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ABSTRACT Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but
further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy
feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in
switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near
future. In this study, we empirically assessed prediction procedures for genomic selection in two different
populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United
States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were
produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic
markers with available genomic-location and annotation information. We evaluated prediction procedures
that varied not only by learning schemes and prediction models, but also by the way the data were
preprocessed to account for redundancy in marker information. More complex genomic prediction proce-
dures were generally not significantly more accurate than the simplest procedure, likely due to limited
population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming
the marker data through a marker correlation matrix. Our results suggest that marker-data transformations
and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for
improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate
implementation of GS in switchgrass breeding programs.
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Genomic selection (GS) is the use of genome-wide marker information
to predict genotype performance in breeding programs. Predictions
in GS should be sufficiently accurate so that it is economically more
viable to select individuals based solely on markers, rather than phe-

notypic measurements (Muir 2007; Lorenz et al. 2011; Riedelsheimer
and Melchinger 2013). In switchgrass (Panicum virgatum L.), a peren-
nial forage crop, this potential advantage derives from the fact that
phenotypic measurements generally require 2–3 yr of field testing
(one establishment year and 1–2 yr of trial; Casler and Brummer
2008), whereas acquiring genome-wide marker information would re-
quire less than a year (Resende et al. 2014). The US Department of
Agriculture and the US Department of Energy intend to make switch-
grass a principal source of biofuel in the US by 2030, so as to meet the
goal of displacing 30% of petroleum use with biofuel (Sanderson
et al. 1996; Perlack et al. 2005). However, strong and rapid genetic
gains for biomass yield to approximately 20 Mg/ha are required to
meet this goal (Perlack et al. 2005). Therefore, in the case of switch-
grass breeding, GS is a technology that is not only economically
attractive, but also strategically useful.
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The first genomic prediction procedure, introduced by Meuwissen
et al. (2001)—ridge regression-BLUP (RR-BLUP), equivalent to geno-
mic BLUP (GBLUP) (Hayes et al. 2009)—assumed an infinitesimal
genetic model (i.e., all loci in linkage equilibrium with additive effects
of equal variance), and a homogeneous genetic architecture throughout
individuals. Since then, improvements in genomic prediction models
have beenmade, most notably through the account of (i) marker-effect
heteroscedasticity, i.e., differential variances of marker effects (Meuwissen
et al. 2001; Park and Casella 2008; Erbe et al. 2012; Shen et al. 2013);
(ii) nonlinear marker effects and interactions between markers
(Gianola and van Kaam 2008; Akdemir and Jannink 2015); (iii)
genotype-by-environment interactions (Burgueño et al. 2012; Guo
et al. 2013; Heslot et al. 2014); (iv) correlation among traits of interest
(Calus and Veerkamp 2011; Jia and Jannink 2012); and (v) population
heterogeneity (Harris and Johnson 2010; Makgahlela et al. 2013;
Karoui et al. 2012; Isidro et al. 2015).

Marker-data transformations have previously been used in GS to
account for marker-effect heteroscedasticity, with weights on marker
variables reflecting the significance of their relationship with the out-
come of interest (de los Campos et al. 2013; Su et al. 2014; He et al.
2015). Transformations onmarker data have also been used to account
for redundancy in marker information due to linkage disequilibrium
(LD), through principal component analysis (PCA) (Long et al. 2011);
or weights on marker variables; so as to reflect the degree of tagging of
loci bymarkers (Speed et al. 2012; Nishio and Satoh 2015). However, to
date, few empirical studies in GS have been conducted to assess the
usefulness of preprocessing marker data in order to account for LD.

In this study, we assessed the possibility of producing reliable
predictions for GS in switchgrass. Our data consisted of relatively few
observations on twodistinct populations.A total of 247 individualswere
genotyped by exome capture sequencing, and evaluated for important
agronomic traits: biomass yield, plant height, and heading date. We
assessed various types of prediction procedures, which differed from the
standard procedure (GBLUP on nontransformed marker data) not
only by the prediction model—which might account for heterosce-
dasticity and/or nonlinearity of marker effects—but also by the type
of marker-data transformation—which might account for LD among
markers. We also examined the potential of learning schemes (training-
set designs) for improving genomic prediction procedures. While
multiple-trait models may be useful to account for genotype-by-
environment interactions, correlation among traits and/or popula-
tion heterogeneity, such models were not found useful here because
they either were not statistically efficient enough, or failed to effec-
tively fit the data, certainly as a result of our small sample sizes.

MATERIALS AND METHODS

Populations assayed
Genomic selection (GS) in switchgrass was studied in two tetraploid
populations. The first population comprised 137 half-sib (HS) families
developed fromWS4U, an upland-ecotype germplasmpool of 162 plants
(Casler et al. 2006). The HS families were the progeny of genotypes
produced in cycle 2 (C2) of selection on WS4U for high biomass yield
(Casler 2010; Casler and Vogel 2014). The second population comprised
110HS families developed from the cultivar Liberty, which is a stabilized
lowland-upland hybrid cultivar (Vogel et al. 2014; Casler and Vogel
2014). The HS families were developed from the Liberty population by
an additional breeding generation. They were the progeny of the geno-
types selected in C2 for high biomass yield, excellent winter survival,
excellent spring greenup, and no apparent diseases using the among and
within family breeding method. In both populations, the selected C2

genotypes were polycrossed in isolation. The two populations, hereafter
referred to as WS4U-C2 and Liberty-C2, were tested in two locations in
the United States: Arlington (WI) and Mead (NE) in 2012, 2013, and
2014. Families were assayed in a row-plot trial and replicated in a ran-
domized complete block design (RCBD), with four family replicates for
WS4U-C2, and three family replicates for Liberty-C2. There were up to
five HS in each family replicate, with different HS between replicates
(there was no vegetative propagation of individual plants). Rows were
spaced 0.9 m apart, and plants were spaced 0.45 m apart within rows.
Plots were established from greenhouse-grown seedlings in May 2011,
and fertilized with 110 kg N ha–1 in May of 2012 and 2013.

Phenotypic data and mixed-model analyses
In this study, trait measurements at different locations were considered
different outcomes. There were six outcomes: dry matter yield (DMY),
plant height (PH), and heading date (HD) inWI or NE. HDwas scored
on each individual plant as day-of-year when half of the panicles of a
plant had fully emerged from the boot. PH was measured on each
individual plant from the ground to the top of the tallest tiller after
growth had ceased in late September. DMYwas determined by harvest-
ingeach rowplotwithaflail harvester at a 10-cmcuttingheight, adjusted
for moisture concentration using a 400-g sample of harvested tissue
dried for 7 d at 60�. Outcomes were measured in 2012 and 2013, with
the exception of HD in WI, which was scored in 2013 and 2014 for
WS4U-C2 and in 2012, 2013, and 2014 for Liberty-C2 (Table 1).

For PH and HD outcomes, measured on an individual-plant basis,
the following linear mixed model was fitted:

yijkl ¼ mþ gi þ bj þ tk þ ðg · bÞij þ ðg · tÞik þ ðb · tÞjk
þ ðg · b · tÞijk þ eijkl

where m is the grand mean; gi, bj, and tk are the random effects of HS
family i, block j, and year k, respectively; · indicates interactions; eijkl
are residuals. For each term, the corresponding effects were modeled
as independent and identically normally distributed. For PH (in both
locations), an additional term plotij e Normalð0; ðSr5ScÞs2

plotÞ
was included in the model (on the basis of a lower Bayesian in-
formation criterion), where Sr5Sc is the Kronecker product of
the first-order autoregressive covariance matrices on rows and on
columns, respectively.

