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Additive enhancement of wound 
healing in diabetic mice by low level 
light and topical CoQ10
Zhigang Mao1,2, Jeffrey H. Wu2, Tingting Dong2 & Mei X. Wu2

Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications 
and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can 
accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome 
the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined 
with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT 
alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% 
in diabetic mice in the first week and more than 24% in the second week compared with untreated 
controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 
50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was 
corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT 
and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably 
attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination 
of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

There are an estimated 371 million cases of diabetes worldwide, putting patients at serious risk for wound healing 
complications that reduce both quality and length of life. In particular, foot ulcers hamper 15% of all diabet-
ics, accounting for the majority of non-traumatic lower limb amputations in the United States1. These complex 
wounds result from a combination of diminished immune function, peripheral neuropathy, arterial occlusion, 
and miscellaneous factors such as limited joint mobility and improper footwear1–3. Small sores are readily healed 
in healthy individuals but frequently develop into deep ulcers, leading to infections of underlying tissues and 
bones that sometimes necessitate amputation in diabetic patients. Treatment of these chronic wounds in diabetic 
patients mainly relies on conventional wound bed preparation, mechanical and surgical debridement, and antibi-
otic therapy to battle infections4,5. However, these managements have extremely limited efficacy, leading to a high 
5-year mortality rate following amputation6.

Considering the toll on patients and $11 billion cost to American health care payers7, there is a substantial 
demand for better approaches to diabetic wound management. The potential of low-level laser therapy (LLLT), 
a non-invasive treatment that some studies have shown to successfully accelerate wound healing in specific cir-
cumstances, is particularly attractive8. LLLT does not cause a noticeable temperature change in subjects, yet seems 
to stimulate tissue repair and relieve pain8–10. While their efficacy in clinical settings has long been disputed11, an 
increasing number of studies have contended that LLLT can increase fibroblast proliferation, collagen produc-
tion, angiogenesis, granulation formation, and other positive effects12. As for diabetes specifically, a study proved 
that 633nm laser at 10 J/cm2 accelerated wound healing in diabetic rats by ~38%1. Systematic reviews have been 
hindered by lack of adequate sample sizes and consistent methodologies in clinical studies, but demonstrate plau-
sibility and safety of using LLLT to treat diabetic wounds2.

Therapeutic mechanisms of LLL are not well understood to date. Considering that thermal increases are 
absent following LLLT, photobiomodulation may be the major contributor of the reported acceleration in tissue 
repair8,12,13. For example, one event suspected to contribute significantly to wound healing is the absorption of 
far red or near infrared light (600–1100 nm) by the redox active metal centers of cytochrome c oxidase, also 
known as complex IV of the electron transport chain at mitochondria12. Such absorption is thought to increase 
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mitochondria respiration activity and ATP synthesis8,13. Likewise, ubiquinone CoQ10 can enhance mitochondrial 
activity by virtue of being a cofactor in the complexes I–III in the mitochondrial electron transport chain14,15. 
Besides, CoQ10 acts as a potent anti-oxidant and displays anti-ulcer potential15–18. Because LLL and CoQ10 target 
different complexes in the mitochondrial electron transport chain, these two modalities may additively accelerate 
diabetic wound healing.

With this in mind, we tested and found that LLLT followed by topical CoQ10 resulted in diabetic wound heal-
ing significantly faster than individual treatment or sham-treated controls. The dual treatment is simple, safe, and 
holds great promise for future management of diabetic wounds in the clinics.

Materials and Methods
Animals. The experimental subjects were 5-week-old male Swiss Webster mice (Charles river lab, USA) 
weighing 20–30 g. The mice were maintained in a temperature-controlled room under a 12 h light/12 h dark 
cycle and provided ad libitum access to food and water. All animal experiments were performed according to 
the National Institutes of Health guidelines for the Care and Use of Laboratory Animals and approved by the 
Subcommittee on Research Animal Care of the Massachusetts General Hospital.

