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ABSTRACT

The TOPRIM DXDXXG residues of type IA and
II topoisomerases are involved in Mg(II) binding
and the cleavage-rejoining of DNA. Mutation of the
strictly conserved glycine to serine in Yersinia pestis
and Escherichia coli topoisomerase I results in
bacterial cell killing due to inhibition of DNA religa-
tion after DNA cleavage. In this study, all other
substitutions at the TOPRIM glycine of Y. pestis
topoisomerase I were examined. While the Gly to Ala
substitution allowed both DNA cleavage and religa-
tion, other mutations abolished DNA cleavage. DNA
cleavage activity retained by the Gly to Ser mutant
could be significantly enhanced by a second muta-
tion of the methionine residue adjacent to the active
site tyrosine. Induction of mutant topoisomerase
with both the TOPRIM glycine and active site region
methionine mutations resulted in up to 40-fold
higher cell killing rate when compared with the
single TOPRIM Gly to Ser mutant. Bacterial type IA
topoisomerases are potential targets for discovery
of novel antibiotics. These results suggest that
compounds that interact simultaneously with the
TOPRIM motif and the molecular surface around the
active site tyrosine could be highly efficient topoi-
somerase poisons through both enhancement of
DNA cleavage and inhibition of DNA rejoining.

INTRODUCTION

DNA topoisomerases can carry out the important
functions of DNA supercoiling regulation and DNA
untangling because these enzymes can catalyze the inter-
conversion of DNA topological forms by the concerted
breaking and rejoining of DNA strands coupled to DNA

strand passage through the DNA cleavage sites (1–4).
A covalent enzyme–DNA complex is formed after
nucleophilic attack of an active site tyrosine on the
DNA phophodiester backbone during the DNA cleavage
step. Topoisomerase poisons are compounds that interfere
with the DNA cleavage-rejoining equilibrium of topoi-
somerases and increase the physiological concentration
or life-time of the covalent complex intermediates formed
between topoisomerases and cleaved DNA, resulting
in events that lead to cell death (5,6). Many clinically
important antibacterial and anticancer drugs are topoi-
somerase poisons targeting type IB and type IIA
topoisomerases (5–10). Both type IA and type IB
topoisomerases cut and rejoin a single-strand of DNA
during catalysis but type IA topoisomerases are more
similar to type IIA topoisomerases in catalytic mechanism
of DNA cleavage and rejoining (3).
Based on genome sequences and genetic studies, there

is at least one type IA topoisomerase activity required to
be present in every organism to resolve entanglement of
single-stranded DNA during replication or recombination
(2,11). Although topoisomerase poison known to target
type IA topoisomerase with high specificity is not
available currently, it has been demonstrated that trapping
of covalent complex intermediate formed by a mutant
form of recombinant Yersinia pestis or Escherichia coli
topoisomerase I can result in rapid and extensive cell
killing in E. coli (12). This cell killing effect from the
stabilization of topoisomerase I cleavage complex vali-
dates the potential of bacterial type IA topoisomerase as a
target for development of novel antibacterial compounds
to combat multi-drug resistant bacterial pathogens
(12–14). The cell killing mutation previously characterized
was identified by screening a random recombinant
Y. pestis topoisomerase I mutant library for induction of
cellular SOS response in E. coli, and involves change of the
strictly conserved Gly residue in the TOPRIM motif
(DXDXXG) to a Ser residue (12). The understanding of
how DNA cleavage-rejoining can be interfered with at the
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molecular level is important for the elucidation of how
the enzyme maintains the DNA cleavage-rejoining equilib-
rium so that the degree of DNA cleavage is sufficient for
the required conversion of DNA topology, but avoids
toxic level of cleaved DNA complex being accumulated.
Such biochemical investigations could also be useful for
the design of novel type IA topoisomerase poisons or
modification of hit molecules identified via high through-
put screening in the development of antibacterial com-
pounds targeting type IA topoisomerases (13,14). In this
study, it is shown that the TOPRIM Gly to Ser mutation
in subdomain I is unique in its cell killing capability
among all other possible substitutions at the conserved
Gly residue because it maintains a sufficient level of
DNA cleavage activity while DNA religation is abolished.
All other possible amino acid substitutions at the
conserved glycine residue of the TOPRIM motif were
examined and found not to result in cell killing. Every
other substitution except Ala had no detectable DNA
cleavage or relaxation activity. Unlike the Gly to Ser
substitution, DNA religation was not inhibited by the
Gly to Ala substitution. We also demonstrated that in a
different subdomain of the enzyme (subdomain III),
although the conversion of the highly conserved methio-
nine residue adjacent to the active site tyrosine of Y. pestis
topoisomerase I did not inhibit relaxation of DNA or
affect cell viability by itself, the mutation enhanced
DNA cleavage by the enzyme. When this increase in
DNA cleavage was combined with the inhibition of DNA
rejoining by the TOPRIM Gly to Ser mutation, the level
of DNA cleavage product and degree of cell killing of the
double mutant were increased significantly over the
TOPRIM Gly to Ser single mutant. This demonstrates
that molecular interactions near the active site tyrosine of
type IA topoisomerases can also affect the DNA cleavage-
religation equilibrium and be synergistic with other
molecular perturbations elsewhere in the enzyme that
inhibit DNA rejoining to achieve higher degree of DNA
cleavage product accumulation and overall bactericidal
action.