For DMY outcomes, measured on a plot basis, the following linear
mixed model was fitted:

yijk ¼ mþ gi þ bj þ tk þ ðg · bÞij þ ðg · tÞik þ ðb · tÞjk þ eijk

where effects are as described above, except for eijk, which is the pooled
error of plot ij in year k. The linear mixed models described here were
all fitted using ASREML-R (Butler et al. 2007).

The predicted HS-family effects are best linear unbiased predictions
(BLUPs) of the transmitting abilities of maternal parents. On the one
hand, BLUPs have the property of being shrunk toward their mean
(zero) differentially, depending on the relative amount of information
available for their computation. As a result, estimates of marker effects
based on BLUPs tend to be distorted compared to the estimates based
directly on phenotypes (Garrick et al. 2009), which can be problematic
in inferential studies such as QTL analyses, especially if reliabilities of
BLUPs are highly variable among genotypes. So, in quantitative genetic
analyses, it has been recommended to deregress BLUPs for subsequent
use in weighted regression models, accounting for differential levels of
uncertainty in the deregressed-BLUP estimates, rather than using non-
weighted regression models on BLUPs directly. On the other hand,

1050 | G. P. Ramstein et al.



BLUPs are generally more accurate estimates of the true values, and the
approach based on BLUPs does not rely on (possibly suboptimal)
weights in regression. Importantly, Guo et al. (2010) showed, in sim-
ulation studies, that GS models based on BLUPs predicted true perfor-
mance of genotypes as, or more, accurately than weighted GS models
based on “daughter yield deviations”, equivalent to deregressed BLUPs
(evenwhen strong differences in available information were simulated),
which suggests that BLUPs are acceptable alternatives to their dereg-
ressed counterpart as response variables in predictive studies. Conse-
quently, here we chose not to deregress HS-family BLUPs, and use
them directly as response variables for training and validating GSmod-
els. Nonetheless, all methods used in this study can be adapted to
accommodate deregressed BLUPs with differential weights on obser-
vations, if needed.

The raw phenotypic data and the matrix of HS-family BLUPs are
available online as Supplemental Material, File S1 and File S2, respec-
tively, and from http://dfrc.wisc.edu/sniper/.

Marker data and quality control
Exome capture sequencing of HS-family maternal parents was per-
formed using the Roche-Nimblegen protocol for preparation of SeqCap
EZ Developer libraries using the Roche-Nimblegen probeset
‘120911_Switchrass_GLBRC_R_EZ_HX1’ as described previously
(Evans et al. 2014, 2015). Capture was performed on the 247 individ-
uals from WS4U-C2 and Liberty-C2, and sequencing was performed
on the Illumina HiSequation 2000 platform, generating 150-nt paired-
end reads. Initial quality control was performed using FastQC (v0.10.0;
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). PCR
primers, adapter sequences, and bases with quality scores below 20 were
trimmed using Cutadapt (v1.1; https://code.google.com/p/cutadapt/).
Reads with lengths shorter than 35 nt were discarded. Cleaned reads
were aligned to the hardmasked P. virgatum v1.1 reference genome
(http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvirgatum)
using BowTie v0.12.7 (Langmead et al. 2009). Unanchored contigs were
assigned to scaffolds (ChrUn1-ChrUn15) for more efficient alignment
(Evans et al. 2015). Unique alignments were required, and only a single
mismatched nucleotide was permitted in the first 35 bases of the read.
Read alignments meeting the alignment criteria were processed using the
index, sort, merge (default parameters), and mpileup (-BD –C 0 options)
functions of the SAMTools package v0.1.18 (Li et al. 2009). Counts of
reads corresponding to reference and alternate alleles were generated for
each individual in the WS4U-C2 and Liberty-C2 populations at a
subset of sites (2,179,164 loci; HapMap v2) previously determined

to be polymorphic using exome capture sequencing data from two
diversity panels, the Northern Switchgrass Panel (Evans et al. 2015)
and a southern switchgrass panel (C. Brummer, unpublished data).
Then, marker genotypes were called, assuming disomic inheritance of
tetraploid switchgrass based on previous genetic-mapping studies
(Okada et al. 2010; Li et al. 2014). To infer marker genotypes while
effectively accounting for genotype-calling uncertainty, read counts
were converted to expected allelic dosages (values between 0 and 2 for
the number of copies of the alternate allele); using the algorithm of
Martin et al. (2010), fitted on each population separately. The algo-
rithm of Martin et al. (2010) estimates the sequencing/alignment
error rate and the population allele frequency for each marker sepa-
rately, using an Expectation-Maximization (EM) algorithm. Then, for
each combination of marker and individual, the posterior probability
of each allelic dosage given the read-count data is obtained by Bayes’
rule, assuming Hardy-Weinberg equilibrium (HWE) to derive the
prior probability of each allelic dosage, and a binomial distribution
of read type (reference/alternate) to derive the likelihood of each
allelic dosage. Expected allelic dosages were computed as the sum
of possible allelic dosages weighted by their posterior probability
for each combination of individual and marker.

In the resulting matrix of expected allelic dosages, marker var-
iables were then filtered for (i) proportion ofmissing values (strictly
lower than 5%); (ii) polymorphism (minor allele frequency across
populations strictly greater than 1=2N, and variance higher than
2ð1=2NÞð12 1=2NÞ, with N the total number of genotypes across
populations); (iii) HWE within each population (p-value for HWE,
based on a x2-test, strictly higher than 1024 for each population
considered individually); and (iv) availability of genomic-location
information (available information on chromosome and position
from the reference genome sequence, and annotation of P. virgatum
v1.1; DOE-JGI, http://phytozome.jgi.doe.gov/). The resulting matrix
M contained expected allelic dosages at q� ¼ 141; 030 selectedmarkers
across populations, q� ¼ 108; 077 inWS4U-C2 only and q� ¼ 79; 543
in Liberty-C2 only.

To characterize LDbetweenmarkers, we used the correlationmatrix
R consisting of Pearson correlation coefficients between allelic dosages:
Rjj’ ¼ CorðMj;Mj’Þ, where indexing on M refers to columns. For
matters of efficiency, the q� · q� R matrix was made block-diagonal,
with blocks corresponding to chromosomes (i.e., only local LD was
accounted for, through R). This assumed sparsity in marker correla-
tions allowed us to compute R with reasonable costs in time andmem-
ory, while potentially reducing noise in the estimations by assuming

n Table 1 Description of trait measurements for WS4U-C2 and Liberty-C2 in WI and NE

Population Location Trait Years of Trial Range Mean SD Reliability (SD)

WS4U-C2 WI PH 2012 2013 62–286 160 41 0.69 (0.014)
HD 2013 2014 180–219 196 6 0.76 (0.011)
DMY 2012 2013 73–1158 399 180 0.10 (0.029)

NE PH 2012 2013 60–252 170 24 0.75 (0.019)
HD 2012 2013 171–232 199 11 0.74 (0.013)
DMY 2012 2013 84–1224 490 190 0.45 (0.065)

Liberty-C2 WI PH 2012 2013 62–272 183 30 0.61 (0.045)
HD 2012 2013 2014 189–242 216 8 0.76 (0.038)
DMY 2012 2013 18–1169 455 216 0.21 (0.059)

NE PH 2012 2013 65–298 216 24 0.67 (0.0038)
HD 2012 2013 200–275 232 11 0.66 (0.0036)
DMY 2012 2013 377–1504 861 207 0.53 (0.04)

Population: WS4U-C2 (collection of upland ecotypes) or Liberty-C2 (cross between upland and lowland ecotypes). Location: Arlington (WI) or Mead (NE). Units for
Range, Mean and SD are centimeter, day of the year, and gram per plant, for PH, HD, and DMY, respectively. Reliability: inferred squared correlation between a true
family effect and its BLUP from the mixed models presented in Material and Methods. PH, plant height; HD, heading date; DMY, dry matter yield.
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zero correlation betweenmarkers from different chromosomes. Positive-
definiteness of R (which implies invertibility) was ensured using the
modified projection algorithm of Higham (2002) from the nearPD func-
tion of the R package Matrix.

