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Abstract. Annexin II is a Ca2+-dependent membrane- 
binding protein present in a wide variety of cells and 
tissues. Within cells, annexin II is found either as a 36- 
kD monomer (p36) or as a heterotetrameric complex 
(p90) coupled with the S-100-related protein, p l l .  An- 
nexin II has been suggested to be involved in exocytosis 
as it can restore the secretory responsiveness of perme- 
abilized chromaffin cells. By quantitative confocal im- 
munofluorescence, immunoreplica analysis and immu- 
noprecipitation, we show here the translocation of p36 
from the cytosol to a subplasmalemmal Triton X-100 
insoluble fraction in chromaffin cells following nicotinic 
stimulation. A synthetic peptide corresponding to the 
NH2-terminal domain of p36 which contains the phos- 
phorylation sites was microinjected into individual 
chromaffin cells and catecholamine secretion was mon- 
itored by amperometry. This peptide blocked corn- 

pletely the nicotine-induced recruitment of p36 to the 
cell periphery and strongly inhibited exocytosis evoked 
by either nicotine or high K ÷. The light chain of an- 
nexin II, p l l ,  was selectively expressed by adrenergic 
chromaffin cells, and was only present in the subplas- 
malemmal Triton X-100 insoluble protein fraction of 
both resting and stimulated cells, p l l  can modify the 
Ca 2÷- and/or the phospholipid-binding properties of 
p36. We found that less Ca 2+ was required to stimulate 
the translocation of p36 and to trigger exocytosis in ad- 
renergic chromaffin cells. Our findings suggest that the 
translocation of p36 to the subplasmalemmal region is 
an essential event in regulated exocytosis and support 
the idea that the presence of p l l  in adrenergic cells 
may confer a higher Ca 2+ affinity to the exocytotic 
pathway in these cells. 

NEXINS have been isolated from a wide variety of 
cells and tissues by investigators studying diverse 
biological processes. The common characteristic 

of the annexins is that they bind to biological membranes 
and anionic phospholipids in a Ca2+-dependent manner 
(for reviews see Geisow et al., 1991; Moss, 1992). The 
function of these proteins within cells remains uncertain 
(Raynal and Pollard, 1994). Members of the annexin fam- 
ily are substrates for tyrosine kinases, suggesting a func- 
tion in cell growth (Glenney and Tack, 1985). Several in- 
vestigators have proposed that annexins may regulate the 
inflammatory response as they inhibit phospholipase A2 
and can be induced by steroids (Wallner et al., 1986). 
Other possible functions of the annexins include roles in 
the organization of cytoskeletal actin (Gerke and Weber, 
1984) or in the organization of lipid domains (Geisow et 
al., 1991). Furthermore, many proteins of the annexin fam- 
ily have been shown to bind to and promote CaZ+-depen - 

Please address all correspondence to S. Chasserot-Golaz, INSERM Unite 
338, Biologie de la Communication Cellulaire, 5 rue Blaise Pascal, 67084 
Strasbourg, France. Tel.: 33 88 45 6714. Fax: 33 88 60 0806. 

dent aggregation of secretory granules, indicating that an- 
nexins may play a role in promoting membrane interactions 
during exocytosis (Siidhof et al., 1982; Drust and Creutz, 
1988). The common sequence principle of the annexin 
family is an array of 70 residues, which is tandemly re- 
peated four or eight times. Each repeat contains a 17-resi- 
due consensus motif, possibly involved in Ca 2÷ and/or lipid 
binding (Geisow et al., 1986; Huber et al., 1992). Diversifi- 
cation of the biological activities of the annexins appears 
to depend on the NH2-terminal tail which is variable in 
length and sequence. 

Annexin II, one of the best characterized components of 
the annexin family, is peculiar in that it is present in cells 
as a 36-kD monomer (p36) and also as a tight heterotet- 
ramer complexed with the S-100-related protein p l l .  The 
heterotetrameric protein consists of two copies of p36 and 
two copies of p l l  (Erikson et al., 1984; Gerke and Weber, 
1984; Glenney and Tack, 1985), and is often found in the 
subplasmalemmal cytoskeletal network in different cell 
types (Gerke and Weber, 1984; Thiel et al., 1992). Com- 
parison of the monomeric p36 vs the tetrameric p90 indi- 
cates that the formation of the complex results in a mole- 
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cule with a higher affinity for Ca 2÷ and phospholipids 
(Evans and Nelsestuen, 1994). 

Annexin II has been implicated in a number of mem- 
brane-related events including the Ca2÷-dependent regu- 
lation of exocytosis in chromaffin cells (Ali et al., 1989; Sa- 
rafian et al., 1991; Creutz, 1992) as well as in endocytotic 
pathways (Emans et al., 1993). Annexin II belongs to the 
cytosolic proteins described as essential for regulated exo- 
cytosis. The addition of annexin II to streptolysin-O (SLO) 1- 
permeabilized chromaffin cells with reduced secretory 
capacity due to the leakage of cytosolic proteins, partially 
restores the calcium-dependent secretory activity (Ali et 
al., 1989; Sarafian et al., 1991). This effect is specific for an- 
nexin II since other annexins (p32, p37, p67) were unable 
to stimulate secretion (Sarafian et al., 1991). In addition, 
the participation of annexin II requires phosphorylation 
by protein kinase C and this modification promotes the 
binding of cytosolic p36 to intracellular membranes (Sara- 
fian et al., 1991). 

To further elucidate the role(s) of annexin II in regu- 
lated exocytosis, we focused here on the intracellular dis- 
tribution of p36 and its cellular ligand p l l  during exocyto- 
sis in chromaffin cells. By combining confocal microscopy 
with a microinjection technique coupled to the ampero- 
metric detection of exocytosis in single chromaffin cells, 
we demonstrate that the translocation of p36 from the cy- 
tosol to the subplasmalemmal region is an essential event 
in catecholamine secretion. Furthermore, our data reveal 
that p l l  is only found in the periphery of adrenergic cells. 
The presence of p l l  may account for the lower Ca 2÷ 
threshold of p36 translocation and exocytosis observed in 
adrenergic cells. 

Materials and Methods 

Chromaffin Cells 
Chromaffin cells were isolated from fresh bovine adrenal glands by retro- 
grade perfusion with collagenase and purified on self-generating Percoll 
gradients (Bader et al., 1986). Cells were suspended in Dulbecco's modi- 
fied Eagle's medium supplemented with 10% FCS and containing cy- 
tosine arabinoside (10 p~M), fluorodeoxyuridine (10 p,M), streptomycin 
(50 ~g/ml), and penicillin (50 U/ml). Cells were usually cultured as mono- 
layers on collagen-coated glass coverslips at a density of 2 × 105 cells and 
used within 3-7 d after plating. To trigger exocytosis, chromaffin cells 
were washed twice with Locke's solution (140 mM NaCI, 4.7 mM KCI, 2.5 
mM CaC12, 1.2 mM KH2PO4, 1.2 mM MgSO4, 11 mM glucose, 0.56 mM 
ascorbic acid, and 15 mM Hepes, pH 7.2) and then stimulated 5 min with 
Locke's solution containing either 10 ~M nicotine or 59 mM K + (made by 
decreasing NaCI isosmotically). 

Permeabilization of chromaffin cells with streptolysin-O (SLO; Institut 
Pasteur, Paris, France) was performed as previously described (Sarafian et 
al., 1991). Briefly, cells were washed with calcium-free Locke's solution 
(containing 1 mM EGTA) and then permeabilized for 2 min at 37°C with 
SLO (18 U/ml) in 200 I-d calcium-free permeabilizing medium (150 mM 
glutamate, potassium salt, 10 mM Pipes, 5 mM NTA, 0.5 mM EGTA, 
0.2% bovine serum albumin, 5 mM Mg-ATP, 4.5 mM magnesium). Secre- 
tion was induced for 5 min with permeabilizing media containing various 
amounts of CaCI 2 to yield the indicated free calcium concentration. The 
exact free Ca 2+ concentration in the medium was calculated as described 
by Flodgaard and Fleron (1974) using the stability constant given by Sillen 
and Martell (1971). 

1. Abbreviat ions used in this paper: DBH, dopamine 13-hydroxylase; NSF, 
N-ethylmaleimide-sensitive fusion protein; PKC, protein kinase C; 
PNMT, phenylethanolamine N-methyl transferase; SLO, streptolysin-O; 
SNAP, soluble NSF attachment protein; SNARE, SNAP receptor. 

[3H]Noradrenaline Release 
Catecholamine stores were labeled by incubation of intact cells with 
[3H]noradrenaline (13.3 Ci/mmol; Amersham, Les Ulis, France) for 45 
min. Cells were then washed with Locke's solution and subsequently stim- 
ulated with 10 IxM nicotine in Locke's solution. [3H]Noradrenaline release 
after stimulation was determined by measuring the radioactivity present 
in the incubation medium and in cells after precipitation with 10% (wt/ 
vol) trichloroacetic acid. The amount of released [3H]noradrenaline is ex- 
pressed as a percentage of total radioactivity present in the cells before 
stimulation. Data are given as the net secretory values obtained by sub- 
tracting the release measured in the presence of nicotine during the stimu- 
lation period from the release measured in the absence of nicotine. 

Antibodies 

Rabbit polyclonal antibodies raised against annexin II (p36) purified from 
bovine aorta were used at a 1:200 dilution (generous gift of J.C. Cavadore, 
INSERM U-249, Montpellier, France). Rat polyclonal antibodies against 
dopamine-13-hydroxylase (EC.1.14.17.1: DBH) were used at a 1:1,200 dilu- 
tion to specifically label secretory granules in chromaffin cells (Perrin and 
Aunis, 1985). Mouse monoclonal antibodies against p l l  were used at a 1: 
50 dilution (Chemicon International Inc.). Rabbit polyclonal antibodies 
against chromogranin A from bovine chromaffin granules (Bader et al., 
1981) were used at a 1:2,000 dilution. Sheep polyclonal antibodies against 
bovine phenyl ethanolamine N-transferase (PNMT, Euromedex, France) 
were used at 1:200 dilution. Donkey anti-rabbit IgG conjugated to either 
tetramethylrhodamine (TRITC) or fluorescein isothiocyanate (FITC), 
goat anti-rat IgG conjugated to FITC and goat anti-mouse IgG conju- 
gated to TRITC were from Chemicon International Inc. Donkey anti- 
sheep IgG conjugated to FITC were from Jackson Immunoresearch Labo- 
ratories (Westgrove, PA). 