Animal model and study design. To induce diabetes in mice, streptozotocin (120 mg/kg, Sigma) in 
sodium citrate buffer (pH 4.0) was injected intraperitoneally after fast for 4~6 hr. Measurement with Blood 
Glucose Meter (Germaine Laboratories) confirmed diabetic state, which was conducted for three consecutive 
days after one week of streptozotocin injection and verified one day before surgical wounds. Mice exhibiting 
glucose levels over 200 mg/dl for all four tests were considered to be diabetic and enrolled to the study. On day 
30 after streptozotocin injection, the animals were shaved on the dorsal skin after anesthetized by intraperitoneal 
administration of ketamine (90 mg/kg) /xylazine (10mg/kg). Two full-thickness, 1 cm2 square defects were made 
on the thoracic and lumbar regions of each animal, respectively, one to receive a treatment and another to serve as 
a corresponding control such that the treatment and corresponding control could be compared on the same sub-
ject as listed in the Table 1. The 24 mice were randomly selected for different treatments with 12 wounds in each 
group. Half of the mice in each group were sacrificed for skin sampling on day 7 and the remaining mice were 
sacrificed on day 16. Control wounds experienced sham light and then topical vehicle (soybean oil) application, 
while the rest of the wounds received LLLT+  topical vehicle (LLLT), sham light + topical CoQ10 (CoQ10) or 
LLLT followed by topical CoQ10 (LLLT+ CoQ10). LLLT was applied to the wound areas every two days starting 
in 24 hours after wound formation using an 830nm infrared light emitting diode (LED) from Omnilux new-U, 
USA. The average irradiance of the light was 14 mW/cm2 for a total exposure time of 5 minutes or an energy den-
sity of 4.2 J/cm2 on the surface of the wound as measured by Handheld Laser Power & Energy Meter (Ophir Nova 
II). During the illumination, the mouse was covered by aluminum sheet with an opening area of 1 cm2 to expose 
the wound, at which LLL was directed vertically at a distance of 6 cm above. The sham light was administered 
similarly with a small soft white LED lightbulb ( 3W A15) from General Electric (GE) such that no heat was gen-
erated on the wound. The skin temperature during 5 minutes of illumination increased ≤ 0.1 °C with either light 
source. After illumination, CoQ10 was topically applied to the wound so that there was not any direct interaction 
between LLL and CoQ10. An over-the-counter CoQ10 supplement (30 mg/ml, Bio Quinone) was diluted by 5 
times in soybean oil and 50 μ l of the CoQ10 solution was gently wiped onto the surface of the wound immediately 
post-LLLT. The wound was covered 20 minutes later by a bandage to protect from mouse bites or scratching.

Wound-healing measurement. Photographs of each full-thickness skin defect, next to a ruler for calibra-
tion, were taken using an Olympus digital camera. Wound area in square centimeters was analyzed using Image J 
software and repeated measurements were accurate within 2%. The first images were obtained on the day of injury 
(day 0). Subsequent images were captured on the third, seventh, and thirteenth days post-injury. The wound 
healing areas were measured by percentages of a healed area relative to an original wound area using the follow-
ing formula: The healed area percentage =  (original wound area – unepithelialized area)/original wound area19, 
where healing referred to a combination of wound constriction and epithelization, not including crust formation 
and granulation. The measurement was conducted in a manner blinded to the study groups.