MATERIALS AND METHODS

Site-directed mutagenesis of recombinant topoisomerase I

Site-directed mutagenesis was carried out with using Pfu
Ultra DNA polymerase (from Stratagene) with proce-
dures based on the Stratagene QuikChange protocol.
Oligonucleotide primers coding for the desired amino acid
substitutions were synthesized by Sigma Genosys.
Random substitution of Y. pestis topoisomerase I
(YTOP)2 at Gly122 was achieved with plasmid pYTOP
(12) as template and primers 50GACCTTGATCGCGAA
NNNGAGGCTATTGCCTG 30 and 50 CAGGCAATAG
CCTCNNNTTCGCGATCAAGGTC 30. YTOP mutants
with substitutions of Gly122 with Asn, His, Trp and
Tyr or Met326 substitution with Val were created by using
oligonucleotides specifying these substitutions. Recombi-
nant E. coli topoisomerase I (ETOP) with Val substitution
at Met320 were made by introducing the site-directed
mutation into plasmid pETOP or pETOP-G116S (12).

In the pYTOP and pETOP plasmids, the synthesis
of the recombinant topoisomerase I is under the control
of the arabinose-inducible BAD promoter. In addition
to ampicillin, the plates and media used for isolation,
maintenance and overnight growth of the E. coli strains
transformed with plasmids pYTOP or pETOP contained
2% glucose to suppress the expression of the potentially
lethal mutant topoisomerases from the BAD promoter.

Identification of SOS inducing YTOPmutants

Escherichia coli strain JD5 with chromosomal dinD1::lacZ
fusion (15) was transformed with plasmid pYTOP deriva-
tives encoding mutant YTOP enzymes. Transformations
obtained on LB plates with 2% glucose and 100 mg/ml
ampicillin were replicated onto plates with ampicillin,
35 mg/ml X-gal and 0.002% arabinose to identify SOS-
inducing mutants that gave rise to blue colonies after
overnight incubation at 378C due to induction of the
dinD1 promoter (16).

Effect of recombinant topoisomerase expression on viability

The ability of the YTOP mutants with different substitu-
tions at Gly122 to cause bacterial cell death was first
evaluated in strain JD5 by inducing their expression with
saturating concentration of arabinose (0.2%) for 2 h at
early exponential phase (OD600=0.4) after dilution of
overnight culture in the presence of 2% glucose into fresh
LB medium with antibiotics but no glucose. Viable counts
were measured by plating of dilutions on LB plates with
2% glucose and ampicillin and compared with viable
counts from cultures not induced with arabinose after
overnight incubation of the plates at 378C. The cell killing
effects of mutant recombinant topoisomerases with the
Gly to Ser substitution were also measured at a range
of lower arabinose concentrations (0.00006–0.002%) in
E. coli strain BW27784 (from Yale E. coli Genetic Stock
Center). In this strain, the control of the arabinose
transporter araE gene by a constitutive promoter (17)
allows expression from the BAD promoter to be regulated
by increasing arabinose concentration instead of the ‘all-
or-none’ expression pattern found in strain JD5 (12,18).
This enabled comparison of the cell killing efficiency with
increasing arabinose concentrations.