Following Speed et al. (2012), for any marker Mj we define the
degree of (local) tagging as the sum of squared correlations
involving Mj and any other marker within the same chromosome,
i.e.,

P
j’
R2
jj’ , with j

’ indexing markers on the same chromosome asMj’s.

This metric is supposed to depict the redundancy in information at
Mj, as reflected by R.

The matrixM for markers selected across both populations is avail-
able online as a supplementary file (File S3, with values rounded to the
fifth decimal digit) and from http://dfrc.wisc.edu/sniper/ (with non-
rounded values).

Prediction procedures
For each possible combination of population and outcome, we evalu-
ated prediction procedures with respect to four components: (i) pop-
ulation learning scheme—set of parent genotypes to include for
training; (ii) environment learning scheme—set of locations to include
for training; (iii) marker-data transformation—type of transformation
on themarker data used to producemarker features; and (iv) prediction
model—method used to generate predictions on the outcome based on
marker features. In this study, emphasis was placed on the last two
components.

Prediction models: The standard statistical model for prediction was
genomic BLUP (GBLUP; Habier et al. 2007; Hayes et al. 2009). For a
sample of n instances and q marker features, we define GBLUP as
follows:

g ¼ mþ Zuþ e

where g ¼ fgig is the n-vector of HS-family BLUPs; m is the n-vector
of grand mean; Z is the n ·  m design matrix attributing the n
observations to m parent genotypes; u e Normalð0;Ks2

u), K being
the m  ·  m genomic relationship matrix derived from marker fea-
tures as K}XXT , with X the m ·  q matrix of marker features;
e e Normalð0; Is2

e ), with I the identity matrix. As explained in
the next subsection, the marker features in X were not the expected
allelic dosages, i.e., X 6¼ M. The normalizing factor in K was the sum
of sample variances over marker features.

The GBLUPmodel is equivalent to the RR-BLUP model, where the
assumptions of an infinitesimal genetic model are made: effects of
marker features are assumed to be additive, linear, homoscedastic
(i.e., having equal variance), and independent (which implies no LD
between markers). To accommodate genetic architectures that strongly
deviate from the infinitesimal model, we considered eight additional
models that were heteroscedastic and/or nonlinear.

Heteroscedasticmodels wereGBLUP-wG,GBLUP-sG, BayesA, and
BayesB. The GBLUP-wG model, first used by de los Campos et al.
(2013), consisted in weighting marker features by 2 log10ðpÞ, where
p is the p-value for the effect of a marker feature on the outcome of
interest. GBLUP-sG is a variation from GBLUP-wG, where are in-
cluded in the model only the marker features with a false discovery
rate (FDR) for their correlation with the outcome lower than some
threshold, determined by tuning; the FDR was calculated using the
qvalue package in R (Storey and Tibshirani 2003). BayesA and BayesB
are Bayesian linear regression models, introduced by Meuwissen et al.
(2001), which have the following specification:

g ¼ mþ Xbþ e

where g , m, X are as described above; b e Normalð0; Is2
b). In

BayesA, s2
b e x22ðdfb; S2bÞ. In BayesB, s2

b ¼ 0 with probability p,
ands2

b e x22ðdfb; S2bÞwith probability 12p;pwas chosen to follow
a Betað0:2; 1:8Þ in order to reflect relatively sparse distributions
of causal variants across the genome while allowing uncertainty
about p. In both BayesA and BayesB, S2b e Gammaðrb; sbÞ, and
e e Normalð0; Is2

e ), with s2
e e x22ðdfe; S2eÞ. The hyperparameters

dfb, rb, s_b, dfe, and S2e were set through the heuristics described in
Pérez and de los Campos (2014), based on a prior estimation of the
proportion of variance explained by the model, which was here chosen
to be s2

u
s2
uþs2

e
from a GBLUP model with an update on marker effects

from the heteroscedastic effects model (HEM) of Shen et al. (2013).
BayesA and BayesB were fitted by a Gibbs sampling algorithm with
5000 burn-in iterations, then 15,000 iterations for actual sampling of
parameter values.

The one nonlinear model that we assayed was the reproducing
kernel Hilbert space (RKHS) model described by Gianola and van
Kaam (2008). In the implementation recommended by these authors,
the RKHS model is made equivalent to the GBLUP model, where
pairwise relationship coefficients in K are replaced by an appropriate
nonlinear function of pairwise distances. The pairwise distances were
Euclidean distances based on marker features, scaled by the maximum
distance over pairs of individuals; the nonlinear function was the
Gaussian kernel, with its scale parameter determined by tuning.

To account for both heteroscedasticity and nonlinearity, we ex-
tended the RKHSmodel to RKHS-wG and RKHS-sG, where marker
features were weighted, as described above for GBLUP-wG and
GBLUP-sG. One last heteroscedastic and nonlinear model that we
considered was Random Forest (RF), which is a machine-learning
method that combines results from several regression (or classifica-
tion) trees, fitted to different variations of the data—bootstrap samples
of instances and random subsets of features (Breiman 2001). The RF
model was fitted with 200 trees, bootstrap samples of size n, and subsets
of q=3 features.

Tuning for the scale parameter inRKHS (and its extensions -wGand
-sG), and theFDR threshold inGBLUP-sGorRKHS-sG,wasperformed
through minimization of the generalized-cross-validation criterion
(GCV; Golub et al. 1979; Gu andMa 2005) over a grid of values (strictly
greater than 0 and lower than 1, with steps of 0.025 for the scale
parameter in RKHS, and steps of 0.05 for the FDR threshold in
GBLUP/RKHS-sG). The GCV criterion approximates the leave-one-
out cross-validation mean squared error, based on one model fit to the
whole training set; it is defined as:

GCV ¼ ð1=nÞðg2ĝÞTðg2 ĝÞ
ð12ð1=nÞtrðHÞÞ2 ;

where tr refers to the trace (the sum of diagonal elements of a matrix);
ĝ , the linear prediction of g , and H, the “hat” (smoothing) matrix,
such that ĝ ¼ Hg , depend on the parameter under tuning.

The GBLUP and RKHSmodels, as well as their extensions -wG and
-sG, were fitted using the R package rrBLUP (Endelman 2011); the
BayesA and BayesB models were fitted using the R package BGLR
(Pérez and de los Campos 2014); the HEM of Shen et al. (2013) was
fitted using the R package bigRR (Shen et al. 2013), and the RF model
was fitted using the R package randomForest (Liaw andWiener 2002).

Marker-data transformations: As mentioned above, the input X to
prediction models were transformations of the marker-data matrix
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M. For a given set of individuals, consisting of either WS4U-C2,
Liberty-C2, or both populations combined, the following transfor-
mations of M were made: (i) Base, where features are centered
allelic dosages, and correspond to the typical input to GS models:
XBase ¼ M2P, with P the m  ·  q matrix with uniform columns
containing the mean allelic dosages within the population, q ¼ q�;
(ii) PCA, where features are uncorrelated synthetic variables each
contributed differentially by marker variables: XPCA ¼ XBaseV, with
V the q� · d rotation matrix in the singular value decomposition of
XBase (XBase ¼ UDVT ; d is the number of principal components
here equal to m for all sets of individuals), q ¼ d; (iii) Cor, where
features are marker variables scaled through a correlation matrix:
XCor ¼ XBaseL, with L the q�· q� lower-triangular matrix from the
Cholesky decomposition of Q ¼ R21, such that LLT ¼ Q, R being
the matrix of correlation between marker variables as previously de-
scribed, q ¼ q�; (iv) LD, where features are marker variables weighted
based on their relative degree of tagging (the more redundant infor-
mation at a given marker, the lower its weight): XLD ¼ XBaseW1=2,
with W the diagonal matrix of weights supposed to adjust for redun-
dancy in marker information due to LD;W ¼ diagðwÞ, and w was the
least-absolute-error solution to ðR#RÞw ¼ 1q� subject to wj $ 0,
j ¼ 1; . . . ; q�, with R#R the matrix of squared correlation between
marker variables and 1q� the q�-vector of one values, q ¼ 16; 555 in
WS4U-C2, and q ¼ 10; 615 in Liberty-C2 (q, q�, as a result of some
weights being exactly zero). The publicly available LDAK software was
used to calculate w (http://dougspeed.com/ldak/; Speed et al. 2012).