Cell proliferation assay. Cell proliferation in situ was analyzed with 5-ethynyl-2′ -deoxyuridine (EdU) 
assays from Invitrogen. EdU is a thymidine analogue and incorporated into the DNA of dividing cells. Mice were 
injected intraperitoneally with 100 μ g of EdU in PBS on day 6 after wounds and then the skin specimens were col-
lected one day later20. Two specimens were excised from each wound, one from the center of the wound bed and 
the other from uninjured adjacent skin served as reference such that a total of 4 specimens were collected from 
each mouse. The skin specimens were formalin-fixed, embedded in paraffin, and cut into 5μ m thick sections. For 
EdU staining, paraffin in the tissue sections was removed and the tissue was stained with the Click-iT®  EdU Alexa 
Fluor®  488 Imaging Kit (Invitrogen, USA), counterstained with DNA dye DAPI (4′ ,6-diamidino-2-phenylindole) 

Name of the 4 groups Treatments Wounds Animals
Sacrificed 
on day 7

Sacrificed 
on day 16

Thoracic Control sham light+ vehicle 12
12 6 6

Lumbar LLLT LLLT+ vehicle 12

Thoracic CoQ10 sham light+ CoQ10 12
12 6 6

Lumbar LLLT+ CoQ10 LLLT+ CoQ10 12

Table 1. Experiment design.
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provided in the kit per the manufacturer’s instruction. The stained sections were imaged by confocal microscopy 
(Olympus FV1000, Olympus, Japan) and analyzed by Image J software. Percentages of EdU-positive cells rela-
tive to a total number of cells were obtained by manually counting the number of EdU-positive green cells and 
DAPI-positive blue cells in 100 microscopic fields randomly selected in each sample in a sample-blind manner.

Hydroxyproline levels. Hydroxyproline levels were used to evaluate collagen content in the extracts of 
healing skin tissues. Specimens were excised and weighed from the wound bed and uninjured adjacent skin as 
above. The skin sample of 5 mg was homogenized in 100 μ l of water before transfer to a pressure-tight vial with 
PTFE-lined cap and addition of 100 μ l concentrated hydrochloric acid (HCl, ~12 M). It was then capped tightly 
and hydrolyzed at 120 °C for 3 hours. The resultant supernatant (20 μ l) was transferred to a 96-well plate and 
placed in a 60 °C oven to dry. Finally, the samples were measured using a Hydroxyproline Assay Kit (Sigma, USA). 
Hydroxyproline was quantified by 560 nm absorbance with a microplate reader (Molecular Devices, Sunnyvale, 
CA, USA).

Measurement of Adenosine-5′-Triphosphate (ATP). ATP production in the wound beds was meas-
ured 1 hr after the first indicated treatments using an ATP assay kit (Promega, Madison, WI, USA), in separate 
groups of mice. Briefly, the tissues from the wound beds were carefully isolated and homogenized in 1% trichlo-
roacetic acid (sigma, USA). The resultant homogenates were added in duplicate into 96-well luminescence plate 
containing 100 μ l of assay reagent. The luminescence signal was measured with a microplate reader (Molecular 
Devices, Sunnyvale, CA, USA). Relative ATP levels were normalized to the total protein concentration measured 
by a Bio-Rad protein assay kit.

Statistical Analysis. The data were expressed as mean ±  standard deviation (SD). Statistical analysis was 
performed by one-way ANOVA and then Tukey’s Multiple Comparisons tests among multiple groups using 
Graph Pad Prism 5.0 (Graph Pad Software, La Jolla, CA, USA). Percentage of completely healed wounds was 
analyzed by two-sample t-test (StatPac, Pepin, WI, USA). A p value < 0.05 was considered statistically significant.