Protein purification

Wild-type and mutant YTOP proteins were induced in
E. coli JD5 strain after growth in LB medium with
ampicillin to exponential phase with either 0.02 or 0.2%
arabinose for 4 h at 378C. The recombinant proteins with
thioredoxin N-terminal tag and His6 C-terminal tag were
purified with the His SpinTrap column (GE Healthcare)
according to manufacturer’s protocol. Recombinant
ETOP mutant proteins without affinity tags were
expressed in E. coli strain GP200 (�topA) and purified
by combination of phosphocellulose, hydroxyapitite and
DNA affinity chromatography columns as previously
described (19,20).
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Enzyme activity assays

Each assay was carried out at least thrice, and representa-
tive results are shown here. Assays of relaxation of
negatively supercoiled DNA by topoisomerase I was
assayed in the presence of 6 mM MgCl2 as described
previously (20). Cleavage of plasmid DNA was assayed in
buffer with either no added Mg2+ or with up to 10 mM
MgCl2 added as described (12). A 59-base oligonucleotide
50-GCCCTGAAAGATTATGCAATGCGCTTTGGGC
AAACCAAGAGAGCTAATCTTTCAGGGC-30 with
the preferred cleavage site CAAT#GC for ETOP (21)
was labeled at the 50-end with T4 polynucleotide kinase
and [g32P-ATP]. Cleavage and religation of the oligonu-
cleotide by topoisomerase I were assayed as described and
analyzed by electrophoresis in a 15% DNA sequencing gel
(22). The wild-type topoisomerase I religation reaction is
complete after 10 s at 378C so some of the religation
reactions were carried out on ice at 08C. Gel shift assay
with the same 50-end labeled oligonucleotide was used to
compare non-covalent binding affinities of wild-type and
mutant ETOP enzymes with the DNA substrate (22). To
assess the effect of the mutations on Mg2+-binding affinity
of ETOP, measurements of change in intrinsic tryptophan
fluorescence of ETOP enzymes from binding of Mg2+

(20,23) were carried out as described previously (12). Non-
linear regression curve fitting for two binding sites was
carried out using the GraphPad Prism program.

RESULTS

Only Ser substitution at Gly122 of YTOP produced the
SOS inducing and cell killing phenotypes by inhibiting DNA
religation while retaining DNA cleavage activity

To determine if in addition to substitution with Ser, other
types of amino acid substitutions at Gly122 of Y. pestis
topoisomerase I can have SOS inducing and cell killing
properties, random mutations at Gly122 were first created
by oligonucleotide-directed mutagenesis with all four
possible nucleotides at the codon positions for Gly122 of
recombinant YTOP expressed under the tight control of
the BAD promoter. After sequencing 60 mutants with
random substitutions at Gly122 and screening for SOS
induction using the dinD1::lacZ reporter strain JD5, only
the Ser substitution mutants were found to have the SOS-
inducing phenotype on X-gal plates with low level of
arabinose (0.002%). Gly122 substitutions to Asn, His, Trp
and Tyr were the only possible substitutions not found
among the 60 sequenced YTOP mutants. These substitu-
tion mutants were then created by sequence specific
oligonucleotide-directed mutagenesis. These four mutants
were also found not to induce SOS in strain JD5. The
effect of overexpression of 13 of the YTOP Gly122
substitution mutants on cell viability in strain JD5 were
measured by determination of viable counts at 2 h after
induction with saturating concentration of arabinose
(0.2%). The list of mutants analyzed for effect on viability
included those substitutions most similar to Gly and Ser in
size or having the same functional group in the side chain
(Thr and Tyr), as well as some examples of substitutions

that are much larger in size and hydrophobic in nature.
The results (Table 1) confirmed that these YTOP Gly122
substitution mutants that did not induce the SOS DNA
damage response also had relatively small effect on cell
viability when compared with the Gly122 to Ser substitu-
tion YTOP mutant. The substitution with cysteine had a
greater effect on viability (induced/non-induced relative
viability=0.03) than the other substitutions examined
(average relative viability=0.11), but the relative viability
of the cysteine substitution is still 100-fold higher than
that obtained for the serine substitution.

Effect of the Gly122 substitutions on YTOP enzyme activity

The YTOP mutants with every possible Gly122 substitu-
tions were purified for assay of relaxation activity and
DNA cleavage activity. The expression level of each of the
mutant proteins in the soluble extract of E. coli JD5 was
similar to that of the wild-type YTOP protein. The G122A
mutant YTOP was found to retain around 10% of the
relaxation activity (Figure 1A). All the other substitution
mutants, similar to the G122S mutant (12), had no detec-
table relaxation activity (data not shown). DNA cleavage
activity was assayed both in the absence and presence of
up to 10mMMgCl2 in the reaction. The addition of Mg2+

is not necessary for the DNA cleavage activity of E. coli
and Y. pestis topoisomerase I to be observed (12,24), but is
necessary for DNA rejoining (12,24,25). For the TOPRIM
Gly to Ser mutant, Mg2+-binding affinity has been found
to be reduced and it was necessary to have Mg2+ added to
the reaction mixture to observe DNA cleavage (12). The
YTOP-G122A mutant enzyme was also dependent for
DNA cleavage activity and had no detectable DNA cleav-
age activity in the absence of added Mg2+ (Figure 1B).
For the wild-type YTOP enzyme, addition of MgCl2
promotes religation, so the amount of cleavage product