Marker-data transformations were chosen so that they have
well-defined equivalencies in the GBLUP and RKHS models. In
a GBLUP model, PCA is exactly equivalent to Base (Figure S1):
ðXBaseVÞðXBaseVÞT ¼ UDVTVVTVDUT ¼ UD2UT , since VTV ¼ I,
and UD2UT is the eigendecomposition of XBaseXBase

T ; Cor is equiv-
alent to Base when local LD is accounted for through Q:
ðXBaseLÞðXBaseLÞT ¼ XBaseLLTXBase

T ¼ XBaseQXBase
T ; LD is equiva-

lent to Base when local LD is accounted for by weights on marker fea-
tures as in Speed et al. (2012): ðXBaseW1=2ÞðXBaseW1=2ÞT ¼ XBaseWXBase

T .
The equivalencies mentioned for cross-products in GBLUP also apply
to Euclidean distances in RKHS. Interestingly, in a RR-BLUP model

(equivalent to GBLUP), Cor and LD correspond to Base when marker-
feature effects are assumed to follow a Normalð0;Qs2

bÞ, and a
Normalð0;Ws2

bÞ, respectively, instead of a Normalð0; Is2
bÞ (s2

b is
the variance of marker effects). For the more complex models account-
ing for heteroscedasticity (BayesA, BayesB, GBLUP-wG, GBLUP-sG,
RKHS-wG, RKHS-sG, and RF), the transformedmarker variables were
considered features in their own right, whose contribution to a given
outcome of interest may be weighted similarly to features in Base.

Throughout the article, prediction procedures are referred to by a
combination ofmarker-data transformation and predictionmodel (e.g.,
Cor –RKHS-sG) for a given learning scheme (involving the grouping of
populations and environments in a training set; see next subsections).

Matrices X for WS4U-C2 and Liberty-C2 (with transformations
Base, PCA, Cor, and LD), and the corresponding relationship matrices
and Euclidean distance matrices, are available online from http://dfrc.
wisc.edu/sniper/, in .rds format readable in R.

Population learning schemes: Given a target population, we consid-
ered two types of training sets with regard to parent genotypes. TheHS-
family BLUPs used for training prediction models could be either from
the target population only (within-population learning), or from both
populations pooled together (across-population learning).

Environment learning schemes:Givena targetoutcome,weconsidered
two types of training sets with regard to observations at each parent
genotype. For example, with DMY in WI as the target outcome, the HS-
family BLUPs used for training the predictionmodel could be either those
from the target location only (within-environment learning; e.g., data on
DMY in WI only), n ¼ m, or from both locations considered jointly
for the same trait (across-environment learning; e.g., data onDMY inWI
and NE), n ¼ 2m. In across-environment learning, whenever leaving
out HS families from the dataset for validation (see next section), the
data on the sameHS families in both environments were used for testing.

Validation of prediction procedures
Prediction procedures were evaluated using prediction accuracy esti-
mated in five-fold cross-validation. Given a random partition of

Figure 1 Patterns of decay in linkage disequilibrium (LD), represented by the squared correlation between expected gametic phases (r2) in (A)
WS4U-C2 and (B) Liberty-C2; the blue curve corresponds to the mean value from a cubic-regression spline model assuming a Gamma distribution
for r2. (C) Concordance, from WS4U-C2 to Liberty-C2, in LD as represented by the correlation between expected gametic phases (r); the blue
curve corresponds to the mean value (and its 95%-confidence interval) from a cubic-regression spline model assuming a Normal distribution for r
in Liberty-C2. Values of r were inferred as described in Weir (1979) using the R package SNPRelate (Zheng et al. 2012). Cubic-regression spline
models were fitted using the R package mgcv (Wood 2006). The values of r and r2 shown here are based on random pairs of markers polymorphic
in both WS4U-C2 and Liberty-C2, with each marker represented only once across all pairs.
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instances in five subsets of similar size, four subsets were used for
training, and the remaining subset was used for testing. For each of the
five subsets used sequentially for testing, prediction accuracy was
computed as the Pearson coefficient of correlation between “observed”
and predicted HS-family BLUPs. The significance of the difference in
prediction accuracy between a given procedure and a standard pro-
cedure was assessed in replicated cross-validation by two-sided paired
Dunnett tests, which are t-tests modified to account for multiple
comparisons to a single control (Dunnett 1964). For each outcome
and population, the standard (control) procedure was chosen to be
Base 2 GBLUP with within-population and within-environment
learning. In cross-validation, the overlap between training sets results
in lower variability among estimates of prediction accuracy, com-
pared to the hypothetical case where training sets are generated in-
dependently. So, in paired Dunnett tests, the t-statistic T was adjusted

to account for correlation among computed prediction accuracies, as
described in Bouckaert and Frank (2004):

T ¼
�D

SDðDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
=KRþ 1

=K2 1

q ;

where K ¼ 5 is the number of “folds” in cross-validation, and R ¼ 10
is the number of replications (five-fold cross-validation was repeated
10 times); D ¼ zðctÞ2 zðc0Þ, with ct and c0 the KR-vectors of predic-
tion accuracies from the test procedure and the standard procedure,
respectively, and z the Fisher transformation (for normality of prediction
accuracies); �D and SDðDÞ are the mean and SD ofD, respectively. The R
package nCDunnett was used to obtain adjusted p-values for T .

In order to limit the number of possible combinations to assess,
prediction procedures were first optimized with respect to learning

Figure 2 Distribution of degree of tagging in (A) WS4U-C2 and (B) Liberty-C2. Relationship between minor allele frequency (MAF) and degree of
tagging in (C) WS4U-C2 and (D) Liberty-C2; the blue curve corresponds to the mean value (and its 95%-confidence interval) from a cubic-
regression spline model assuming a Normal distribution for the degree of tagging. Cubic-regression spline models were fitted using the R
package mgcv (Wood 2006).
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schemes only, based on replicated cross-validation, and then optimized
with respect to marker-data transformation and prediction model in a
two-step process (intended to reduce computational burden in the
optimization): for each outcome and population, the combination of
marker-data transformation and prediction model with the highest
prediction accuracy based on nonreplicated cross-validation was se-
lected; then the selected procedure was compared to the standard
procedure (Base 2 GBLUP) in replicated cross-validation. If the
selected procedure differed from Base 2 GBLUP by both an alternate
marker-data transformation and an alternate prediction model (e.g.,
Cor2 BayesA), the alternate transformationwas first compared toBase
in a GBLUP model to assess the usefulness of transforming the marker
data (e.g.,Cor2GBLUP vs. Base2GBLUP). Then the alternate model
was compared to GBLUP using the alternate transformation for both
models to assess the benefit from a more complex prediction model
(e.g.,Cor2 BayesA vs. Cor2GBLUP). Dunnett tests, with adjustments
for the number of marker-data transformations or prediction models,
were used in these comparisons in order to account for selection bias,
i.e., the fact that the same data were used for both choosing the selected
procedure and then comparing it with Base 2 GBLUP.