Results
LLLT and CoQ10 additively accelerate wound healing. To examine wound-healing responses to 
LLLT, CoQ10, or both, two full-thickness wounds were made in the dorsal skin of each mouse, one for treatment 
and the other for the corresponding control. In sham-treated controls, the healed area was 19% on day 3, 30% on 
day 7, and 78% on day 13 (Fig. 1A–C). In comparison, the dual treatment of LLL and topical CoQ10 significantly 
accelerated healing to 32% on day 3 (p <  0.05), 61% on day 7 (p <  0.001), and 97% on day 13 (p <  0.001). In 
other words, LLLT followed with topical CoQ10 resulted in 68~103% improvement in wound healing during the 
first week and more than 24% in the following week. The LLLT plus CoQ10 group outperformed the only LLLT 
and only CoQ10 groups as well (Fig. 1A–C). While mice treated with LLL healed slower than LLLT+ CoQ10 
(Fig. 1A–C), they did heal faster than controls in agreement with prior studies showing beneficial effects of LLLT 
on the wounds of diabetic subjects2. For LLLT alone, the healed area was 26% on day 3, 53% on day 7 (p <  0.001), 
and 91% on day 13 (p <  0.05) as compared to sham-treated controls (Fig. 1A–C). On the other hand, the CoQ10 
group did not demonstrate statistical significances in wound healing compared to controls. The difference in the 
percentages of wound healing was significant between LLLT+ CoQ10 and only CoQ10 groups at all experimental 
days tested, which held the truth between LLLT+ CoQ10 and only LLLT group on day 3 and day 13 (p <  0.05), 
but not on day 7 (Fig. 1A–C). Representative photos following different treatments are shown in Fig. 2, where 
each row of the figures features the progression of wound healing in a single subject over time, and areas outlined 
by white dashed lines indicate un-epithelialized areas. Significant reduction in wound area could be seen by 
the naked eye on day 7 following LLLT plus CoQ10 treatment, as compared to single modality or sham-treated 
control. Notably, complete re-epithelialization was found in the mice treated with LLL plus CoQ10 by day 13, as 
shown in the lower right corner of the figure. In accordance with this, about 50% of wounds showed complete 
healing on day 13 after treatment with LLL followed by topical CoQ10 and all of the wounds were fully healed 
by day 15 (Fig. 1D). In contrast, none of sham-treated controls or wounds treated with LLLT or CoQ10 alone 
demonstrated complete wound healing by day 13, and only 2, 1, or 3 out of 6 healed in the controls or wounds 
treated with CoQ10 alone or LLL alone by day 15, respectively (Fig. 1D). Complete healing of the wounds receiv-
ing LLLT in combination with CoQ10 was highly significant on both days 13 and 15 compared with controls or 
wounds treated with LLLT or CoQ10 alone (p <  0.001), whereas no difference was found in the wounds treated 
with LLL alone, CoQ10 alone vs. sham treatment.

Significant increases in hydroxyproline levels by LLLT and CoQ10. Hydroxyproline is a 
non-proteinogenic amino acid largely restricted to collagen, so its measurement can be used as an indicator of col-
lagen content. The mean hydroxyproline content in the control group was 1.36 ± 0.15 μ g/mg wet tissue on day 7  
and increased to 1.58 ± 0.24 μ g/mg on day 16. In accordance to additive effects of LLLT and CoQ10 on wound 
healing, the levels of hydroxyproline were elevated to 2.13 ± 0.24 μ g/mg from 1.36 ± 0.15 μ g/mg on day 7 and to 
2.48 ± 0.22μ g/mg from 1.58 ± 0.24 μ g/mg on day 16 in the LLLT+ CoQ10 group, which were more than 50% 
increases over corresponding control groups (p <  0.05). A high level of hydroxyproline or collagen indicates 
active healing since collagen increases the strength of the wound and is crucial for many processes at early stages 
of wound healing. Hydroxyproline values were higher in the LLLT group than in the sham-treated control, but 
no significant difference could be established between LLLT (1.81± 0.14 μ g/mg on day 7 and 2.08± 0.23 μ g/mg 
on day 16) or CoQ10 (1.40± 0.13 μ g/mg on day 7 and 1.65± 0.14 μ g/mg on day 16) and sham-treated controls 
(Fig. 3).
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Augmentation of cell proliferation by LLLT and CoQ10. Proliferating cells can be labeled by a thy-
midine analog EdU and it is simple and robust21, allowing consistent results when processing a large number of 
mouse skin sections. We found that the rate of cell proliferation for controls was 8% on day 7, on average, indi-
cating a rather low level of cell proliferation in the absence of any treatment. LLLT and CoQ10 robustly enhanced 
cell proliferation rate to 24% (p <  0.001), which represents a 300% increase over controls, while there were no 
significant differences in the CoQ10 or LLLT alone group compared with controls (Fig. 4 A,B). Thus, comparison 
between quantities of EdU positive cells in wounds revealed greatly increased cell proliferation following LLLT 
and CoQ10 treatment compared to single modality treatment or controls (Fig. 4A). Moreover, consistent with 
additive or synergic improvement of mitochondrial function by LLLT and CoQ10 treatment, ATP production at 
the wound bed was increased by two times 1 hr after LLLT but it was three times by a combination of LLLT and 
CoQ10 compared to the control group (Fig. 4C). In contrast, CoQ10 alone didn’t display any significant effect on 
ATP production (Fig. 4C). Apparently, the level of ATP production at the wound beds was positively and propor-
tionally correlated with the wound healing, similar to previous investigation22.