Table 1. Effect of overexpression of recombinant wild-type or mutant

Y. pestis topoisomerase I with substitutions at Gly122 on the viability

of E. coli JD5

Subsitution at
Gly122

Induced/non-induced
relative viability

none 0.17� 0.11
Ser 5.2� 10�4

� 1.8� 10�5

Ala 0.093� 0.015
Asp 0.19� 0.02
Asn 0.17� 0.10
Cys 0.030� 0.004
Glu 0.092� 0.040
Gln 0.11� 0.06
His 0.14� 0.02
Ile 0.086� 0.033
Phe 0.075� 0.035
Thr 0.087� 0.018
Trp 0.13� 0.05
Tyr 0.088� 0.016

Relative viability (RV) was measured by the ratio of the viable colonies
obtained after induction of the BAD promoter directing the expression
of recombinant YTOP with 0.2% arabinose for 2 h in comparison with
viable colonies from the culture not treated with arabinose. The results
shown represent the average and standard deviation from at least three
measurements.
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in the presence of 2mM MgCl2 was reduced by 56%
(from densitometry analysis of four sets of data) when
compared with that observed in the absence of Mg2+

(Figure 1B, left panel). In the presence of 2mM MgCl2,
the amount of cleavage product formed by the G122A
mutant was about the same as the wild-type enzyme
(122% from three sets of data). While the YTOP-G122S
mutant enzyme has no detectable DNA rejoining activity
(12), YTOP-G122A mutant enzyme was found to be
capable of DNA rejoining (Figure 1C). For both wild-type

YTOP and YTOP-G122A, rejoining of cleavage product
reached >90% of the maximal level within 30 s after the
addition of MgCl2 and high salt at 378C.

DNA cleavage was not observed for any of the other
YTOP G122 substitution mutant protein in the absence of
added Mg2+ and the addition of up to 10mM Mg2+ did
not restore the DNA cleavage activity of any of the other
Gly122 substitution mutants (data not shown). Due to its
more significant effect on viability among the mutants
examined, DNA cleavage activity of YTOP-G122C was
also examined using 50-end labeled oligonucleotide as
substrate. DNA cleavage activity was again not detect-
able, so the small effect on viability from overexpression of
YTOP-G122C was probably unrelated to the effect of the
mutation on DNA cleavage-religation. It can be con-
cluded that the Gly to Ser substitution is unique in its
cell killing phenotype because it is the only amino acid
substitution at this critical position that inhibits DNA
religation completely while retaining a high degree of
DNA cleavage activity.

Mutation of the conservedMet residue adjacent to the
active site tyrosine to Val can enhance the cell killing activity
of the TOPRIMGly to Ser topoisomerase I mutant

The sequence of the SOS-inducing YTOP128 mutant iso-
lated in the original mutant screening had two other
mutations, M326V and A383P, in addition to the
TOPRIM G122S mutation (12). Site-directed mutagenesis
showed YTOP with single M326V or A383P mutation had
no SOS-inducing or significant cell killing effect in strain
JD5 (12). The cell killing effect from YTOP-G122S was
slightly lower than the original YTOP128 mutant in strain
JD5 (12). Met326 follows the active site tyrosine residue
Tyr325 in YTOP sequence and is conserved in bacterial
topoisomerase I sequences, while a proline is often found
in other type IA topoisomerases at this position (26). To
determine the effect of the additional M326V mutation on
the cell killing efficiency of YTOP-G122S, the double
mutant YTOPG122S/M326V was created by site-directed
mutagenesis on the low copy number expression plasmid
pAYTOP derived from the cloning vector pACYC184
(14). In the genetic background of JD5, arabinose
induction of the BAD promoter is ‘all or none’ because
the araC-PBAD system and the associated L-arabinose
transporter AraE are regulated autocatalytically by
arabinose (18). The experiments in JD5 therefore utilized
the saturating concentration of arabinose (0.2%) for
measurement of cell viability. In strain BW27784, the
synthesis of AraE is arabinose independent due to its
control under a constitutive promoter (17), allowing
increasing amount of YTOP proteins to be expressed
from the BAD promoter by increasing concentrations of
arabinose added to the culture. Strain BW27784 was used
to compare the cell killing efficiency of the low copy
number plasmid pAYTOP expressing wild-type YTOP,
and its derivatives expressing YTOP-Gl22S or YTOP-
G122S/M326V, as well as the original YTOP128 mutant
over a range of non-saturating concentrations of arabi-
nose (Table 2). The results demonstrated that the addition
of the M326V mutation to the YTOP-G122S mutant