For immunoprecipitation of annexin II, antibodies were raised in rab- 
bits against bovine lung annexin II heterotetramer (p90) purified as previ- 
ously described (Regnouf et al., 1995). Affinity-purified antibodies were 
obtained by passing the serum on annexin II heterotetramer covalently 
bound to Affigel 10 and eluting the antibodies in glycine-HCl buffer, pH 
2.8. The serum was usually tested on immunoblots at a 1:1,000 dilution 
and the affinity-purified antibodies at 1 p.g/ml. The affinity-purified anti- 
bodies did not crossreact with annexin I. 

Immunocytochemistry 
The procedure for immunocytochemistry on chromaffin cells has been 
previously described (Grant et al., 1988). Briefly, cells were fixed for 20 
min in 4% paraformaldehyde in 0.12 M Na/K phosphate (pH 7.0) and for 
an additional 10 min in fixative containing 0.1% Triton X-100. Aldehyde 
fixation allows a better preservation of the surface features which are of 
particular interest in the case of p36 staining patterns (Osborn et al., 
1988). After several rinses with PBS, cells were pretreated with 3% bovine 
serum albumin (BSA), 10% normal goat serum in PBS to reduce nonspe- 
cific staining. Cells were incubated for 2 h with the primary antibody di- 
luted in PBS containing 3% BSA in a moist chamber, washed, and 
subsequently incubated for 1 h with the respective secondary antibodies 
similarly diluted to 1:100. Coverslips were then extensively washed with 
PBS, rinsed with water and mounted in Mowiol 4-88 (HOECHST). 

The transient accessibility of dopamine-~-hydroxylase (DBH) on the 
plasma membrane of stimulated chromaffin cells (Perrin and Aunis, 1985) 
was tested by incubating SLO-permeabilized cells for 10 min in permeabil- 
izing medium containing 10 or 100 p~M free calcium in the presence of 
anti-DBH antibodies diluted to 1:50. Cell were then fixed, washed, and 
processed for immunofluorescence labeling. 

Immunofluorescence labeling was evaluated on samples observed with 
a planapo oil (63×) immersion objective by counting the cells present in a 
randomly selected transect covering the entire width of the coverslip. 
Counts were performed in duplicate on samples taken from 3 to 6 differ- 
ent experiments. 

Confocal Laser Scanning Microscopy 
and Image Analysis 
To acquire sequential through-focus images of labeled cells, we have used 
a Zeiss laser scanning microscope (LSM 410 invert) equipped with a pla- 
napo oil (63 ×) immersion lens (na = 1.4). FITC emission was excited us- 
ing the argon laser 488-nm line whereas TRITC was excited using the He/ 
Ne laser line 543-nm line. The emission signals were filtered with a Zeiss 
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515-565-nm filter (fluoresceine emission) or with a long pass 595-nm filter 
(rhodamine signal). 

The rate of photobleaching during image acquisition was determined 
by measuring the rate of decrease in emitted light intensity from a labeled 
cell over a period to collect the three dimensional (3D) data sets. Using 
this procedure we found no significant decrease in the rhodamine fluores- 
cence whereas the photobleaching of fluoresceine was important. For this 
reason, p36 was always labeled with rhodamine for quantitative confocal 
microscopy. 

Nonspecific fluorescence was assessed by incubating cells with the sec- 
ondary fluorescent-labeled antibodies and measuring the average inten- 
sity value for each fluorochrome. This value was then subtracted from all 
p36-specific images. 

Ceils were subjected to optical serial sectioning to produce images in 
the X-Y plane. Each optical section was scanned eight times to obtain an 
averaged image which was used for analysis. 3D imaging was constructed 
from 50 serial optical sections of 0.2 ixm depth. The images were recorded 
digitally in a 768 × 576 pixel format and saved on an erasable magneto op- 
tical disk. Digital data were later down loaded to a digital image recorder 
FOCUS. 

For quantification, three optical sections from the same cell were re- 
corded at 1-p,m intervals in the Z-direction and stored on optical disc for 
subsequent display. Quantification of the p36 labeling was performed as 
previously described (Verschure et al., 1994) by determining the intensity 
of fluorescence associated with the cell periphery. This area was manually 
selected. This area and the average intensity (x/iJ, m 2) were calculated us- 
ing ZEISS CLSM instrument software. To compare the relative quantities 
of p36 labeling associated with the plasma membrane and the cytoplasm, 
the labeled area was then multiplied by the associated fluorescence inten- 
sity (100% corresponded to the total labeling of each cell). The use of the 
mean gray level from a nuclear region as a correction factor significantly 
decreased the SEM, indicating the usefulness of this measure for correct- 
ing cell to cell variations. 

Incubation with 32p and Stimulation 
of Chromaffin Cells 
For phosphorylation studies, cultured chromaffin cells were incubated for 
4 h at 37°C in buffer A (154 mM NaC1, 5.6 mM KCI, 2.5 mM CaC12, 3.6 
mM HNaCO3, 1.2 mM MgSO4, 5.6 mM glucose, 0.56 mM ascorbic acid, 10 
mM Hepes, pH 7.5) containing 5% FCS and 300 vCi carrier free [32p]_ 
orthophosphate (Amersham). Cells were then rinsed and stimulated with 
buffer A containing 20 p~M nicotine. EGTA was subsequently added to 
the incubation medium in order to reduce the external free Ca 2+ concen- 
tration to either 10 -8 M for resting cells or 10 -5 M for stimulated cells. 
These solutions were then removed and cells were rinsed once with buffer 
A containing EGTA to yield either 10 -8 M or 10 -5 M free Ca ~+. Cells 
were subsequently placed in liquid nitrogen for rapid freezing. 

Immunoprecipitation of Unphosphorylated and 
Phosphorylated Annexin Il from Chromaffin Cell 
Subcellular Fractions 
To prepare total cell homogenates, frozen chromaffin cells were rapidly 
thawed by addition of 250 ILl extraction buffer (10 mM imidazole, pH 7.4, 
10 mM EGTA, 0.1 M NaCI, 0.5 mM dithiothreitol, 0.02% NAN3, 0.75% 
Triton X-100) containing 100 ILM sodium orthovanadate, 0.1 mM PMSF, 
20 ILg/ml leupeptin, 50 ixg/ml pepstatin, aprotinin, trypsin inhibitor, 20 ILg/ 
ml benzonuclease, and 0.1 ILM okadaic acid. The culture dishes were 
scraped with a plastic blade to release adhering cell membranes and the 
total lysate was centrifuged at 50,000 rpm for 45 rain in a Ti-70 rotor 
(Beckman Instrs., Fullerton, CA) (200,000 g). The supernatant was saved 
and the protein content determined. 

For subcellular fractionation, frozen chromaffin cells were rapidly 
thawed in 35 ILl of 10 mM imidazole, pH 7.3, 0.1 mM sodium orthovana- 
date, 0.1 mM PMSF, 20 ~g/ml leupeptin, 50 ixg/ml pepstatin, aprotinin, 
trypsin inhibitor, 20 ILg/ml benzonuclease, and 0.1 ILM okadaic acid, incu- 
bated 10 min on ice and then centrifuged for 45 min at 200,000 g. The su- 
pernatant was saved (eytosol) and the pellet was homogenized with a 
Hamilton microsyringe in 150 ILl of 10 mM imidazole, pH 7.3, 75 mM KCI, 
2 mM MgC12, 1 mM NAN3, 0.5% Triton X-100 containing the inhibitors 
mentioned above. The suspension was then incubated for 10 min at 0°C 
and centrifuged for 45 min at 200,000 g. The supernatant was saved (Tri- 
ton X-100 soluble fraction) and the pellet was suspended in 150 ILl of 10 
mM imidazole, pH 7.3, 150 mM NaC1, 10 mM EGTA, 1 mM dithiothreitol 

and protease inhibitors, sonicated, incubated for 5 min at 0°C and then 
centrifuged for 45 min at 200,000 g. The supernatant was saved (Triton 
X-100 insoluble fraction). 

Immunoprecipitation of annexin II was performed with affinity-puri- 
fied antibodies raised against the annexin II heterotetramer. Cell fractions 
diluted to 1:10 with 50 mM Tris buffer pH 7.4 were incubated for 1 h at 
4°C with anti-annexin II antibodies (5-10% per total protein, wt/wt). 200 
ILl of protein A-Sepharose CL-4B beads (50 mg in 1.5 ml 50 mM Tris pH 
7.4) were then added. After a 1-h incubation at 4°C, the protein A-Seph- 
arose-annexin II-anti-annexin II complexes were collected by centrifuga- 
tion (microfuge, 20,000 rpm for 5 min), extensively washed at 4°C with (1) 
50 mM Tris buffer, pH 7.4, 0.05% Triton X-100, (2) 50 mM Tris, pH 7.4, 
(3) 0.5 M LiCI, (4) 50 mM LiC1, (5) water and solubilized in 40 p,l SDS 
buffer for polyacrylamide gel electrophoresis. The amount of annexin II 
(p36) on Coomassie blue-stained gels was quantified by densitometry di- 
rectly on gel slabs using a scanning densitometer (model Shimadzu C-R3A). 
Standard curves were obtained with known quantities of purified p36 
loaded on the same gel. 

Electrophoretic Blotting and Immunological Detection 
Proteins resolved on SDS polyacrylamide gels were transferred electro- 
phoretically to nitrocellulose sheets. Blots were incubated with rabbit 
anti-pg0 antiserum diluted 1:500 and monoclonal anti-pll  antibodies di- 
luted 1:500. After washing, the blots were incubated with anti-rabbit IgG 
(1:10,000) and anti-mouse IgG (1:7,500) conjugated to alkaline phos- 
phatase. After visualization of the immunoreactive bands, the sheets were 
incubated overnight with 125I-labeled protein A (1 ILCi/ml) and quantifica- 
tion was performed with a phosphorimager. 