Discussion
There remain many unmet clinical obstacles to treat diabetic wounds, problems magnified by the consistently 
rising prevalence of type-2 diabetes. The lack of pharmacologic treatment options creates urgent need for innova-
tive treatment modalities. Poor angiogenesis perturbs oxygen supply in the wound tissues, so targeting ischemia 
and hypoxia associated with diabetic wounds has led to some success23. For example, vascular grafts bypassing 
arterial occlusions have in many cases promoted healing for ischemic diabetic wounds24. Meanwhile, clinicians 
use hyperbaric oxygen therapy (HBOT) to provide high levels of oxygen to the wound25. Despite promising com-
parative observational studies, HBOT has failed to demonstrate statistical significance in randomized controlled 
trials26,27.

Alternatively, early studies have shown that LLLT significantly accelerates wound healing in diabetic rats28. 
LLLT offers a non-invasive and easily performed modality to treat diabetic ulcerations, either alone or as a com-
plement procedure. Its mechanism has been elucidated in part by the ability of LLL to enhance the activity of the 
electron transport chain and ATP production at mitochondria9,12,13. We recently subjected non-diabetic mice to 

Figure 1. Additive effects of LLLT and CoQ10 on wound healing in diabetic mice. Cutaneous full-thickness 
wounds were generated in diabetic mice and treated 24 hr later with sham light plus topical vehicle of CoQ10 
(control), sham light +  topical CoQ10 (CoQ10), LLLT+ vehicle (LLLT), or LLLT followed by topical CoQ10 
(LLLT+ CoQ10). Wound areas were measured with Image J of photos taken at indicated days post-injury  
(A–C). The level of wound healing was defined as percentages of re-epithelialized areas over original wound 
areas as detailed in Materials and Methods. (D) Percentages of wounds with complete healing in each group. 
Complete wound healing as defined by full epithelialization was tracked in 13 and 15 days. Note: all skin 
wounds were completely healed in day 15 in LLLT+ CoQ10 group only. *p <  0.05, **p <  0.01 and ***p <  0.001 
between LLLT+ CoQ10 group and all other three groups or between indicated groups. n =  12 in each group for 
data collected before or on day 7 or n =  6 for data collected after day 7.
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cerebral injury followed by LLLT, corroborating that LLLT at 830nm enhanced ATP synthesis as well as reduced 
production of reactive oxygen species (ROS), inflammation, and neuron apoptosis22. The beneficial effect of LLLT 
sufficiently prevented secondary brain injury and significantly diminished tissue loss following traumatic brain 
injury, particularly in mice with sub-optimal mitochondrial activity22. Our investigations further demonstrated 
that LLL augmented ATP generation, and suppressed ROS formation or apoptosis in the injured brain subjected 
to hypoxia29. The effect of LLLT was significantly bolstered by combining LLL with metabolic substrates like 
pyruvate or lactate both in vivo and in vitro as these metabolic substrates can enhance functions of mitochondria 
even under hypoxic conditions29.