wild-type YTOP YTOP-G122A

S

No
enz

A

YTOP-G122A

C 0 2 0 2 mM Mg

Cleavage
product

B

No
Enz

Time after
NaCl add.

   wild-type YTOP          YTOP-G122A

Cleavage 
product

C

400100 25 5 1 400100 25 5 ng

wild-type
YTOP

0 30s 2m 5m 0 30s 2m 5m

Figure 1. Enzymatic activities of the YTOP-G122A mutant. (A)
Relaxation of supercoiled DNA. The indicated amount of wild-type
or G122A mutant YTOP protein was incubated in relaxation buffer
containing 6mM MgCl2 at 378C for 30min. S: supercoiled plasmid
DNA. (B) Magnesium dependent formation of cleavage product from
oligonucleotide DNA substrate by wild-type YTOP and YTOP-G122A
mutant enzyme. 400 ng of enzyme was incubated with 0.5 pmole of
50-end labeled oligonucleotide substrate for 30min at 378C. The
cleavage product was visualized by PhosphorImager after electropho-
resis in a 15% sequencing gel. (C) Religation of DNA cleavage
product. DNA cleavage reaction between 400 ng of enzyme and 0.5
pmole of oligonucleotide substrate in the presence of 5mM MgCl2 was
allowed to reach cleavage-religation equilibrium and then treated with
1M NaCl to promote dissociation of the enzyme from the religated
DNA. The religation reactions were stopped after the indicated amount
of time by the addition of stop solution containing 0.2M NaOH and
79% formamide.
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background enhanced further the cell killing efficiency of
the resulting YTOP-G122S/M326V mutant topoisomerase
I protein by up to 40-fold. The cell killing efficiency of the
YTOP-G122S/M326V double mutant in strain BW27784
was found to be nearly identical to that of the original
YTOP128 mutant with in addition to G122S and M326V
mutations, the A383P substitution also present.

TheMet to Val substitution adjacent to the active site
tyrosine enhanced DNA cleavage

The effect of the substitution of Met326 with Val on
YTOP protein activity was further analyzed to determine
the biochemical basis for this enhancement of cell killing.
When the enzyme activity of YTOP-M326V was exam-
ined, it was found to have no significant effect on the
relaxation activity when compared with wild-type YTOP
enzyme (Figure 2A). Although YTOP-M326V had no
SOS-inducing or cell killing effect in vivo (12), the amount
of cleavage product formed by this mutant was higher
than that from wild-type YTOP (Figure 2B).
Densitometry analysis of results from three experiments
showed that the Met to Val substitution resulted in 1.9-
fold higher cleavage product than wild-type YTOP in the
absence of Mg2+. However, the percent of decrease of
cleavage product upon addition of 2mM MgCl2 was
higher for YTOP-M326V (76%) than wild-type YTOP
(53%), so the amount of cleavage product was approxi-
mately equal for YTOP-M326V and wild-type YTOP at
2mM MgCl2. This is in good agreement with the lack of
SOS induction or cell killing by the YTOP-M326V mutant
in vivo with Mg2+ present.

To study the effect of this mutation on the enzymatic
activity of type IA topoisomerases with the better charac-
terized system of ETOP, the corresponding M320V and
M320V/G116S ETOP mutant enzymes were expressed
from the BAD promoter in plasmid pETOP (12). These
mutant enzymes without any linked affinity tags were
purified by a combination of conventional chromatogra-
phy procedures and compared with wild-type ETOP and
the ETOP-G116S mutant enzyme characterized previously
(12). Similar to YTOP-M326V enzyme, ETOP-M320V
protein had wild-type relaxation activity (Figure 3A), but
enhanced DNA cleavage activity (Figure 3B and C).
Densitometry analysis of the cleavage products from three

sets of data showed that the level of cleavage product
formed by the M320V mutant enzyme was 2.2-fold that of
the wild-type ETOP in the absence of Mg2+. Similar to
wild-type YTOP, the presence of 2 mM or higher MgCl2
promoted religation by ETOP, so there was a decrease
in the cleavage products formed with both wild-type and
M320V ETOP upon addition of MgCl2. Religation of
cleavage product in the presence of MgCl2 and high salt
was complete within 10 s at 378C, so the religation reac-
tion was carried out on ice at 08C. At this temperature,

wild-type YTOP YTOP-M326V
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0 0 2 5 10 mM Mg2 5 10