Genetic analysis of phenotypic traits

Genomic correlation: To characterize the correlation between geno-
mic effects (u) at different outcomes, a multivariate GBLUPmodel was
fitted on any pair of outcomes as in Burgueño et al. (2012): errors ewere
assumed independent within outcomes; the genomic relationship
matrix was K}XBaseXBase

T ; the covariances by outcome of genomic
effects and errors were estimated by REML. The R package ASREML-R
was used to fit the multivariate GBLUP models.

Association mapping: In order to assess the plausibility of heterosce-
dasticmodels, we conducted genome-wide association studies (GWAS)
on all outcomes for both populations combined. For each marker inM
having a minor allele frequency (MAF) higher than 0.05, the EMMAX
linear mixed model of Kang et al. (2010), in which relatedness was
accounted for through K}XBaseXBase

T , was fitted using the R package
rrBLUP. The threshold used to declare significance of associations was
a FDR (as from Storey andTibshirani 2003) lower than 0.05. Significant

markers were then selected altogether in one linear mixed model, with
relatedness accounted for through K and fixed effects for markers,
using a forward stepwise selection procedure based on the Bayesian
information criterion. No covariate for population structure was in-
cluded in the GWASmodels, since the incentive for performing GWAS
here was to investigate whether the ability of GBLUP to capture vari-
ation at outcomes could be significantly improved by including fixed
marker effects. Even though between-population variability was ad-
justed for—because HS-family BLUPs were computed within each
population separately—and genetic relatedness was captured through
K in GWAS models, it cannot be ruled out that significant markers
actually reflected some population structure.

Partition of genomic heritability: The genomic heritability is defined
here as the proportion of variance explained by a GBLUP model, i.e.,

s2
u

s2
u þ s2

e
. To assess the relative contribution of markers with differ-

ent degrees of tagging to the genomic heritability, a multiple-
component GBLUP model was fitted on each outcome, as in Yang
et al. (2011), with three nonoverlapping marker classes: genomic re-
lationship matrices K1, K2, and K3 were calculated from the distinct
marker classes in XBase, and the associated variances s2

u1 , s
2
u2 , and s

2
u3

were estimated by REML. The contribution of class j to the genomic

heritability was defined as
s2
ujP

j’s
2
uj’
þ s2

e
. Marker classes were deter-

mined from tertiles on the markers’ degree of tagging. The R
package ASREML-R was used to fit the multiple-component
GBLUP models.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Genomic structure and relatedness in populations
The two populations considered,WS4U-C2 and Liberty-C2, had strong
differences in their patterns of decay in local (within-chromosome) LD.
WS4U-C2 had a rapid decline in local LD, with the squared correlation
between expected gametic phases (r2) being essentially zero for physical
distances between markers above 1 Mb (Figure 1A). Conversely, in
Liberty-C2, values of r2 decayedmore slowly (Figure 1B), in accordance
with the fact that effective population size in this population, derived
from a cross between two cultivars, is certainly lower than inWS4U-C2,
derived from a diverse collection of 162 upland-ecotype plants. The
concordance in LD from WS4U-C2 to Liberty-C2 was very low, as
reflected by the low adjusted R2 in a nonlinear regression for (y ¼ r
in Liberty-C2; x ¼ r in WS4U-C2) on r in WS4U-C2. This low
concordance seemed to be due to the rapid LD decay in WS4U-C2,
withmany values of r being close to zero inWS4U-C2 only (Figure 1C).
However, when values of r departed from zero in both populations,
there seemed to be some consistency in LD phase, as reflected by the
sign of r being relatively consistent from one population to another.

The distribution of minor allele frequency (MAF), over all 141,030
markers selected, differed by population. In WS4U-C2, as MAF de-
creased, the cognate number of markers increased exponentially (Fig-
ure S2A). In Liberty-C2, while a high proportion of markers appeared
to be fixed, or singletons (likely due to de novo mutations, or possibly
genotype miscalls), the remaining markers showed a relatively uniform
distribution in their MAF (Figure S2B). The concordance inMAF from

Figure 3 Distribution of genetic relationship coefficients based on
identity by descent (IBD) within WS4U-C2, within Liberty-C2, and
across populations. Coefficients of IBD were inferred from the EM
algorithm described in Milligan (2003) using the R package SNPRelate
(Zheng et al. 2012); IBD genetic relationship coefficients are equal to
twice the IBD coefficients.
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WS4U-C2 to Liberty-C2 was low (adjusted R2 = 0.24) but significant
(p , 0.0001), with many markers being fixed in one population but
not the other (Figure S2C).

Figure 2, A and B, shows the distribution in the degree of tagging,
reflecting the duplication of marker signals along a given chromosome,
in each population. The relative variability and skewness in degree of
tagging were larger in WS4U-C2 than in Liberty-C2 (respectively: co-
efficient of variation of 0.876 and 0.591; skewness of 3.99 and 1.31). In
Liberty-C2, the relationship between MAF and degree of tagging was
typical, with rare variants generally having a low degree of tagging
(Figure 2D). Conversely, inWS4U-C2, degree of tagging was, on average,
much higher for rare variants (MAF , 0.10) than for more common
variants (MAF . 0.10) (Figure 2C). The high degree of tagging for rare
variants in WS4U-C2 was due to extended local LD, observed in the
LD-decay plots as lines of points for WS4U-C2 (Figure 1A) but not for
Liberty-C2 (Figure 1B).We hypothesize that such regions of extended LD
inWS4U-C2 are due to the presence, inWS4U (the original collection of
162 plants), of haplotypes consisting of rare alleles, and limited recombi-
nation during the two cycles of selection leading to WS4U-C2.

Genetic relationship, defined here as twice the coefficient of identity
bydescent (IBD)betweengenotypes, was generally lowerwithinWS4U-
C2 than within Liberty-C2, in accordance with the presumably higher
effective population size in WS4U-C2 (Figure 3). Interestingly, the
distribution in genetic relationships within Liberty-C2 was bimodal,
with the first peak close to a HS relationship of 1/4, and the second
peak close to a full-sib relationship of 1/2. This genetic structure within
Liberty-C2 could have been generated by preferential mating of plants
from the same ecotype (having similar flowering times), i.e., assortative
mating during crosses between the upland and lowland cultivars. Re-
lationships across populations, inferred to be exactly zero, indicated
strong genetic dissemblance between WS4U-C2 and Liberty-C2. This
dissemblance, along with the low consistency in LD and MAF across
populations, suggests little benefit from pooling populations into one
single training set for genomic prediction, as was observed in previous
studies (e.g., Karoui et al. 2012; de los Campos et al. 2013).

Genetic variability and architecture of phenotypic traits
The outcomes considered for genomic prediction, described in Table 1,
consisted of combinations of location and phenotypic trait, measured
in 2 or 3 yr. Mean reliabilities (i.e., the average inferred squared cor-
relation between true HS-family effects gi’s and their BLUPs) were high
($ 0.61) for PH and HD in both locations. Reliabilities for DMY were
relatively high in NE (0.45 in WS4U-C2, and 0.53 in Liberty-C2), but
low in WI (0.10 in WS4U-C2, and 0.21 in Liberty-C2).

Genomic correlations between outcomes of the same trait in differ-
ent environments (based onmultivariateGBLUPmodels)werepositive,
strong ($ 0.81), and significant (p # 0.05), with PH and HD (Figure
S3), suggesting some benefit from pooling data from different locations
into one single training set, for genomic prediction on these two traits.
Conversely, genomic correlations between outcomes were not signifi-
cant (p . 0.05) with DMY, for both populations. Importantly, there
were significant genomic correlations between different traits, such as
between DMY-NE and PH-NE in WS4U-C2, and between DMY-NE
and PH-WI or HD-NE in Liberty-C2. Unfortunately, due to the failure
of multiple-trait models to effectively fit the data in cross-validation
(likely due to our relatively small sample sizes), no multivariate pre-
diction procedures were considered in this study.