Figure 2. Representative photos of each treatment. Wounds were generated and photos were taken as in 
Fig. 1. Each row depicts the same wound as it progresses for 13 days. Shown are representative photos from 
indicated treatments as above. Bar, 5 mm.

Figure 3. Increased hydroxyproline contents in the wound tissue after treatment with LLLT plus CoQ10. 
Hydroxyproline contents were measured as μ g/mg wet tissue in 7 (A) or 16 (B) days post-injury. *p <  0.05 
between LLLT+ CoQ10 group and all other three groups. n =  6 in each group.
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Growing evidence points toward a broader connection between mitochondria and diabetes, despite the fact 
that only an estimated 0.1–9% of diabetic cases involve direct contributions from mitochondrial DNA muta-
tions30. Such metabolic dysfunction in diabetics is primarily ascribed to inadequate function of mitochondria 
that increases ROS production and disturbs cellular signaling involved in wound healing, slowing the healing 
process30–32. Thus we employed LLL and CoQ10, also known as ubiquinone, to substantially improve mitochon-
drial functions in diabetic wounds. Ubiquinone is both a component in the electron transport chain and, when 
reduced to ubiquinol, an antioxidant. Oral CoQ10 administration is commonly used to address global mitochon-
drial dysfunction in diabetics and to improve glycemic control and blood pressure over months of treatment33. 
CoQ10 was also administered intraperitoneally, along with 980 nm LLL treatment to mitigate neuropathic pain 
in rat daily for two consecutive weeks, but no significant difference was found in the dual treatment relative to 
single treatment34. Likewise, we found no immediate effects on wound healing after administering 1 ml CoQ10 
orally every other day for a total of two weeks either alone or in conjunction with LLLT in our initial study (data 
not shown). Thus we directly applied CoQ10 topically onto wound sites, in hopes that sufficient doses of the 
quinone could improve mitochondrial function. Indeed, ATP level was elevated additively by LLLT plus CoQ10 
as compared to LLLT alone (Fig. 4C), indicating that the dual treatment can better improve mitochondrial func-
tion, leading to faster wound healing. Likewise, we previously observed that ATP production at the initial phase 
of traumatic brain injury was a determinant factor in the control of subsequent wound healing22. The level of 
ATP measured in the early phase of injury was proportionally and inversely correlated with brain tissue loss 
with a coefficient factor of 0.922. Improved mitochondrial function at the early phase of the wound, manifested 
by increasing ATP production, may sufficiently prevent cell death while greatly augmenting cell proliferation, 
leading to accelerated healing. Consistent with this, in our study four groups of mice receiving CoQ10 and LLLT, 
just CoQ10 or LLLT, or sham treatment controls, whether measured by wound area reduction, collagen produc-
tion, or cell proliferation, all correlate with ATP production at the early phase of the wound, with the combined 
CoQ10 and LLLT group demonstrating the highest level of ATP production and fastest wound healing among all 
treatments tested. Our data clearly demonstrate that LLLT followed by topical CoQ10 has a great potential to be 
alternative treatment of wounds for diabetic patients either alone or as a complement modality. It merits imme-
diate clinical studies because of its simplicity and super safety.

Figure 4. Active cell proliferation in wound tissues following the dual treatment. Cell proliferation was 
evaluated 7 days after wounds by the EdU assay. (A) Confocal microscopy of EdU-stained tissue sections. Green 
fluorescence represents EdU-positive cells and DAPI stained all cells. Representative results of 36 sections 
in each group are shown. Magnification, × 20. (B) EdU-fluorescence intensity. Percentages of EDU-positive 
cells over a total number of cells are determined by counting individual cells in 100 microscopic fields selected 
randomly. ***p <  0.001 between LLLT+ CoQ10 group and all other three groups (n =  100). (C) ATP levels were 
measured in duplicate 1 hr after the first indicated treatments. *p <  0.05, **p <  0.01 and ***p <  0.001 between 
LLLT+ CoQ10 group and all other three groups or between indicated groups. n =  8 in each group.
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