Microinjection in Single Chromaffin Cells 
A synthetic peptide corresponding to the p36 NH2-terminal domain 
(p36t15-261 peptide; DHSTPPSAYGSV), was obtained from Neosystem 
(Strasbourg, France), purified by HPLC and dissolved in water at 1 raM. 
Control experiments were performed with a synthetic peptide containing 
the same amino acid sequence but with the serine residues replaced by 
alanine residues ([Ala 17, Ala 21, Ala25]p36115_26] peptide, DHATPPAAY- 
GAV). This pepfide was synthesized on a multiple peptide synthesis in- 
strument using Fmoc chemistry (432A Peptide Synthesizer SYNERGY, 
Applied Biosystems, Warrington, UK). Purity was checked on HPLC and 
sequence analysis was performed by Edman degradation on an automated 
gas phase protein sequencer (Applied Biosystems). 

Microinjection experiments were performed on 3-5-d-old cultures. In 
each experiment, 50-150 cells were selected and substances were microin- 
jected into their cytosol. Microinjection was performed with an injection 
system (Eppendorf, Hamburg, Germany) using commercial glass micro- 
capillaries (Femtotips, Eppendorf) with an outlet diameter of 0.5 _+ 0.2 
ixm. Injection time was 0.5 s and the pressure was 40-50 hPa. From these 
parameters, the calculated injected volume represented 50-100 fl (Graess- 
mann and Graessmann, 1983). Substances to be microinjected were 
dissolved in water. Before injection samples were mixed with FITC- 
conjOgated dextran 10,000 (5 mg/ml) to visualize microinjected cells. Elec- 
trochemical measurements of catecholamine secretion or fixation for im- 
munocytochemistry were performed 30 rain after microinjection. 

Electrochemical Measurement of Catecholamine 
Secretion from Single Chromaffin Cells 
Culture dishes were washed with Locke's solution in the absence of ascor- 
bic acid (140 mM NaCI, 4.7 mM KC1, 2.5 mM CaC12, 1.2 mM MgC12, 1.2 
mM KH2PO4, 0.01 mM EDTA, 11 mM glucose and 15 mM Hepes, pH 7.2) 
and placed on the stage of an inverted microscope. Working electrodes 
(Soficar, Paris, France) were prepared from 8-iLm-diam carbon fibers 
sealed in glass capillaries as previously described (Gonon et al., 1984). The 
sensing tip of the electrode was 30-iLm long. The electrode was positioned 
in tangent contact with a single chromaffin cell using a three-dimensional 
micromanipulator (Narishige, Tokyo, Japan). The reference electrode was 
a silver wire coated with AgCI immersed in the medium bathing the cells. 
A two electrode potentiostat (AMU 130, Radiometer Analytical, Villeur- 
banne, France) was used to apply +0.6 V to the carbon fibre electrode vs 
the reference electrode and to record the current passing through them 
(response time of the amplifier: 1 ms). The amplified signal was digitized 
at 100 Hz by a MacLab/2e system (AD Instruments. Castle Hill, Austra- 
lia) coupled to a Macintosh computer. Catecholamine secretion was 
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evoked by applying K ÷ (100 raM) or nicotine (100 IxM) in Locke's solu- 
tion without ascorbic acid for 5 s to single cells by means of a glass mi- 
cropipette (Femtotips, Eppendorf) positioned at a distance of 100 Ixm 
from the cell using an hydraulic micromanipulator. The amplitude of se- 
cretion was quantified by measuring the area below the current curve us- 
ing the MacLab system. 

Results 

SubceUular Localization of  p36 in Resting and 
Stimulated Chromaffin Cells 

The intracellular localization of the 36-kD monomer of 
annexin II (p36) was analyzed in cultured chromaffin cells 
by confocal laser scanning microscopy using rabbit anti-p36 
antibodies and rhodamine-conjugated anti-rabbit antibodies. 
Chromaffin cells were identified with rat anti-dopamine- 
[3-hydroxylase (DBH) antibodies, which specifically label 
chromaffin secretory granules, and fluorescein-conjugated 
secondary antibodies. Double immunofluorescence exper- 
iments indicated that p36 was uniformly distributed in the 
cytosol of resting chromaffin cells. (Fig. 1, A and B). This 
pattern did not allow a precise distinction between a cyto- 
solic and an eventual membrane-associated pool of p36 as 
shown by three-dimensional (3D)-imaging of serial section 
series (Fig. 1 C). However, previous biochemical studies 
performed by cell-fractionation techniques indicated that 
p36 is found in both a soluble and membrane-bound form 
in resting chromaffin cells (Sarafian et al., 1991). 

Upon nicotine stimulation, the distribution of p36 was 
modified in more than 90% of the chromaffin cells, as 
shown by the appearance in the rhodamine channel of a 
strong immunofluorescent ring in the cell periphery (Fig. 
1, D and E). This observation suggested that nicotine was 
able to trigger the translocation of p36 from the cytosol to 
the subplasmalemmal region. 3D-imaging of serial sec- 
tions obtained by confocal microscopy confirmed the pref- 
erential association of p36 with the submembranous net- 
work in stimulated chromaffin cells (Fig. 1 F). 

3D-microscopy coupled with an appropriate image pro- 
cessing allows a quantitative estimation of the dynamic as- 
sociation of proteins with subcellular compartments (Lynch 
et al., 1991). To determine the relative amount of cytosolic 
and peripheral p36 in resting and stimulated chromaffin 
cells, images representing a single confocal microscope 
section of p36 labeling were acquired from both control 
and nicotine-stimulated cells. For each cell, three optical 
slices taken at 1-1~m intervals in the Z direction were ana- 
lyzed. In resting chromaffin cells, 75% of the total p36 la- 
beling was found in the cytoplasm (Fig. 2). By contrast, 
stimulation with nicotine reduced the cytosolic form of 
p36 to ~25% and greatly enhanced the amount of p36 as- 
sociated with the subplasmalemmal region (Fig. 2). 

These results obtained by immunofluorescence staining 

and confocal microscopy were further substantiated by 
subcellular fractionation and immunoprecipitation using 
affinity-purified anti-p90 antibodies. The content of p36 
was analyzed in three fractions defined as the cytosol, the 
Triton X-100 soluble fraction representing the membrane- 
bound compartment, and the Triton X-100 insoluble pro- 
teins representing the cytoskeleton. We found that stimu- 
lation of chromaffin cells with nicotine strongly reduced 
the quantity of p36 found in the cytosol and concomitantly 
enhanced the amount of p36 associated to the Triton 
X-100 insoluble fraction (Fig. 3 A). In contrast, the p36 
content in the Triton X-100 soluble fraction was not signif- 
icantly modified (Fig. 3 A). Thus, the translocation of p36 
that accompanies the exocytotic process occurs predomi- 
nantly from the cytosol to the peripheral cytoskeleton. 

We also examined the time course of p36 translocation 
in chromaffin cells stimulated with nicotine. As shown in 
Fig. 3 A, translocation of p36 from the cytosol to the Tri- 
ton X-100 insoluble fraction was maximal within 1 min of 
stimulation. In parallel experiments, the translocation of 
p36 was monitored by confocal microscopy and catechola- 
mine secretion was estimated by measuring the release of 
[3H]noradrenaline (Fig. 3 B). Consistent with the results 
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Figure 2. Quantitative analysis of the distribution of p36 in rest- 
ing and nicotine-stimulated chromaffin cells. Images representing 
a single confocal microscope section of p36 labeling were ac- 
quired from 20 resting and 20 nicotine-stimulated cells. Cor- 
rection for nonspecific labeling by the fluorophore-conjugated 
secondary antibodies was introduced. The fluorescence was quan- 
tified by multiplying the labeled area with its intensity in gray 
level (data given by the "area measure function" of the CLSM in- 
strument software). Images were then analyzed to estimate the 
ratio of p36 present in the cytoplasm or associated with the 
plasma membrane. Results are expressed relative to the labeling 
obtained in the whole cell (100%). 

Figure 1. Intracellular distribution of p36 in resting (A, B, and C) and nicotine-stimulated chromaffin cells (D, E, and F). Confocal 
immunofluorescent images obtained by labeling with anti-DBH antibodies (diluted 1:1,200) visualized with fluorescein-conjugated sec- 
ondary antibodies are shown in A and D. Images obtained with anti-p36 polyclonai antibodies (diluted 1:200) and rhodamine-conju- 
gated secondary antibodies are shown in B and E. Sections were taken with minimum pinhole size in the plane of the nuclei using exci- 
tation and emission filtering as described in Materials and Methods. C and F show orthogonal sections of the p36 labeling obtained from 
analysis of the three dimensional imaging of 50 serial optical sections (0.2 ~m). Note that p36 displays a cytoplasmic distribution in rest- 
ing cells but is mainly concentrated in the subplasmalemmal region in stimulated cells. 
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Figure 3. (A) Distribution of p36 in subcellular fractions from 
resting and stimulated chromaffin cells. Chromaffin cells were 
stimulated for the indicated periods of time with 20 p~M nicotine 
in Locke's solution. Cells were then processed to separate the cy- 
tosol and the Triton X-100 soluble and insoluble fractions. The 
content of p36 in each fraction was estimated by immunoprecipi- 
tation and quantification on SDS polyacrylamide gels (see Mate- 
rials and Methods). Stimulation of chromaffin cells triggers a 
rapid translocation of p36 from the cytosol to the Triton X-100 
insoluble fraction. (B) Time course of catecholamine secretion 
(triangles) and p36 translocation (squares) in stimulated chromaf- 
fin cells. Cells labeled with [3H]noradrenaline were stimulated for 
the indicated periods of time with nicotine. Extracellular fluids 
were then collected and the radioactivity present in solutions and 
in cells was assayed. Data are given as the mean of triplicate de- 
terminations on the same cell preparation. Similar results were 
obtained on ten different cell preparations. In parallel experi- 
ments, chromaffin cells were stimulated with nicotine, fixed, and 
labeled with rabbit anti-p36 antibodies. Immunoreactivity was 
detected with rhodamine-conjugated anti-rabbit immunoglobu- 
lins. The percentage of chromaffin cells with a subplasmalemrnal 
labeling of p36 was determined in randomly selected areas cover- 
ing the entire width of the coverslip. Counts were performed in 
duplicate on cells taken from three different preparations. The 
translocation of p36 is maximal within 1 min of nicotine stimula- 
tion and seems to precede the exocytotic release of catechol- 
amines. 