Association analyses were performed on each of the 12 outcomes,
for bothpopulations combined.WithDMY inWI, sevenmarkerswere
significantly associated to the outcome, and were selected together in
one linear mixed model that explained 42% of the variance after
accounting for genetic relatedness, as was reflected by a likelihood-
ratio based R2 (R2

LR) of 0.42 (Sun et al. 2010) (Table S1). The rela-
tively high R2

LR suggests that DMY in WI may be explained by few
markers with strong effects; heteroscedastic models may then be
beneficial in genomic prediction with this particular outcome. Con-
versely, with all other outcomes, no marker was deemed significant,
and therefore the corresponding genetic architecture presumably
consisted of rare and/or small-effect causal variants.

For a given population, the relative contribution of different marker
classes to the genomic variance at a given outcome was characterized
through thepartitionof genomicheritability, fromamultiple-component
GBLUP model. The classes of markers were determined based on the
degree of tagging. They consisted of markers with a degree of tagging
below the 1/3-quantile, between the 1/3- and 2/3-quantiles, and above the
2/3-quantile, respectively. Quite remarkably, strongly tagged markers
seemed to capture a large proportion of the genomic heritability in
Liberty-C2 for all outcomes ($ 85% of the total genomic heritability
explained) except DMY in WI, for which the total genomic heritability
was low, and the contribution from strongly tagged markers was esti-
mated to be null (Figure 4). In WS4U-C2, the estimated contribution of
strongly tagged markers to the total genomic heritability was moderate-
to-large ($ 54%) for DMY inWI, PH inWI, and HD in both locations,
but low for PH in NE (11%), and null for DMY in NE (Figure 4). With
HD in WI for WS4U-C2 and with DMY in WI for Liberty-C2, weakly
tagged markers seemed to capture about half of the total genomic her-
itability, but, for all other outcomes across populations, weakly tagged
markers seemed to capture very little of the genomic heritability.

Selection and validation of prediction procedures
Here, four components of prediction procedures for GS, on only one
outcome at a time for each population, were assayed: (i) population
learning scheme—training set consisting of data on either the tar-
get population only, or both populations; (ii) environment learning
scheme—training set consisting of data on either the target trait-
location only, or the same trait in both locations; (iii) marker-data

Figure 4 Partition of genomic heritability by marker class based on
degree of tagging. “Low”: markers with a degree of tagging lower
than the 1/3-quantile; “Intermediate”: markers with a degree of tag-
ging between the 1/3- and 2/3-quantiles; “High”: markers with a de-
gree of tagging higher than the 2/3-quantile. For a given outcome and
a given population, the height of the bar corresponding to class
j indicates its contribution to the total genomic heritability, i.e.,

s2
ujP

j’s
2
uj’

þ s2
e
, estimated in a multiple-component GBLUP model, with

XBase as input, using ASREML-R (Butler et al. 2007).
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transformation—type of marker features used as input to prediction
models; and (iv) prediction model—assumed relationship between
the marker features and the outcome.

Learning schemes: The importance of the first two components
of prediction procedures (learning schemes) was assessed while
using a GBLUP model with Base marker-data transformation
(Base 2 GBLUP), i.e., using centered expected allelic dosages as
input to the standard GBLUPmodel (Table 2 for DMY and Table S2 for
other traits). Across all outcomes, there was no consistent superiority of
one particular learning scheme, based on mean prediction accuracies in
five-fold cross-validation replicated 10 times. Also, none of the observed
increases in prediction accuracy, compared to the within-population/
within-environment scheme, were deemed significant (p . 0.10). Pool-
ing data across populations was not beneficial, as could be expected from
the low concordance in LD patterns (Figure 1C) and MAF (Figure S2C)
between WS4U-C2 and Liberty-C2, as well as from the genetic dissem-
blance between the two populations (Figure 3). However, no significant
increase in prediction accuracy was obtained with PH and HD from
pooling data across environments in spite of the strong positive genomic
correlations inferred for these two traits (Figure S3).

Marker-data transformations and prediction models: As described
above, pooling data across populations and/or environments did not
offer strong opportunities for improving prediction procedures.
Thus, the importance of marker-data transformations and prediction
modelswas investigatedwhileusing a simplewithin-population/within-
environment learning scheme. Assessment of prediction procedures
was performed in two steps. In step 1, a candidate prediction procedure
(a combination of marker-data transformation and prediction model)
was selected based on mean prediction accuracy in nonreplicated five-
fold cross-validation (Table 3 for DMY, Table S3 for other traits, and
Figure S4). In step 2, the selected candidate procedure was then com-
pared to the standard—a GBLUP model on centered expected allelic
dosages (Base 2 GBLUP)—in five-fold cross-validation replicated 10
times (Figure 5 for DMY, Figure S5 for other traits) so as to assess the
benefit from the alternate marker-data transformation, and/or the
more complex prediction model selected.

Over cases (combinations of outcome and population), average
prediction accuracies across prediction procedures in nonreplicated
cross-validation ranged from –0.012 (DMY in WI for Liberty-C2) to
0.545 (HD inWI for Liberty-C2), with generally higher accuracies with
PH and HD than with DMY (Table 3, Table S3, and Figure S4). How-
ever, high accuracies were achieved with DMY in NE for Liberty-C2
(0.455 on average). With DMY in WI (for both populations), DMY in
NE (forWS4U-C2), and PH in NE (forWS4U-C2), marker-data trans-
formation seemed to offer more opportunities for improvement than
prediction models. In other cases, prediction accuracies were generally

not sensitive to marker-data transformations, except for PCA, with
which heteroscedastic models often performed poorly. In general,
across cases, the Basemarker-data transformation was selected in only
three out of 12 cases, which again indicates some potential benefit from
accounting for LD throughmarker-data transformation. Heteroscedastic
models were selected nine times out of 12, with strong increases observed
with DMY in WI, as could be expected from the many GWAS signals
detected with that trait (Table S1).

The statistical significance of the difference in prediction accuracies
between Base 2 GBLUP and the candidate prediction procedure,
selected based on nonreplicated cross-validation, was assessed in rep-
licated cross-validation by paired Dunnett tests. Dunnett tests account
for biases on significance due tomultiple testing, which arose here from
deriving a hypothesis from the same dataset as that used for testing
(selection bias). Dunnett tests were further adjusted to account for the
overlap between training sets in cross-validation, which caused the SD
in prediction accuracy among “folds” to be an underestimate of the
general SD (among hypothetical datasets). With DMY and PH in NE
for WS4U-C2, and with DMY (in both locations) for Liberty-C2, the
selected prediction procedures yielded higher mean prediction accura-
cies in replicated cross-validation. However, the observed differences
were generally not deemed significant according to our tests, with the
exception of DMY in NE for WS4U-C2 (Figure 5 and Figure S5). With
DMY and PH in NE for WS4U-C2, the marker-data transformation
apparently contributed more than the prediction model to the increase
in prediction accuracy. Interestingly, for those cases, markers with a
high degree of tagging tended to capture very little of the genomic
heritability (Figure 4). The most notable case was DMY in NE for
WS4U-C2, where a highly significant increase in accuracy (p , 0.01)
was observed when comparing Base2 GBLUP to Cor2 GBLUP, but
using a BayesA model (the selected alternate model) rather than a
GBLUPmodel (the standardmodel) did not yield a significant increase
in prediction accuracy (Figure 5). This one strong increase indicates
that, with our data, some substantial and reliable increase in prediction
accuracy could be achieved through marker-data transformation, and
not so much by prediction models more complex than GBLUP. Ac-
cordingly, when going through the same process of selection and val-
idation of prediction procedures while considering only Base for input
to the various prediction models (which is a traditional protocol for
prediction-procedure optimization in GS), no significant increase in
prediction accuracy could be obtained in any case (Figure S6).