100 25 5 1 400 100 25 5 1 ng

Figure 2. Effect of the M326V mutation on the relaxation and cleavage
activities of YTOP. (A) YTOP-M326V has similar relaxation activity as
wild-type YTOP enzyme. S: supercoiled plasmid DNA. (B) YTOP-
M326V DNA cleavage activity was magnesium independent, and was
enhanced over the wild-type DNA cleavage activity. Formation of
oligonucleotide cleavage product was assayed with 400 ng of enzyme,
0.5 pmole of 50-end labeled oligonucleotide substrate after incubation
for 30min at 378C.

Table 2. Effect of arabinose concentration on the viability of E. coli BW27784 expressing different recombinant YTOP proteins under the control

of the BAD promoter

Arabinose
concentration (%)

R.V. pAYTOP R.V. pAYTOP128 R.V. pAYTOP-G122S R.V. pAYTOP-G122S/M326V

0 1 1 1 1
0.00006 0.84� 0.09 0.014� 0.005 0.065� 0.007 0.016� 0.007
0.0002 0.48� 0.16 0.0014� 0.0002 0.020� 0.003 0.0012� 0.0009
0.002 0.25� 0.11 0.00035� 0.00008 0.0091� 0.0006 0.00023� 0.00014

Relative viability was determined by calculating the ratio of the viable colony counts after 2 h of induction with the indicated arabinose concentration
versus the viable colony counts from the non-induced culture. The recombinant YTOP proteins were expressed in low copy number plasmids
(pAYTOP and its derivatives). The results shown represent the average and standard deviation of at least four different measurements for the mutant
YTOP proteins and three different measurements for wild-type YTOP. Mutant pAYTOP128 had a third A383P substitution in addition to G122S
and M326V mutations. Single mutation of A383P or M326V in YTOP did not induce SOS response when induced by arabinose and had no
significant effect on viability (12).
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religation by wild-type ETOP was not complete at 10 s.
Religation rate by the ETOP-M320V enzyme was found
to be slightly greater (�20%) at 10 s.
However, any small enhancement of DNA religation

rate from the Met to Val substitution was overcome by the
presence of the more dominant Gly to Ser mutation in the
double mutants. The relaxation and religation activities

of the double mutant ETOP-G116S/M320V enzyme were
strongly inhibited (Figure 4A and D), as expected from
the known effect of the G116S mutation on ETOP from
previous study (12). DNA cleavage activity was Mg2+

dependent as in the case of the ETOP-G116S mutant
(Figure 4B), and the level of DNA cleavage product
formed by the ETOP-G116S/M320V mutant was
increased over the ETOP-G116S mutant by �3-fold
(Figure 4C). The increase in DNA cleavage provided a
basis for the enhancement of cell killing in vivo when the
Met to Val mutation in subdomain III was combined with
the subdomain I TOPRIM Gly to Ser mutation.

The addition of theM320Vmutation did not alter the
Mg2+ or non-covalent DNA binding affinity of
the ETOP-G116S enzyme

The acidic residues of the TOPRIM motif of ETOP have
been shown to be involved in binding of two Mg2+ ions
(20). The complete loss of relaxation and religation
activities of the ETOP-G116S mutant enzyme is at least
in part due to reduced Mg2+-binding affinity (12). The
addition of the M320V mutation to the ETOP-G116S
enzyme restored around 4–5% of the relaxation activity
and 25% of the religation activity (Figure 4A and D).
To determine if the addition of the M320V mutation
altered the Mg2+-binding affinity of ETOP-G116S to
account for this partial restoration of activities, change in
intrinsic protein fluorescence from tryptophan residues
upon the addition of Mg2+ was monitored. KD1 and
KD2 values for binding of two Mg2+ ions were obtained
by curve fitting of the experimental data. The results
(Figure 5) showed that the double mutant ETOP-G116S/
M320V had very similar Mg2+-binding affinity when
compared with ETOP-G116S. As in the case of the
ETOP-G116S mutant (12), the relaxation activity of the
ETOP-G116S/M320V mutant could not be enhanced
by increasing the Mg2+ concentration of the relaxation
reaction buffer from 6 mM to 20mM (data not shown).