obtained by subcellular fractionation, the translocation of 
p36 visualized by immunocytochemistry was rapid and al- 
most complete within 30 s of nicotine stimulation (Fig. 3 
B). By comparison, several minutes of stimulation were 
required to reach the maximal level of [3H]noradrenaline 

Figure 4. (A) Kinetics of 32p incorporation into p36 after stimula- 
tion of chromaffin cells with nicotine. Cells labeled with 3Zp were 
stimulated with 20 p.M nicotine for the indicated periods of time. 
Annexin II was immunoprecipitated from the total cell lysate and 
the associated radioactivity was determined by SDS gel electro- 
phoresis and autoradiography. Purified p36 (0.25-1 ~g) was run 
in the lanes between the samples. Nicotine triggers within sec- 
onds the phosphorylation of p36 in chromaffin cells as seen by 
the appearance of a radioactive 38-kD band. Similar results were 
obtained in five separate experiments. (B) Distribution of phos- 
phorylated p36 in subcellular fractions from resting and stimu- 
lated chromaffin cells. 32p-labeled cells were stimulated with nic- 
otine for various periods of time. Cells were then processed to 
separate the cytosol and the Triton X-100 soluble and insoluble 
fractions, p36 was immunoprecipitated and the radioactivity in- 
corporated into the 38-kD band after electrophoretic separation 
was estimated by scanning densitometry on the corresponding 
autoradiogram. Values are expressed as arbitrary units (A.U.) 
from one representative experiment. Similar results were ob- 
tained in three separate experiments. 

release (Fig. 3 B). Thus, it seems unlikely that p36 translo- 
cates to the cell periphery in stimulated cells due to its as- 
sociation with secretory granules which move to the 
plasma membrane  and fuse with it during exocytosis. Our  
results rather suggest that the translocation of p36 may be 
an early event in the pathway of regulated exocytosis in 
chromaffin cells. 

Effect of  the Synthetic t15-2al NH2-Terminal Peptide 
of  p36 on the Translocation of  p36 and on Exocytosis 
of  Catecholamines 

Next, we examined whether the translocation of p36 is an 
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essential event of the exocytotic machinery. The NH2-ter- 
minal "tail" region of p36 contains the binding site for pl 1 
(PoweU and Glenney, 1987) and the serine and tyrosine 
residues phosphorylated by protein kinase C (PKC) and 
tyrosine kinase pp61Y rc (Glenney and Tack, 1985). We 
previously observed that phosphorylation of p36 by PKC 
promotes the association of p36 with chromaffin cell mem- 
branes (Sarafian et al., 1991). Furthermore, the phos- 
phorylation of p36 by PKC seems to be required for the 
reconstitution of exocytosis in permeabilized chromaffin 
cells with reduced secretory activity (Sarafian et al., 1991). 
The phosphorylation of p36 in stimulated chromaffin cells 
is illustrated in Fig. 4. Cells loaded with [32p]orthophos- 
phate were stimulated with nicotine for various periods of 
time and the radioactivity specifically incorporated into 
p36 was estimated by immunoprecipitation. Nicotine trig- 
gered a rapid phosphorylation of p36 which reached a 
threefold increase of the initial radioactivity after 10 min 
of stimulation (Fig. 4 A). Coomassie blue staining of the 
immunoprecipitated p36 indicated the presence of a dou- 
blet of apparent molecular mass 36 kD and 38 kD. The ra- 
dioactivity was only associated with the 38-kD component, 
indicating that phosphorylation changed the protein mo- 
bility. Accordingly, previous in vitro observations showed 
that purified p36 phosphorylated by purified brain PKC 
migrates with a reduced mobility on SDS gel electrophore- 
sis (Regnouf et al., 1995). Upon nicotinic stimulation, the 
incorporation of 32p was primarily observed in p36 associ- 
ated to the Triton X-100 insoluble fraction (Fig. 4 B). 
Thus, the translocation of p36 to the cell periphery may 
precede the phosphorylation process in stimulated chro- 
maffin cells. 

The PKC phosphorylation site of p36 is a serine residue 
in the NH2-terminal domain in position 25 (Gould et al., 
1986). Thus, the effect of a synthetic peptide correspond- 
ing to residues 15-26 of p36 on the translocation of p36 in 
stimulated chromaffin cells was tested. Preliminary in vitro 
experiments using purified PKC indicated that the syn- 
thetic p36115-261 peptide did not significantly interfere with 
the phosphorylation of the total cytosolic protein fraction, 
slightly reduced the phosphorylation of purified p36 (~6%) 
and inhibited the phosphorylation of purified p90 by 22% 
(data not shown). Chromaffin cells were individually mi- 
croinjected with 100 ~M of p36115_26 ] peptide in a water so- 
lution containing fluorescein (FITC)-conjugated dextran 
to visualize microinjected cells. After a 30-min interval, 
cells were incubated 5 min in Locke's solution or stim- 
ulated with 10 txM nicotine. Cells were then fixed and 
immunostained with anti-p36 antibodies revealed with 
rhodamine-conjugated secondary antibodies. Control ex- 
periments were performed with a p36[15_261 analogue pep- 
tide in which the three serine residues in positions 17, 21, 
and 25 were replaced by alanine ([Ala 17, Ala 21, Ala 25] 
p36115_26] peptide). Microinjected chromaffin cells dis- 
played a uniform FITC-fluorescence throughout the cell 
body except in the nucleus (Fig. 5), indicating that the in- 
jected material readily diffused throughout the cytoplasm 
during the course of the experiment. Injection of FITC- 
dextran alone did not modify the distribution of p36. In 
resting cells p36 was essentially found in the cytoplasm as 
revealed by the yellow colocalization of rhodamine and 
FITC (Fig. 5 A) and was translocated to the cell periphery 

in cells stimulated with nicotine (Fig. 5 B). Microinjection 
of the p36115_26 ] peptide did not significantly modify the cy- 
tosolic distribution of p36 in resting cells (Fig. 5 C). How- 
ever, as illustrated in Fig. 5 D, microinjection of the p36115_26 ] 
peptide completely blocked the translocation of p36 in nic- 
otine-stimulated chromaffin cells. This inhibitory effect 
was observed in the entire population of microinjected 
cells but translocation did occur in neighboring cells which 
had not been microinjected. These observations indicate 
that the p36[15-261 peptide was able to interfere with the 
translocation of endogenous p36 in stimulated chromaffin 
cells. Microinjection of the [Ala 17, Ala 21, Ala25]p36115_26] 
peptide did not modify the intracellular distribution of p36 
in either resting (Fig. 5 E) or in stimulated chromaffin cells 
(Fig. 5 F), indicating that Ser-~Ala substitutions were suf- 
ficient to alter the efficacy of the p36[15-26] peptide to block 
the translocation of p36. 

To probe the effect of the p36[15_26] peptide on cell secre- 
tory activity, we combined microinjection with amperome- 
try to monitor real time exocytosis from individual chro- 
maffin cells (Wightman et al., 1991; Chow et al., 1992). 
Chromaffin cells were microinjected with FITC-dextran 
alone or in combination with either the p36115_261 peptide 
or the [Ala 17, Ala 21, Ala25]p36115_26] peptide. Cells were 
then stimulated by a local application of nicotine or a de- 
polarizing concentration of K + and the exocytotic release 
of catecholamines was estimated by measuring the oxida- 
tion current recorded with a carbon-fiber microelectrode 
placed adjacent to a single microinjected cell. In control 
experiments, we examined the secretory response to nico- 
tine and high K ÷ from cells microinjected with FITC-dex- 
tran. Experiments were performed on different culture 
preparations in which 25 microinjected cells were com- 
pared to 25 untreated cells. Microinjection of FITC-dex- 
tran did not significantly modify the current response to 
either nicotine or high K ÷ stimulation (data not shown). 
Fig. 6 shows a representative experiment illustrating the 
effect of the p36115-261 peptide on the amperometric re- 
sponse to nicotine. The local application of nicotine in the 
cell medium evoked a rapid increase in the oxidation cur- 
rent which usually lasted 15-20 s and consisted of a broad 
secretion envelope on which were superimposed sharp 
spikes. Previous studies have demonstrated that these 
spikes correspond to the exocytotic release of catechola- 
mines from individual storage granules at the cell surface 
in close apposition with the carbon-fiber electrode (Leszc- 
zyszyn et al., 1990; Wightman et al., 1991). Microinjection 
of p36115-26] peptide into the cytoplasm of chromaffin cells 
produced a strong inhibition of the amperometric re- 
sponse evoked by nicotine (Fig. 6). The amplitude of the 
secretion, quantified by integrating the area below the cur- 
rent curve, was inhibited by ~50% in cells microinjected 
with 100 IzM peptide compared to control cells (Table I). 
Microinjecting more of p36115_26 ] peptide (500 IzM) only 
slightly enhanced this inhibitory effect (data not shown), 
suggesting that the peptide concentration was not a limit- 
ing factor in our experiments. A similar 50% inhibition of 
the amperometric response was also observed when secre- 
tion was triggered with a depolarizing concentration of K ÷ 
(Table I), showing that the p36[15_261 peptide did not block 
the exocytotic machinery by interfering with the nicotinic 
receptor. Since the [Ala 17, Ala 21, Ala25]p36115_261 peptide 
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Figure 5. Effect of the synthetic p36115-261 peptide on the intracellular distribution of p36 in resting and stimulated chromaffin cell. Chro- 
maffin cells were microinjected with fluorescein-conjugated dextran alone (A and B), or fluorescein-dextran containing 100 ~M of the 
synthetic p36[ls-261 peptide (C and D), or fluorescein-dextran containing 100 IxM of the synthetic [Ala 17, Ala 21, Ala2S]p36115_26] peptide (E 
and F). After recovery, cells were incubated in Locke's solution in the absence (A, C, and E) or presence of 10 ~M nicotine (B, D, and 
F). Cells were then fixed and subsequently immunostained with polyclonal rabbit antibodies to p36 and rhodamine-conjugated anti-rab- 
bit antibodies. Images obtained in the rhodamine (p36) and fluorescein (dextran) channels were recorded simultaneously in the same 
optical section by a double exposure procedure. The yellow-orange staining corresponds to areas where rhodamine and fluorescein sig- 
nals are superimposed. Microinjection of the p36115_26] peptide does not significantly modify the distribution of p36 in resting chromaffin 
cells (compare C and A) but completely inhibits the translocation of p36 observed in nicotine-stimulated chromaffin cells (compare D 
and B). In contrast, the [Ala 17, Ala 21, Ala25]p36[15_26] peptide does not interfere with the translocation of p36 in stimulated cells (compare 
F and B). 
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Figure 6. Electrochemical measurement of 
catecholamine secretion from single chromaf- 
fin cells. Typical amperometric response from 
chromaffin cells microinjected with fluores- 
cein-conjugated dextran (A) or fluorescein- 
dextran in combination with 100 p~M synthetic 
p36[15_261 peptide (B). 30 min after microinjec- 
tion, a carbon-fiber electrode was placed in 
contact with each single cell and nicotine (100 
o~M) was applied locally for 5 s with a glass 
micropipette (arrow). Oxidation current for 
catecholamines at the carbon-fiber electrode 
was monitored at + 0.6 V. Stimulation with 
nicotine evokes a rapid increase in the oxida- 