DISCUSSION
This study dealt with the optimization of prediction procedures in GS
through four components: population learning scheme, environment
learning scheme, marker-data transformation, and prediction model,
with emphasis placed on marker-data transformations and prediction
models. The distinction between marker-data transformations and

n Table 2 Mean prediction accuracy across population and environment learning schemes for DMY in WI and NE

DMY in WI DMY in NE

Within environment Across environments Within environment Across environments

WS4U-C2 Within population 0.156 0.149 0.136 0.155
Across populations 0.177 0.158 0.121 0.143

Liberty-C2 Within population 0.095 20.031 0.495 0.484
Across populations 0.093 20.029 0.499 0.485

Prediction accuracies were estimated with Base 2 GBLUP in five-fold cross-validation replicated 10 times. The significance of differences in prediction accuracy was
assessed by two-sided paired Dunnett tests, which accounted for multiple comparisons of learning schemes to a single reference (the within-population/within-
environment scheme). The t-statistics in Dunnett tests were adjusted to account for correlation among training sets in cross-validation, as described in Bouckaert and
Frank (2004). For a given population and trait-location combination, differences in prediction accuracy compared to the within-population/within-environment scheme
were never deemed significant (p . 0.10 in paired Dunnett tests).
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prediction models may seem arbitrary, especially for procedures like
Cor 2 GBLUP or Cor 2 RKHS, which are equivalent to well-defined
statistical models (seeMaterial and Methods). However, “marker-data
transformations” and “prediction models” account for different char-
acteristics of marker loci, withmarker-data transformations accounting
for redundancy in marker information, and prediction models all as-
suming independence of marker-feature effects, and possibly account-
ing for heteroscedasticity and/or nonlinearity of marker-feature effects.

In GS studies, the type of prediction models has been by far the
factor upon which optimization of genomic prediction procedures has
most often acted (e.g., Moser et al. 2009; Crossa et al. 2010; Heslot et al.
2012). In this study, we demonstrate that applying linear transforma-
tions to themarker data to account for local LD amongmarkers may be
useful to achieve gains in prediction accuracy that are reliable based on
replicated cross-validation and honest significance tests. In fact, the
only highly significant increase in prediction accuracy that we achieved
was due to Cor (the account of local LD among marker loci through a
block-diagonal correlation matrix), with DMY in NE for WS4U-C2
(Figure 5). Some substantial increase in prediction accuracy could also
be achieved by Cor with PH in NE for WS4U-C2, and PCA with DMY
inWI for Liberty-C2, though the differences observedwere not deemed
significant (p = 0.37 and p = 0.96, respectively; Figure S5 and Figure
5). While optimizing prediction procedures through learning schemes
has been useful in some studies (Rincent et al. 2012; Heslot et al. 2013),
here they did not offer strong opportunities for improving prediction
procedures.With PH andHD, for which genomic correlations between
environments were high (Figure S3), the absence of consistent and
significant increase in prediction accuracy from pooling environments
may have been due to the high reliability of HS-family BLUPs for those
two traits, causing additional measurements on one given genotype to
contribute little to the quality of the signal in the data. Pooling data

from different populations was not useful due to the strong genetic dis-
similarities between WS4U-C2 and Liberty-C2 (Figure 1, Figure S2, and
Figure 3), certainly owing to the differences in effective population sizes,
as well as to local adaptation of switchgrass populations and the ancient
divergence between upland and lowland ecotypes (Zhang et al. 2011).

In our study, both populations showed large variability in the degree
of (local) tagging at marker loci (Figure 2, A and B), probably (to some
extent) because markers were derived from exome capture, which tar-
get specific regions in the genome for sequencing. In WS4U-C2 spe-
cifically, there was also rapid LD decay along chromosomes with
nevertheless extended LD (Figure 1A), presumably caused by sampling
artifacts in WS4U, resulting in outstandingly high values of degree of
tagging (Figure 2A). Also, variants with extreme degrees of tagging in
that population tended to be rare (Figure 2C). Conversely, in Liberty-
C2, LD decay within a chromosome was slower, and there was no
extended LD (Figure 1B), resulting in relatively little skewness in the
distribution of degree of tagging in that population (Figure 2B). Also,
the relationship between MAF and degree of tagging was quite typical
(Figure 2D), similar to that reported in human by Speed et al. (2012).
Probably as a consequence of the differences in genomic structure
across populations, the contribution of strongly tagged variants to the
genomic heritability of outcomes was generally lower in WS4U-C2
than in Liberty-C2. The only cases in which there were substantial
increases in prediction accuracy from marker-data transformations
and prediction models, relatively to Base 2 GBLUP, were DMY and
PH in NE for WS4U-C2, and DMY in WI for Liberty-C2: +75% from
Cor-BayesA, +20% from Cor-BayesB, and +75% from PCA-RF, respec-
tively (Figure 5). Quite remarkably, these were also the only cases in
which proportions of genomic heritability explained by strongly tagged
variants were very low (0%, 11%, and 0% of genomic heritability
explained, in these three cases, respectively) (Figure 4). Importantly,

n Table 3 Mean prediction accuracy across marker-data transformations and prediction models for DMY in WI and NE

DMY in WI

GBLUP GBLUP-wG GBLUP-sG RKHS RKHS-wG RKHS-sG BayesA BayesB RF (Mean)

WS4U-C2 Base 0.151 0.123 0.106 0.139 0.135 0.114 0.135 0.121 0.037 0.118
PCA 0.151 20.045 20.010 0.139 0.027 20.017 0.102 0.082 0.105 0.059
Cor 0.170 0.152 0.200 0.146 0.155 0.194 0.150 0.122 0.120 0.157
LD 0.105 0.107 0.092 0.113 0.105 0.070 0.105 0.104 0.031 0.092
(Mean) 0.144 0.084 0.097 0.134 0.106 0.090 0.123 0.107 0.073 0.106

Liberty-C2 Base 0.016 20.019 0.069 20.038 0.003 0.064 20.046 20.079 20.008 20.004
PCA 0.016 0.027 0.092 20.038 0.081 0.083 20.021 20.028 0.165 0.042
Cor 0.004 20.054 20.045 20.211 20.062 20.037 20.061 20.093 20.115 20.075
LD 0.034 20.044 0.015 20.053 20.028 0.031 20.017 20.039 0.018 20.009
(Mean) 0.018 20.023 0.033 20.085 20.002 0.035 20.036 20.06 0.015 20.012

DMY in NE

GBLUP GBLUP-wG GBLUP-sG RKHS RKHS-wG RKHS-sG BayesA BayesB RF (Mean)

WS4U-C2 Base 0.079 0.053 0.096 0.061 0.064 0.122 0.096 0.068 0.132 0.086
PCA 0.079 20.048 20.040 0.061 20.014 20.002 0.079 0.081 0.039 0.026
Cor 0.174 0.145 0.168 0.162 0.149 0.153 0.185 0.165 0.031 0.148
LD 0.151 0.172 0.155 0.129 0.159 0.148 0.159 0.149 0.075 0.144
(Mean) 0.121 0.081 0.095 0.103 0.090 0.105 0.130 0.116 0.069 0.101