Gel shift assay with the labeled oligonucleotide sub-
strate used for the DNA cleavage assay was carried out to
determine if the addition of the M320V mutation to the
ETOP-G116S mutant enhanced the initial non-covalent
interaction with DNA as a possible explanation for the
higher amount of DNA cleavage product observed for the
double mutant. The results (Supplementary Figure 1)
showed that the ETOP-G116S and ETOP-G116S/M320V
mutant enzymes had similar non-covalent binding affinity
for the oligonucleotide DNA substrate used in the
cleavage reaction. Therefore the biochemical effect of the
M320V mutation on ETOP activity is likely to be directly
on the step of DNA cleavage during the catalytic cycle.

DISCUSSIONS

In this study, it was determined that the Ser substitution
at the strictly conserved Gly residue of the topoisomerase I
TOPRIM motif was unique in its consequence of
inhibiting DNA religation while retaining DNA cleavage
activity, thus accounting for an effect on enzyme activity
and cell viability similar to that expected from a
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Figure 3. The M320V mutation enhanced DNA cleavage by ETOP
without affecting the relaxation and religation activities significantly.
(A) Similar relaxation activity for wild-type ETOP and ETOP-M320V
assayed in the presence of 6mM MgCl2 at 378C for 30min. S: super-
coiled plasmid DNA. (B) Comparison of cleavage of oligonucleotide
substrate by wild-type ETOP and ETOP-M320V enzymes. The
indicated amount of enzyme was incubated with 0.5 pmole of substrate
for 30min at 378C in the absence of any MgCl2. (C) ETOP-M320V
does not require magnesium for DNA cleavage. 400 ng of enzyme was
incubated with 0.5 pmole of substrate at 378C for 10min. (D) DNA
religation by ETOP-M320V mutant enzyme. The olignonucleotide
substrate was incubated with 400 ng of enzyme for 10min at 378C in
the absence of added MgCl2 before being placed on ice and the
addition of 5mM MgCl2 along with 1M NaCl to promote DNA
religation of the cleavage product and subsequent dissociation of the
enzyme from the religated DNA. The reactions were allowed to
proceed at 08C for the indicated length of time before being stopped for
analysis of the remaining cleavage product by gel electrophoresis.

1022 Nucleic Acids Research, 2008, Vol. 36, No. 3



topoisomerase poison. Among all amino acids, glycine has
the smallest and most flexible side chain. The size of the
side chain increases in the order of Gly to Ala to Ser.
When the TOPRIM Gly was substituted with Ala, Mg2+-
binding affinity was likely to have also been affected, as
DNA cleavage became Mg2+ dependent as in the case
of the Gly to Ser substitution. However, the Ala substitu-
tion might not have altered the positioning of the DNA
30-hydroxyl group formed after DNA cleavage as much as
the Ser substitution to have an inhibitory effect on DNA
religation. With all the other 17 amino acid substitutions
tested here, the steric effect from replacing the strictly
conserved Gly side chain with a much larger group

probably accounted for the complete loss of DNA
cleavage activity, even in the presence of up to 5mM
Mg2+. The strict requirement of Gly for its steric prop-
erties probably accounts for its high degree of conserva-
tion following the DXD residues in the TOPRIM domain
of DNA topoisomerases (26,27). The results from these
experiments illustrate how the two events of DNA cleav-
age and DNA religation in the catalytic cycle, can be
differentially affected by molecular perturbations even
though the DNA religation is the reverse of DNA cleavage
step when considered only for overall chemical changes.
Small molecules could potentially bind adjacent to the
Gly residue of the topoisomerase IA TOPRIM motif in
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Figure 4. Effect of addition of the M320V mutation to the ETOP-G116S mutant enzyme activities. (A) Restoration of a low level of relaxation
activity to the ETOP-G116S mutant enzyme by the M320V mutation. The indicated amount of enzyme was incubated with supercoiled plasmid
DNA in buffer containing 6 mM MgCl2 at 378C for 30min. S: supercoiled plasmid DNA. (B) Dependence of magnesium for DNA cleavage. 400 ng
of enzyme was incubated with 0.5 pmole of substrate for 30min at 378C. (C) Quantitation of oligonucleotide (5 pmole) cleavage by ETOP-G116S
(filled circles) and ETOP-G116S/M320V (open circles) enzymes in the presence of 5mM MgCl2. The data plotted represents the average and standard
deviation from three different experiments. (D) DNA religation inhibition for the ETOP-G116 and ETOP-G116S/M320V mutants. The
oligonucleotide substrate was incubated with 400 ng of enzyme in the presence of 5mM MgCl2 at 378C for 10min at 378C before the addition of 1M
NaCl and further incubation at 378C for the indicated length of time.
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subdomain I and exert effect selectively on the DNA
religation step while allowing the enzyme to cleave DNA
and form a covalent complex, similar to the effect of the
Ser substitution.
Single mutation of the Met residue adjacent to the