tion current accompanied with a series of sharp spikes. Microinjection of the synthetic p36[15_26 ] peptide reduces by 58% the amplitude 
of secretion estimated by integrating the surface area below the current curve. 

did not modify the secretory activity in response to nico- 
tine stimulation (Table I), it seems likely that the p36115_26 l 
peptide inhibits secretion by preventing the translocation 
of p36 to the subplasmalemmal region. This finding strongly 
suggests that the translocation of p36 may be an essential 
event of exocytosis in chromaffin cells. 

Ca 2+ Dependence for the Translocation of  p36 in 
Stimulated Chromaffin Cells 

The calcium sensitivity of the p36 translocation was as- 
sessed in SLO-permeabilized chromaffin cells since per- 
meabilized cell models offer the opportunity to control the 
ionic composition of the cytoplasm (Sontag et al., 1988). 
SLO-permeabilized chromaffin cells were stimulated for 5 
min with either 10 IxM or 100 p~M free Ca 2+. This range of 
calcium concentration corresponds to the predicted level 
of Ca 2÷ present in the active subplasmalemmal zone dur- 
ing exocytosis (Llinas et al., 1992; Neher and Zucker, 
1993). Cells were then fixed and double-labeled with anti- 
p36 and ant i -DBH antibodies. Chromaffin cells were 

counted in randomly selected areas of the coverslips to es- 
timate the ratio of cells displaying a peripheral p36 label- 
ing. p36 was primarily found in the cytosol in resting con- 
ditions when SLO-permeabilized chromaffin cells were 
incubated in a calcium-free medium (Fig, 7). Surprisingly, 
stimulation with 10 p~M free calcium triggered the translo- 
cation of p36 to the cell periphery in only 40 +- 5% of the 
cultured chromaffin cells (Fig. 7). The remaining cells pre- 
sented a diffuse labeling pattern over the whole cell body 
indicating that p36 was retained into the cytoplasm. How- 
ever, the translocation of p36 required higher levels of cal- 
cium in this subpopulation of  chromaffin cells since we ob- 
served that the entire population of SLO-permeabilized 

Table L Effect of the Synthetic p36115_261 and [Ala ]7 Ala 2l, 
AlaeS ]p36Hs_26! Peptides on Catecholamine Secretion from 
Single Chrornaffin Cells 

Nicotine High K + 

Exp l Exp 2 Exp 3 Exp 4 

Control  

(pA-sec)  1129 - 97 1005 +- 108 423 - 67 715 -+ 118 

[AlalV,Ala21Ala 25] 

p3611s_261 1200 + 96 1094 - 90  
(pA/sec) 

p36[lS-261 
(pA-sec)  448  ± 48 562 -4- 114 233 ± 27 380 ± 48 

Percent  inhibit ion 60 56 52 47 

Chromaffin cells were microinjected with water (control) or with either 100 p.M of 
p36[15_261 peptide or 100 p.M of [Ala 17, Ala 2~, Ala25]p3605 261 peptide in water. 30 min 
after microinjection, cells were stimulated with a local application of 100 p.M nicotine 
(Experiments 1 and 2) or 100 mM K + (Experiments 3 and 4). The amperometric re- 
sponse was integrated to obtain the total catecholamine secretion expressed in pA/sec. 
Results obtained in four experiments performed in different dishes with two different 
culture preparations are presented. Data are the means of 25 cells/group from the same 
dish - SEM. The absolute values were compared between control and peptide- 
injected chromaffin cells with paired t tests. The p36tt~261 peptide significantly inhib- 
ited the amplitude of the secretory response to nicotine and high K ÷ in every microin- 
jected cell with P < 0.0025 in each experiment. 

Figure 7. Translocation of p36 in SLO-permeabilized chromaffin 
cells: dose response to calcium. SLO-permeabilized cells were in- 
cubated 5 min in permeabilizing medium containing the indicated 
concentrations of free calcium. Cells were then fixed and labeled 
with rat anti-DBH antibodies and rabbit anti-p36 antibodies. Im- 
munoreactivity was detected with fluorescein-conjugated anti-rat 
and rhodamine-conjugated anti-rabbit immunoglobulins. The 
values represented the percentage of chromaffin cells with a sub- 
plasmalemmal labeling of p36 in a randomly selected transect 
covering the entire width of the coverslip. Counts were per- 
formed in duplicate on samples taken from three different exper- 
iments. The values are presented as mean _+ SD. 
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Figure 8. Distribution of p36 in SLO-permeabilized adrenergic cells. Cells were permeabilized with SLO and incubated 5 min in perme- 
abilizing medium in the absence of calcium (A and B) or in the presence of 10 I~M (C and D) or 100 p~M free calcium (E and F). Cells 
were then fixed and stained with anti-p36 antibodies detected by rhodamine-conjugated immunoglobulins in combination with anti- 
PNMT antibodies revealed with fluorescein immunoglobulins. Images were taken through the center of the nucleus and recorded simul- 
taneously from a single focal plane. The yellow-orange staining corresponds to the regions where fluorescein (PNMT) and rhodamine 
(p36) signals are superimposed. Stimulation with 10 ~M free calcium triggers the translocation of p36 in adrenergic PNMT-labeled chro- 
maffin cells (C) but p36 remains in the cytosol in noradrenergic cells unlabeled with PNMT antibodies (D). Stimulation with 100 ~M 
free calcium produces the translocation of p36 in both PNMT-positive and PNMT-negative chromaffin cells (E and F). 
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Figure 9. Subcellular localization o f p l l  in resting cells (A, B, C, and D) and nicotine-stimulated (E and F) chromaffin cells. Double im- 
munofluorescence confocal micrographs with anti-pll  antibodies detected with rhodamine anti-mouse antibodies (A, C, and E) and ei- 
ther anti-chromogranin A antibodies visualized with fluorescein anti-rabbit (B) or anti-PNMT antibodies visualized with fluorescein 
anti-sheep antibodies (D). Single optical sections were taken through the center of the nucleus. Note that some chromogranin A-labeled 
chromaffin cells are completely devoid of p l l  in the cell body (A and B, arrowheads), p l l  is present in the periphery of adrenergic 
PNMT-labeled chromaffin cells (C and D). Orthogonal sections of p l l  labeling in nicotine-stimulated ceils obtained from analysis of se- 
rial optical images (0.2 ixm) are shown in F. 
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chromaffin cells displayed a subplasmalemmal staining 
with the anti-p36 antibodies when the stimulation was 
evoked with 100 ~M free Ca 2÷ (Fig. 7). These findings con- 
firm that the translocation of p36 is a calcium-dependent 
event in chromaffin cells. In addition, they reveal a certain 
degree of heterogeneity in the Ca 2÷ affinity of the p36 
translocation event within the chromaffin cell population. 

To determine the nature of the chromaffin cells which 
preferentially translocate p36 at low calcium concentra- 
tions, SLO-permeabilized chromaffin cells were stimu- 
lated with 10 p~M free Ca 2÷ and double-labeled with anti- 
p36 antibodies and anti-phenylethanolamine N-methyl 
transferase (PNMT) which labels only adrenergic chro- 
maffin cells (Verhofstad et al., 1985). Fig. 8 illustrates the 
staining pattern obtained by visualizing the labeling of p36 
and PNMT together in the same section. In resting SLO- 
permeabilized cells, p36 and PNMT, were both localized 
in the cytoplasm of adrenergic cells as suggested by the 
yellow color observed in the whole cell body except in the 
nucleus (Fig. 8 A). In cells stimulated with 10 p,M free 
Ca 2÷, the colocalization of p36 and PNMT (yellow) was re- 
duced to the cell periphery (Fig. 8 C), indicating that the 
translocation of p36 to the subplasmalemmal region did 
occur in adrenergic chromaffin cells. In contrast, p36 re- 
mained in the cytosol in noradrenergic chromaffin cells 
which were not labeled by the anti-PNMT antibodies (Fig. 
8 D). However, stimulation with 100 IxM free Ca 2+ pro- 
duced translocation of p36 to the cell periphery in both 
PNMT-positive and PNMT-negative chromaffin cells (Fig. 
8, E and F). In other words, the translocation of p36 dis- 
played a higher sensitivity to calcium in adrenergic chro- 
maffin cells, p36 also translocated in noradrenergic cells 
but showed a calcium affinity one order of magnitude 
lower than that observed in adrenergic cells. 