Liberty-C2 Base 0.493 0.468 0.444 0.498 0.474 0.444 0.520 0.526 0.439 0.478
PCA 0.493 0.313 0.275 0.498 0.379 0.343 0.505 0.495 0.419 0.413
Cor 0.479 0.468 0.440 0.455 0.470 0.443 0.493 0.503 0.456 0.467
LD 0.474 0.462 0.408 0.481 0.474 0.409 0.511 0.495 0.414 0.459
(Mean) 0.485 0.428 0.392 0.483 0.449 0.41 0.507 0.505 0.432 0.455

Prediction accuracies were estimated with a within-population/within-environment learning scheme in five-fold cross-validation, with no replication. For a given
population and outcome (trait-location combination), the highest average value across marker-data transformations is underlined; the highest value across prediction
procedures is underlined and bolded.
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previous simulation studies have investigated the effect of marker-data
transformation LD on the accuracy of estimations (Speed et al. 2012)
and predictions (Nishio and Satoh 2015) in genomic studies, and
they have shown that the lower the relative degree of tagging at the
causal variants for a given outcome, the more beneficial LD tends to be,
compared to Base. Therefore, here we argue that cases where marker-
data transformations might be useful are those where a small propor-
tion of genomic heritability is captured by strongly tagged markers,
which presumably derives from the fact that the causal variants are
not strongly tagged. However, we are assuming here that Cor and PCA
respond to features of genomic structure similarly to LD; simulation
studies would be necessary to support such an assumption.

In Liberty-C2, there seemed to be some population structure, pre-
sumably caused by assortativemating, while there was little evidence for
such structure inWS4U-C2 (Figure 3). Population structure may cause
marker loci from different chromosomes to be correlated. Therefore, in
Liberty-C2 particularly, withmarker-data transformationsCor and LD,
it might have been useful to account for global LD, i.e., correlations
amongmarker loci within and across chromosomes. Interestingly, PCA
does account for global LD in heteroscedastic models (in GBLUP and
RKHS, the homoscedastic models, PCA is equivalent to Base), and this
transformation was useful only in Liberty-C2, in one case (DMY
in WI). However, despite being substantial, the increase in mean pre-
diction accuracy in this case was not deemed significant in paired

Figure 5 Validation of selected prediction procedures for DMY in WI and NE. Prediction accuracies (rgĝ) were estimated with a within-population/
within-environment learning scheme in five-fold cross-validation, replicated 10 times. In each boxplot, up to two comparisons are made: (i) the
candidate-transformation procedure (selected marker-data transformation according to nonreplicated five-fold cross-validation in a GBLUP
model; Table 3) is compared to the standard procedure (Base 2 GBLUP), if relevant; and (ii) the candidate procedure (selected prediction
procedure according to nonreplicated five-fold cross-validation; Table 3) is compared to the candidate-transformation procedure. The signifi-
cance of differences in prediction accuracies was assessed by two-sided paired Dunnett tests, which accounted for multiple testing of data
transformations, in (i), and of prediction models, in (ii). The t-statistics in Dunnett tests were adjusted to account for correlation among training sets
in cross-validation, as described in Bouckaert and Frank (2004).
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comparisons (Figure 5). Here, we did not account for global LD in Cor
and LD, since the transformations would then have involved correla-
tion matrices that are too large to process, or even store. Given the
genomic features of Liberty-C2, pruning markers—which should not
be too detrimental to prediction accuracy given the relatively large LD
extent (Figure 1B)—and then accounting for global LD, might have
proved useful with Cor and LD.

In general, the account of LD throughmarker-data transformations
based on correlation matrices (Cor and LD) could be further improved
by reducing the level of noise in estimates of marker correlations.
Preprocessing correlation matrices for shrinkage and/or sparsity could
then prove beneficial, with Gaussian graphical models (e.g., the graph-
ical LASSO; Friedman et al. 2008) or generalized thresholding methods
(e.g., the MCP method; Zhang 2010) being potentially useful tools.
Furthermore, basing correlations on expected gametic phases (i.e., us-
ing haplotypic rather than genotypic correlations) would allow a more
appropriate account of LD. However, in Cor (whenever preprocessing
correlations or using expected gametic phases), one would then face the
very serious computational challenge of ensuring that the resulting
correlationmatrix is positive definite (i.e., being a proper and invertible
correlation matrix). Filtering out markers based on relatively stringent
MAF thresholds could result in higher prediction accuracies if the out-
come is affected mostly by common causal variants, but it could also
increase the benefit from marker-data transformations such as Cor or
LD, because correlations would probably be less prone to error if only
common markers are considered—some correlations involving rare
variants, estimated at low but nonzero values, might simply be spurious
rather than effectively due to LD, and would then contribute to overall
noise in the marker correlation matrix. However, preselection based on
MAF would remove potentially useful information whereas the linear
mixed models assayed here (i.e., all prediction models except RF) have
the (supposedly desirable) property of downweighing the effect of
markers with low variance (and therefore low MAF) as long as marker
variables are not standardized (i.e., scaled through a covariancematrix).
Besides, optimizing prediction procedures with respect to a MAF
threshold would result in more intricate studies: if optimization for
MAF threshold were to be integrated into a prediction procedure (i.e.,
tuning for MAF threshold within the procedure), the resulting compu-
tational complexity would greatly increase, since tuning would then have
to be performed within each “fold” during cross-validation for each
outcome and population; if different MAF thresholds were to be con-
sidered for different procedures (i.e., the MAF threshold would be an
additional component of prediction procedures), then the computational
burden in the study would increase, but, more importantly, multiple
testing would become a greater issue (accounting for the high number
of candidates in comparisons of prediction procedures would cause
significance tests to be highly conservative). In this study, we considered
marker-data transformations that were relatively simple, but some of the
treatments suggested above (regularization on correlation matrices, use
of expected gametic phases for estimating correlations, and/or preselec-
tion based on MAF) may prove useful to better account for LD in GS.

Our results are based on two populations of switchgrass with three
traits. The conclusions that we drew about the relative importance of
prediction-procedure components are, of course, not generalizable to all
GS contexts and genetic architectures. The limited number of genotypes
(137 and 110 in WS4U-C2 and Liberty-C2, respectively) likely favored
the most parsimonious (statistically efficient) models, regardless of
traits’ genetic architecture. With larger sample sizes, the higher flexi-
bility of more complex models may have been more beneficial with
traits whose genetic architecture substantially deviates from the infin-
itesimal model. Also, not all genetic architectures were represented in

our data. In particular, there was little apparent benefit fromRKHS (the
only nonlinear homoscedastic model) on prediction accuracy. This
may indicate that the traits considered in our data are influencedmostly
by additive effects, but the small sample sizes arguably limit such con-
clusions. Finally, assessments of GS through cross-validations is limited
in that it does not test prediction procedures for persistency of accuracy
over generations, a criterion by which prediction models can differ
significantly, as was shown through simulations by Habier et al.
(2007). It would be important to formally study the repercussion of
accounting for LD in GS on the persistence of accuracy over genera-
tions, using simulation and/or empirical studies. Quite interestingly,
Nishio and Satoh (2015) suggested that accounting for LD through the
LD marker-data transformation would be beneficial in long-term GS
when causal variants are unevenly tagged, because it would prevent
strongly tagged causal variants from being quickly fixed relatively to
weakly tagged ones, and therefore would result in genomic predictions
from LD2GBLUP having accuracies that aremore slowly deteriorated
over generations, compared to predictions from Base 2 GBLUP.

Webelieve the relativelyhighpredictionaccuracies, particularlywith
DMY in NE, should motivate the implementation of GS breeding
programs in switchgrass. Nevertheless, we may conduct future studies
to compare GS with phenotypic selection for realized genetic gains, in
programs thatare run insimilar conditions, soas tobring further evidence
for the usefulness of GS technologies in perennial grass breeding.
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