R package prcomp and visualized by
R package ggplot2 [96]. The differentially expressed genes (DEGs) were identified using the
DESeq R packages [97] and visualized in vacano plot using GraphPad Prism 8 (ver. 8.2.0).
The adjusted p value ≤ 0.05 and |log2FoldChange| ≥ 2 were set as the threshold for sig-
nificantly differential expression. Venn analysis was used to calculate the numbers of DEGs
between different types of DP cells by excel. The GO enrichment analysis of DEGs was
performed using David v6.8 [98] (https://david.ncifcrf.gov/, accessed on 6 March 2020)
and visualized using ggplot2 R package [96]. The KEGG pathway enrichment analysis of
DEGs was performed using David v6.8 [98] and visualized using excel.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/ijms22094715/s1.
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