SubceUular Localization of p l 1 

The subcellular localization of the l l -kD light chain of an- 
nexin II was analyzed with a monoclonal anti-pll anti- 
body in both resting cells and nicotine-stimulated chro- 
maffin cells. As illustrated in Fig. 9, p l l  was localized in 
the subplasmalemmal region (Fig. 9 A) in chromaffin cells 
visualized with anti-chromogranin A antibodies (Fig. 9 B). 
However, some chromogranin A-positive cells were not 
labeled with the anti-pll antibody, suggesting that the 
presence of p l l  may be restricted to a subpopulation of 
chromaffin cells. 

To examine whether p l l  was restricted to adrenergic or 
noradrenergic chromaffin cells, we performed double im- 
munofluorescent labeling experiments with anti-pll mono- 
clonal antibodies used in combination with anti-PNMT an- 
tibodies. We found that adrenergic chromaffin cells identified 
as such by their immunoreactivity with the anti-PNMT an- 
tibodies expressed p l l  in the peripheral region of the cell 
(Fig. 9, C and D). In contrast, chromaffin cells unlabeled 
with PNMT antibodies were never stained with anti-pll 
antibodies. These observations indicate that p l l  was selec- 
tively expressed in adrenergic and not in noradrenergic 
chromaffin cells. 

The distribution of p l l  remained unchanged in chro- 
maffin cells stimulated with nicotine (Fig. 9 E). p l l  was 
detected exclusively in the cell periphery as seen by the 

3D-imaging of section series (Fig. 9 F). These observations 
were confirmed biochemically by subceUular fractionation 
experiments and detection of p l l  and p36 on Western 
blots (Fig. 10). In both resting and stimulated cells, p l l  
was present only in the Triton X-100 insoluble cytoskele- 
ton. On the other hand, p36 translocated from the cytosol 
to the Triton X-100 insoluble fraction upon nicotine stimu- 
lation (Fig. 10). Thus, p l l  which was virtually absent from 
the cytosol might represent the Triton X-100 insoluble tar- 
get protein to which p36 translocated in stimulated adren- 
ergic chromaffin cells. 

To test this possibility, we used double immunofluores- 
cent experiments with anti-p36 and anti-pll antibodies. 
pl  1 labeling was revealed with anti-mouse antibodies con- 
jugated to rhodamine (Fig. 11, A and D) and p36 with 

Figure 10. (A) Immunodetection of pl l  and p36 in subcellular 
fractions from resting and stimulated chromaffin ceils. Cultured 
chromaffin cells were incubated with Locke's solution in the pres- 
ence (stimulated cells, S) or absence (resting cells, R) of nicotine 
and then processed to separate the cytosol and the Triton X-100 
soluble and insoluble fractions as described in Materials and 
Methods. Proteins were separated by monodimensional (15% 
acrylamide) gel electrophoresis, transferred to nitrocellulose 
sheets and blots were subsequently incubated with anti-p36 and 
anti-pll antibodies. Immunolabeled bands were revealed with 
secondary antibodies conjugated to alkaline phosphatase. (B) 
Blots were subsequently incubated with 125I-labeled protein A 
and the radioactivity associated with the pll  and p36 immunore- 
active bands was estimated with a phosphorimager. Data are ex- 
pressed as percentages of the radioactivity found in the three 
fractions (100%). 
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Figure 11. Subcellular distribution of p l l  and p36 in resting (A, B, and C) and nicotine-stimulated (D, E, and F) chromaffin cells. Chro- 
maffin cells were double labeled with monoclonal anti-pll antibodies revealed by rhodamine anti-mouse antibodies (A and D) in com- 
bination with polyclonal rabbit antibodies to p36 detected with fluorescein anti-rabbit antibodies (B and E). Optical sections were taken 
through the center of the nucleus. C and F show the two dimensional scatter histograms of gray values obtained from p36 and p l l  label- 
ings recorded simultaneously in the same section by a double exposure procedure. The vertical axis represents the intensity recorded in 
the fluorescein channel (p36) scaled in standardized arbitrary units 1-255. The horizontal axis represents the intensity recorded in the 
rhodamine channel (pll).  The dots localized diagonally correspond to the colocalization of p36 with pl l .  The two subunits of annexin II 
are colocalized in stimulated chromaffin cells. 



Figure 12. Subcellular distribution of p l l  and p36 in SLO-permeabilized chromaffin cells stimulated with either 10 p~M (A) or 100 p,M 
(B) free calcium. Double immunofluorescence labeling with p l l  antibodies detected with rhodamine anti-mouse immunoglobulins and 
p36 antibodies revealed with fluorescein anti-rabbit immunoglobulins. The optical sections are taken through the center of the nucleus. 
Images corresponding to p36 and p l l  labeling are shown simultaneously in the same focal plane. The yellow staining corresponds to ar- 
eas where rhodamine (pl l )  and fluoresceine (p36) colocalize. Stimulation with 10 p~M free calcium triggers the translocation of p36 to 
the cell periphery only in pll-labeled chromaffin ceils (A). Note the diffuse staining pattern obtained with p36 in a chromaffin cell (ar- 
rowhead) which does not contain p l l  (A). In contrast, stimulation with 100 p~M free calcium produces the translocation of p36 in both 
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anti-rabbit antibodies conjugated to fluorescein (Fig. 11, 
B and E). In resting chromaffin cells, p l l  was present ex- 
clusively in the subplasmalemmal network (Fig. 11 A), 
whereas p36 was distributed throughout the cytoplasm 
(Fig. 11 B). The cytofluorogram representing the pixels 
obtained from the superimposition of the two fluorescent 
images of p36 and p l l  confirmed that the two proteins 
were not colocalized (Fig. 11 C). Stimulation of chromaf- 
fin cells with 10 IxM nicotine triggered the translocation of 
p36 to the subplasmalemmal region (Fig. 11 E), whereas 
p l l  remained localized beneath the plasma membrane 
(Fig. 11 D). The cytofluorogram obtained from the super- 
imposed fluorescent images revealed the colocalization of 
the two subunits of annexin II (Fig. 11 F). This observation 
is in line with the idea that p l l  may be the docking ligand 
for p36 in the subplasmalemmal region in stimulated ad- 
renergic cells. 

p l l Determines the Calcium-Sensitivity o f  Both 
the p36 Translocation and the Exocytotic Process in 
Chromaffin Cells 

Since we had previously observed that the translocation of 
p36 was more sensitive to calcium in adrenergic chromaf- 
fin cells, we investigated the possible correlation between 
the presence of p l l  in the subplasmalemmal region and 
the calcium sensitivity of the p36 translocation. Therefore 
SLO-permeabilized chromaffin cells were stimulated with 
either 10 p~M or 100 IxM free calcium, fixed, and then 
stained with both anti-p11 (rhodamine) and anti-p36 (fluo- 
rescein) antibodies to examine the translocation of p36 in 
cells expressing p11. Stimulation with low Ca 2+ did not 
trigger the translocation of p36 in cells which did not con- 
tain p11. Fluorescein labeling remained diffuse and cyto- 
plasmic revealing the presence of p36 in the cytosol in cells 
which were not stained with the anti-p11 antibodies (Fig. 
12 A, arrowhead). Conversely, cells with a yellow staining 
pattern corresponding to the colocalization of p36 with 
p l l  were immunolabeled exclusively in the subplasmalem- 
mal region (Fig. 12 A). Thus, low calcium triggered the 
translocation of p36 only in adrenergic cells expressing 
p11. When SLO-permeabilized chromaffin cells were stim- 
ulated with 100 IxM free Ca z'-, p36 was translocated to the 
plasma membrane in the entire chromaffin cell population 
and peripheral p36 labeling was observed in all chromaffin 
cells, even in those which did not express p l l  (Fig. 12 B). 

To complete this study, we examined whether the pres- 
ence of p l l  in the cell periphery, which apparently corre- 
lated with a higher calcium sensitivity of the p36 transloca- 
tion, also conferred a higher affinity for calcium to the 
exocytotic release from adrenergic cells. Exocytosis can be 
visualized by immunofluorescence in living cells with anti- 

DBH antibodies present in the cell incubation medium 
(Perrin and Aunis, 1985; Sontag et al., 1988). DBH, which 
is exclusively located on the inner face of secretory gran- 
ule membranes, is exposed on the cell surface during exo- 
cytosis. Thus, the secretory activity can be evaluated by 
the appearance of fluorescent patches at the cell surface 
corresponding to DBH immunoreactivity. To correlate the 
calcium sensitivity of exocytosis with the presence of p l l  
in the cell periphery, SLO-permeabilized chromaffin cells 
were stimulated with either 10 or 100 ~M free calcium in 
the presence of anti-DBH antibodies (fluorescein). Cells 
were then washed rapidly, fixed, and processed for immu- 
nofluorescence with anti-pll antibodies (rhodamine). Un- 
stimulated SLO-permeabilized cells showed no fluores- 
cent surface patches corresponding to DBH (data not 
shown), confirming that DBH labeling is a valid marker 
for calcium-evoked exocytotic activity. Stimulation of 
chromaffin cells with 10 ~M free calcium triggered the ap- 
pearance of a patchy pattern of fluorescein surface stain- 
ing corresponding to DBH immunoreactivity, in cells 
which expressed pl  1 as revealed by a subplasmalemmal la- 
beling in the rhodamine channel (Fig. 12, C and E). When 
cells in randomly selected areas were counted, more than 
80% of the chromaffin cells expressing p l l  secreted cate- 
cholamines in response to 10 txM free calcium. In contrast, 
cells which were not stained with the p l l  antibodies were 
never labeled with DBH under these conditions of stimu- 
lation (Fig. 12, C and E). Fluorescent DBH patches were 
only observed in pll-negative chromaffin cells when cells 
were stimulated with 100 p.M free calcium (Fig. 12, D and 
F). Note that in this case, fluorescent DBH patches were 
observed in both pll-positive and pll-negative chromaf- 
fin cells (Fig. 12 F). Taken together these observations 
strongly suggest that exocytosis from adrenergic and nor- 
adrenergic chromaffin cells occurs with distinct calcium af- 
finities which seem to be related to the presence of p l l  in 
the subplasmalemmal region. Adrenergic cells expressing 
p l l  seem to be activated by a 10-fold lower concentration 
of cytosolic calcium than noradrenergic cells which do not 
contain p l l .  