active site Tyr to Val was found not to have SOS-inducing
or cell killing phenotypes in vivo, but nevertheless resulted
in increase in DNA cleavage activity in vitro. There have
been no mutagenesis results on this residue until this
study. The Met to Val is a relatively conservative substi-
tution so it is not surprising that the substitution did not
inhibit the relaxation activity. Nevertheless, substitutions
between Met and Val in other proteins have been shown
to have significant effects on protein folding or catalytic
properties (28–30). This result demonstrated for the first
time that perturbation proximal to the active site tyrosine
in subdomain III of topoisomerase I could influence DNA
cleavage efficiency.
When this second Met to Val mutation adjacent to

the active site tyrosine was added to the YTOP-G122S or
ETOP-G116S TOPRIM mutants, DNA cleavage activity
was enhanced while DNA rejoining was still inhibited
effectively by the steric effect of the Gly to Ser substitution
in subdomain I, resulting in a higher level of bacterial cell
killing when the double mutant enzyme was induced by
arabinose in vivo. This biochemical study showed that a
perturbation in subdomain I of type IA topoisomerase
that inhibits DNA religation can be combined with a
second perturbation in subdomain III that enhances DNA
cleavage in the process of ‘poisoning’ the topoisomerase
enzyme. It might be possible to achieve the goal of
creating a type IA topoisomerase poison by combining
two small molecule fragments that interact separately with
the TOPRIM motif and the region adjacent to the active
site tyrosine (Figure 6). Bacterial type IA topoisomerases
could potentially be a useful new target for discovery of

novel antibacterial compounds to combat the serious
public health problem of rapidly increasing instances of
bacterial pathogens resistant to the antibacterial therapy
currently in use (31–34).

High through-put screening of compound libraries is
one approach that is being utilized in the attempt of iden-
tifying small molecules that can act as bactericidal poisons
and increase the accumulation of covalent complex
formed by bacterial type IA topoisomerases and cleaved
DNA (14). The identification of various regions of the
enzyme structure and associated molecular perturbations
that can influence the DNA cleavage-religation equili-
brium of topoisomerase I could facilitate a second alter-
native approach of drug discovery through molecular
modeling (35–37). For such molecular modeling efforts,
it would be extremely useful to have a crystal structure of
the covalent complex formed between a type IA topo-
isomerase and cleaved DNA available. Structure of the
covalent complex would also complement the currently
available 3-dimensional structures of the non-covalent
complexes in different conformational states formed
between type IA topoisomerases and DNA (38–40) to
provide key information on the catalytic mechanism and
protein conformational changes that take place during the
catalytic cycle. The mutant enzyme molecules that have
been identified in our ongoing study as those that could
form stabilized covalent intermediate with cleaved DNA
might be more amenable to efforts of obtaining a crystal
structure of the covalent complex between type IA
topoisomerase and cleaved DNA substrate.

Tyr319

Met320

Asp111
Asp113

Gly116

Figure 6. Regions of E. coli topoisomerase I structure important for
the control of the DNA cleavage-religation equilibrium. The active
site nucleophile Tyr-319 and adjacent Met-320 residues in subdomain
III are shown along with the TOPRIM residues Asp-111, Asp-113
and Gly-116 in subdomain I in the structure (Protein Data Bank
number 1ECL) of the 67 kDa N-terminal fragment of E. coli
topoisomerase I (41).

Figure 5. Magnesium binding measured by intrinsic tryptophan
fluorescence of wild-type and mutant ETOP enzymes. Decrease of
tryptophan fluorescence signal at 334 nm (excitation at 295 nm) with
increasing concentration of MgCl2 was monitored. Fraction of maximal
decrease of fluorescence signal was determined and curve fitted for
binding of two Mg2+/enzyme molecule with the GraphPad Prism
program. The KDs shown in the insert represent the average from
two sets of data for ETOP-G116S/M320V and three sets of data for
wild-type ETOP and ETOP-G116S.
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