Discuss ion  

Several lines of evidence suggest that annexin II may be a 
key protein involved in membrane fusion events occurring 
at various steps of the intracellular secretory pathway. For 
instance, annexin II plays a major role in the fusion and 
distribution of early endosomes (Emans et al., 1993; 
Harder and Gerke, 1993) and has been implicated in the 
various fusion stages that occur in the transcytotic path- 
way of hepatocytes (Wilton et al., 1994). In view of its cal- 

pll-negative and pl 1-positive chromaffin cells (B). (C-F) Double immunofluorescence assay of exocytosis in p l l  positive and pl i neg- 
ative chromaffin cells. SLO-permeabilized chromaffin cells were stimulated with either 10 IxM (C and E) or 100 ixM (D and F) free 
Ca 2÷. Chromaffin cells expressing pll  were identified by their immunoreactivity to pl l  antibodies detected with anti-mouse immuno- 
globulins conjugated to rhodamine. Secretion was revealed by immunodetection of the secretory granule membrane marker DBH at the 
cell surface with fluorescein-conjugated antibodies. (C and D) Phase contrast micrographs and (E and F) the corresponding images ob- 
tained in the rhodamine (pll) and fluorescein (DBH) channels recorded simultaneously in the same section. The yellow-orange color 
corresponds to areas where fluorescein and rhodamine signals are superimposed. Positive secretory response of chromaffin cells which 
do not contain pll  in the subplasmalemmal region are observed only in response to 100 ~M free calcium (D and F). At low calcium, 
only pl 1 containing chromaffin cells seem to be exocytosis competent (C and E). 
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cium-dependent phospholipid-binding properties, annexin 
II has also been proposed as a candidate for a role in Ca 2÷- 
regulated exocytosis. Annexin II can aggregate isolated 
secretory granules in the presence of micromolar calcium 
and fuse them after addition of arachidonic acid (Drust 
and Creutz, 1988). Ultrastructural studies performed on 
chromaffin cells indicate that the protein forms filamen- 
tous cross-links between secretory granules and plasma 
membranes in stimulated cells (Nakata et al., 1990). Fur- 
thermore, the reintroduction of purified annexin II par- 
tially restores secretion in permeabilized chromaffin cells 
(Ali et al., 1989; Ali and Burgoyne, 1990; Sarafian et al., 
1991). However, the function of annexin II in regulated 
exocytosis remains debated since the protein only retards 
the loss of secretion in permeabilized chromaffin cells (Sa- 
rafian et al., 1991) and is apparently unable to reconstitute 
exocytosis after the cells have lost their ability to secrete 
(Sarafian et al., 1991; Wu and Wagner, 1991). 

Translocation of p36 in Stimulated Chromaffin Cells 

To get further insights into the possible involvement of an- 
nexin II in calcium-regulated exocytosis, we focused here 
on the intracellular localization of p36 and its cellular 
ligand p l l  in resting and stimulated chromaffin cells. 
Based on subcellular fractionation techniques and immu- 
nological detection, previous studies have suggested the 
translocation of annexins from the cytosol to either subcel- 
lular organelles or to the plasma membrane in activated 
secretory cells (Sarafian et al., 1991; Sj61in et al., 1994). 
However, the techniques used in these studies to identify 
the protein in specific subcellular compartments required 
procedures that disrupt the cell integrity and might cause 
artefactual redistributions. In neutrophils, LeCabec and 
Maridonneau-Parini (1994) analyzed the subcellular local- 
ization of annexin III by conventional immunofluores- 
cence microscopy and found that the protein translocated 
to the cell periphery upon cell stimulation. Here we com- 
bined immunocytochemistry with confocal microscopy to 
perform a detailed quantitative analysis of the intracellu- 
lar distribution of p36 in resting and nicotine-stimulated 
chromaffin cells. Our results demonstrate that p36, which 
is essentially cytoplasmic in resting chromaffin cells, is 
translocated to the subplasmalemmal region upon nico- 
tinic stimulation. Subcellular fractionation and immuno- 
precipitation experiments confirmed the translocation of 
p36 in response to nicotine and further indicated that p36 
was predominantly present in a Triton X-100 insoluble 
fraction in stimulated chromaffin cells. 

To probe the role of p36 in the exocytotic event, we per- 
formed microinjection experiments and monitored exocy- 
tosis from single chromaffin cells. We previously observed 
that activation of PKC triggers the binding of cytosolic p36 
to cell membranes in permeabilized chromaffin cells (Sa- 
rafian et al., 1991). One of the serine phosphorylation sites 
for PKC has been identified in position 25 in the NHE-ter- 
minal tail of p36 (Gould et al., 1986). Since Ali and Bur- 
goyne (1990) previously reported that a synthetic peptide 
corresponding to the NHE-terminal 15 residues of p36 con- 
taining the binding site for the p l l  light chain (Glenney et 
al., 1986; Johnsson et al., 1986) was without effect on exo- 
cytosis, we decided to microinject the p36[15-26] peptide 

containing the phosphorylation sites for PKC and pp60src, 
i.e., serine 25 and tyrosine 23, respectively. The effect of 
this p36115_26 ] peptide on the translocation of p36 in stimu- 
lated chromaffin cells was assessed by immunocytochemis- 
try and confocal microscopy. We found that the transloca- 
tion of p36 to the cell periphery was completely blocked in 
chromaffin cells microinjected with this peptide. Because 
the synthetic p3611s_26] peptide corresponds to the domain 
of p36 which contains the phosphorylation sites, we as- 
sume that the peptide may prevent the phosphorylation of 
the endogenous protein. Indeed, we observed that stimu- 
lation with nicotine triggered the phosphorylation of p36 
in agreement with a previous study (Drust and Creutz, 
1988). It is interesting to note that 32p-labeled p36 was es- 
sentially found in the Triton X-100 insoluble fraction, 
suggesting that translocation of p36 may occur before 
phosphorylation in stimulated cells. Accordingly, immu- 
nocytochemical staining and confocal analysis with a mono- 
clonal antibody against PKC revealed that PKC was pre- 
dominantly found in the subplasmalemmal region in 
chromaffin cells (data not shown). This suggested that 
phosphorylation of p36 by PKC may require the previous 
translocation of cytosolic p36 to the cell periphery. Thus, a 
possible interpretation for the inhibiting effect of the 
p36[15-261 peptide on the translocation of p36 is that the 
peptide prevents the phosphorylation of p36 and may 
thereby destabilize the interaction of p36 with the subplas- 
malemmal network. In agreement, data obtained in per- 
meabilized chromaffin cells show that activation of PKC 
promotes the association of endogenous p36 to a mem- 
brane-bound compartment (Sarafian et al., 1991). It is also 
interesting to mention that a similar sequence was recently 
suggested in a human T cell line in which annexin II trans- 
located first to the plasma membrane and then was phos- 
phorylated by PKC upon cell stimulation (Dubois et al., 
1995). Annexin II must be phosphorylated by PKC to re- 
constitute secretion in permeabilized chromaffin cells (Sa- 
rafian et al., 1991). On the other hand, previous studies in- 
dicate that phosphorylated annexin II is unable to aggregate 
purified chromaffin granules, thus questioning the func- 
tion of the protein in exocytosis (Johnstone et al., 1992; 
Wang and Creutz, 1992). The properties of annexin II 
phosphorylated by PKC have been recently reinvestigated 
in details by Regnouf et al. (1995). As previously de- 
scribed, phosphorylated annexin II was found unable to 
aggregate chromaffin granules at physiological Ca 2÷ con- 
centrations. However, Regnouf et al. (1995) demonstrated 
that phosphorylation by PKC triggers the fusion of gran- 
ules preaggregated by unphosphorylated annexin II. In 
other words, annexin II is not a fusogenic protein but 
phosphorylation by PKC renders it fusogenic. This finding 
taken together with the present observations suggesting 
that annexin II is translocated and phosphorylated in the 
subplasmalemmal region in stimulated chromaffin cells, 
offers strong support for a role of phosphorylated annexin 
II in the final fusion step of exocytosis. 

The secretory activity of chromaffin cells microinjected 
with the p36115_26] peptide was examined by amperometry 
using carbon-fiber microelectrodes as a sensor for real 
time detection of catecholamine release from a single cell 
(Leszczyszyn et al., 1991; Wightman et al., 1991; Chow et 
al., 1992). We found that the exocytotic response to either 
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nicotine or high K ÷ was strongly inhibited by the p36115_26 ] 
peptide, an observation which supports the idea that the 
translocation of p36 to the plasma membrane is an essen- 
tial event in the sequence leading to exocytosis. However, 
despite the fact that the translocation of p36 was totally in- 
hibited in cells microinjected with the p3605_261 peptide, a 
residual secretory activity was systematically measured in 
cells stimulated with either nicotine or K ÷. Since we could 
not further reduce the secretory activity by increasing the 
amount of peptide microinjected into the cytosol, we pos- 
tulated the existence of a subpopulation of secretory gran- 
ules that can be released by a mechanism which does not 
require the translocation of p36. Regulated secretion in- 
volves both Ca 2+ and ATP. Studies in diverse secretory 
systems (Holz et al., 1989; Lumpert et al., 1990; Hay and 
Martin, 1992; Vitale et al., 1994) indicate that ATP acts be- 
fore Ca 2÷ by priming the exocytotic apparatus. An attrac- 
tive speculation is that the ATP-dependent priming step 
involves the translocation and the phosphorylation of p36. 
Thus, the component of secretion that occurs in microin- 
jected cells having an impaired translocation of p36 may 
correspond to the release of primed granules that undergo 
the final ATP-independent fusion step upon cell stimula- 
tion. Alternatively, we cannot exclude the occurrence of 
distinct parallel pathways in the exocytotic machinery. In- 
deed separate mechanisms of action involving either an- 
nexin II or the N-ethylmaleimide-sensitive fusion protein 
(NSF) and its soluble attachment proteins (SNAPs) have 
been suggested for endosome-endosome fusion (Mayorga 
et al., 1994). In epithelial cells, the exocytotic vesicular 
transport to the apical plasma membrane seems to involve 
a member of the annexin family (Fiedler et al., 1995), 
whereas NSF, SNAP, and Rab proteins operate in the ba- 
solateral transport (Ikonen et al., 1995). In neutrophils, se- 
cretion from two distinct granule populations is modulated 
differently by calcium and separately regulated by distinct 
proteins of the annexin family (Lew et al., 1986; Sj61in et 
al., 1994). 

Role of pll  
In many cell types, the intracellular docking ligand of p36 
is the S-100-related protein p l l  which is always located on 
the cytoplasmic face of the plasma membrane (Osborn et 
al., 1988). Sequence analysis of p l l  demonstrated a strik- 
ing homology with the a subunit of the brain S-100 protein 
(Glenney and Tack, 1985; Harder et al., 1992). S-100 pro- 
teins are low molecular weight acidic proteins of about 100 
amino acids, with a highly conserved secondary structure 
and similarities between individual polypeptides ranging 
from 23 to 60% identically placed residues (Kligman and 
Hilt, 1988). This extraordinary conservation of the gene 
and protein structure together with their expression dur- 
ing developmental processes suggest important physiolog- 
ical role(s) although the in vivo functions of S-100 proteins 
remain unclear (Masiakowski and Shooter, 1990). Here, 
confocal analysis revealed that in resting chromaffin cells, 
p l l  was present exclusively in the cortical region whereas 
p36 was distributed throughout the cytoplasm. It is likely 
that the cytosolic localization of p36 may correspond to 
the annexin II monomer. Upon nicotinic stimulation, p l l  
and p36 colocalized underneath the plasma membrane in a 

Triton X-100 insoluble compartment. Since the p362-p112 
complex has a Kd of <3 × 10 -8 M -1 (Johnsson et al., 
1988), the areas where p36 colocalized with p l l  may re- 
flect the formation of the heterotetramer of annexin II. 
Thus, the annexin II tetramer (p90) may occur exclusively 
in the subplasmalemmal region in adrenergic cells. By 
stimulating the translocation of p36 to a compartment con- 
taining p l l ,  nicotine may trigger the formation of the an- 
nexin II tetramer near the exocytotic sites. However, fur- 
ther biochemical data are still required to establish the 
actual molecular interaction between p36 and p l l  in stim- 
ulated chromaffin cells. 

Surprisingly, p l l  was not found in the entire population 
of chromaffin cells. The subpopulation of chromaffin cells 
which expressed p l l  corresponded to the adrenergic PNMT- 
positive cells. Consistent with this observation, p l l  is also 
not expressed in PC12 cells, a noradrenergic cell line of rat 
adrenal pheochromocytoma (Masiakowski and Shooter, 
1990). The presence of p l l  solely in adrenergic chromaffin 
cells raises the question of the ligand to which p36 translo- 
cates upon cell stimulation in noradrenergic cells. Since 
p36 is a calcium-dependent phospholipid-binding protein, 
p36 may well associate directly with the plasma membrane 
lipid bilayer in stimulated noradrenergic cells. Alterna- 
tively, it has been reported that S-100 proteins can substi- 
tute for p l l  in regulating the activities of p36 in cells which 
do not express p l l  (Bianchi et al., 1992). The S-100-related 
protein calcyclin interacts with annexin I! in the presence 
of calcium (Filipek et al., 1991) and seems to be involved 
in the calcium signaling pathway underlying exocytosis in 
various secretory cell types (Timmons et al., 1993; Okasaki 
et al., 1994). The possible presence of calcyclin or other 
S-100-related proteins in chromaffin cells requires further 
investigation but may well be correlated with the aminer- 
gic phenotype. An interesting future undertaking will be 
to determine whether the monomer vs the tetramer of an- 
nexin II may be assigned to a specific step of secretion oc- 
curring in one or the other chromaffin cell phenotype. 

In vitro studies indicate that p90 requires less calcium 
than p36 to associate with phospholipid bilayers (Evans 
and Nelsestuen, 1994). p l l  behaves as the regulatory chain 
of annexin II in that it modifies the Ca 2+- and/or the phos- 
pholipid-binding properties of p36 (Powell and Glenney, 
1987). Since pl 1 was expressed only in adrenergic chromaf- 
fin cells, we compared the calcium sensitivity of the p36 
translocation in adrenergic and noradrenergic chromaffin 
cells. For this purpose, we used permeabilized cells which 
permit the change of cytosolic [Ca2+]i by known amounts. 
In chromaffin cells, depolarization that raises the average 
cytosolic Ca 2÷ concentration to a few micromolars can 
rapidly elevate [Ca2+]i near the exocytotic sites to the 50- 
200 txM range (Cheek et al., 1989; Neher and Zucker, 
1993). Therefore, we measured the translocation of p36 in 
SLO-permeabilized chromaffin cells stimulated with ei- 
ther 10 txM or 100 IxM free Ca z+. We found that 10 IxM 
free Ca 2+ triggered the translocation of p36 in adrenergic 
cells, but 100 IxM free Ca 2÷ was required to translocate 
p36 in both adrenergic and noradrenergic cell types. We 
then examined whether the calcium sensitivity of the p36 
translocation may determine the calcium affinity of the 
exocytotic pathway. Our observations indicate that low 
calcium (10 IxM) stimulated the exocytotic release prefer- 
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entially in adrenergic chromaffin cells. In other words, 
adrenergic cells which possess p l l  in the subplasmalem- 
mal region recruit p36 to the cell periphery and activate 
the exocytotic machinery with a 10-fold higher affinity for 
calcium than noradrenergic cells which do not contain pt 1. 

It is tempting to correlate these observations suggesting 
different Ca 2÷ requirements for exocytosis in noradrener- 
gic and adrenergic chromaffin cells with the varying cal- 
cium affinities reported for the exocytotic pathway in syn- 
apses and neuroendocrine cells (for review see Burgoyne 
and Morgan, 1995). It is now clear from studies involving 
high-resolution capacitance measurement coupled with 
flash photolysis of caged calcium that exocytosis in neu- 
rons is controlled by a Ca2+-binding protein(s) with a low 
affinity (saturating at >100 IxM free Ca2+), whereas exocy- 
tosis in neuroendocrine cells seems to be regulated by a 
Ca2+-binding protein with a Ca 2÷ affinity an order of mag- 
nitude higher (Thomas et al., 1993; Heidelberger et al., 
1994). The nature of the Ca2+-binding proteins and how 
they interact with the components recently identified in 
the synaptic and secretory exocytotic machinery remain 
key unresolved issues (Rothman and Orci, 1992; Bennett 
et al., 1992; Brose et al., 1992; S611ner et al., 1993; Damer 
and Creutz, 1994). The presence of p l l  at the exocytotic 
sites seems to confer a higher calcium sensitivity to adren- 
ergic chromaffin cells. Thus, an attractive speculation is 
that the annexin II tetramer may be one of the Ca 2÷ sen- 
sors by which the final exocytotic stages display different 
Ca 2÷ affinities in synapses and neuroendocrine cells. The 
distribution of p l l  in endocrine and neuroendocrine cells 
is currently unknown. However, the absence of p l l  in the 
brain has been reported (Zokas and Glenney, 1987) and 
this observation correlates well with the hypothesis that 
neurons may not express p l l  and require thereby more 
calcium to trigger the exocytotic machinery. 

Annexin H in Exocytosis 

The recent finding that the N-ethylmaleimide-sensitive fu- 
sion protein (NSF) and soluble NSF attachment proteins 
(SNAPs) assemble into a tight multimolecular complex 
with SNAP-25, syntaxin, and VAMP/synaptobrevin (the 
SNAREs) has shed some light on the molecular events un- 
derlying the exocytotic process (St~llner et al., 1993). Since 
synaptobrevin and syntaxin are associated with, respec- 
tively, synaptic vesicles and the plasma membrane, it has 
been suggested that these proteins may provide a molecu- 
lar basis for docking secretory vesicles at exocytotic sites 
(for review see Warren, 1993). It should be noted that at 
present there is no direct functional evidence that NSF 
does act in regulated exocytosis in neurons, but a-SNAP 
has been shown to regulate exocytosis in chromaffin cells 
(Morgan and Burgoyne, 1995). We demonstrate here that 
annexin II plays an essential role in exocytosis in chromaf- 
fin cells, although its exact function remains to be deter- 
mined. Since p36 translocates from the cytosol to the sub- 
plasmalemmal cytoskeleton, it may be anticipated that the 
role of annexin is probably not to direct the granules to- 
wards the exocytotic sites. Indeed phosphorylated annexin 
II may participate in exocytosis as a promoter of mem- 
brane fusion and the necessary specificity for the fusion 
process may be provided by the SNARE complex which 

docks the secretory granules to the appropriate sites on 
the plasma membrane. In the model proposed by S611ner 
et al. (1993), the SNAREs form the vesicle-docking com- 
plex, and when secretion is activated by the entry of Ca 2÷, 
a-SNAP binds to the SNAREs in place of synaptotagmin. 
The soluble NSF is then recruited and hydrolysis of ATP 
by NSF has been proposed to act as a driving force leading 
to membrane fusion. However, several pieces of evidence 
obtained in various secretory cell types indicate that the 
late fusion step in exocytosis is regulated by calcium and 
occurs in the absence of ATP, thus questioning the func- 
tion of NSF as the fusion protein per se. Annexin II is an 
attractive alternative (Wilson, 1995) since the ability of 
this phosphoprotein to fuse secretory granules is entirely 
calcium-dependent. 
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