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In this study, we address generalized autonomous mobile robot exploration of

unknown environments where a robotic agent learns a traversability model and

builds a spatial model of the environment. The agent can benefit from the

model learned online in distinguishing what terrains are easy to traverse and

which should be avoided. The proposed solution enables the learning of

multiple traversability models, each associated with a particular locomotion

gait, a walking pattern of a multi-legged walking robot. We propose to address

the simultaneous learning of the environment and traversability models by a

decoupled approach. Thus, navigation waypoints are generated using the

current spatial and traversability models to gain the information necessary to

improve the particular model during the robot’s motion in the environment.

From the set of possible waypoints, the decision on where to navigate next is

made based on the solution of the generalized traveling salesman problem that

allows taking into account a planning horizon longer than a single myopic

decision. The proposed approach has been verified in simulated scenarios and

experimental deployments with a real hexapod walking robot with two

locomotion gaits, suitable for different terrains. Based on the achieved

results, the proposed method exploits the online learned traversability

models and further supports the selection of the most appropriate

locomotion gait for the particular terrain types.
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1 Introduction

The presented online terrain learning approach is motivated by long-term missions

where autonomous robots would improve their operational performance in navigating a

priori unknown environments. Some difficult to traverse terrains, such as large rocks, can

be identified as obstacles using an observed geometric model of the environment.

However, areas which appear flat and thus easy to traverse may, in practice, be hard

to traverse due to their terra-mechanical properties, as experienced by NASA’s Mars

Rover Spirit stuck in soft sand (Brown and Webster, 2010). In the presented approach,
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individual terra-mechanical properties are assumed to be

partially unknown, and we learn a black box model to assess

the traversability in a particular environment from the terrain

appearance (Prágr et al., 2018). Since the scope of the functional

relation between the terrain appearance and traversability might

be limited to a particular environment, we advocate that on long-

term deployments and exploration missions, the terrain models

are learned online incrementally (Prágr et al., 2019b) as a part of

the mission (Prágr et al., 2019a). Hence, we focus on the

exploration of the environment and its terra-mechanical

properties represented as the traversal costs that characterize

the difficulty of traversing the individual terrains, as visualized in

Figure 1. In particular, we consider multi-legged walking robots

that can traverse various terrains with different traversal costs

(also depending on the particular locomotion gait used), which

provide a representative case for demonstrating the benefits of

traversability assessment learned online. Compared to the

previous work, the presented approach addresses the different

locomotion gaits of the robot and distinguishes individual

terrain-gait traversal cost models. In addition, the proposed

exploration strategy provides a non-myopic (Zlot and Stentz,

2006) solution that takes into account both the spatial

exploration and learning of the traversal cost models.

In the proposed approach, the impassable parts of the

explored environment are determined by the geometric

models using a grid-based elevation map (Bayer and Faigl,

2019). The individual terrain-gait traversal cost models are

near-to-far predictors that infer the time to traverse over the

traversable areas from their appearance and are learned using the

robot’s previous experience accrued when traversing similar-

appearing terrains using a particular gait. The traversal cost

models comprise Gaussian process (GP) regressors

(Rasmussen and Williams, 2006), which predict the traversal

costs from the terrain appearance, and growing neural gas

(GNG) (Fritzke, 1994) terrain type clustering schemes used to

identify similar-appearing terrains. The geometric and traversal

cost models are incrementally constructed while exploring the

mission environment. The geometric model is continually built

from the robot’s exteroception, whereas each traversal cost model

accumulates the costs experienced by the robot when moving

using the respective locomotion gait. During the deployment,

each model continually provides a set of exploration goals to be

visited to learn (improve) the model. For several possible goal

locations, the exploration strategy is to determine a sequence of

the navigational goals to be visited that is addressed as a solution

of the Generalized Traveling Salesman Problem (GTSP) (Noon,

1988) to provide a non-myopic solution considering the so-called

TSP distance cost (Faigl and Kulich, 2013).

The remainder of the article is organized as follows. In

Section 2, we present an overview of the related approaches in

mobile robot exploration and traversability assessment. Section 3

formally defines the studied problem of mobile robot exploration

with a priori unknown terrain traversal cost assessment. The

proposed exploration with online traversal cost learning is

presented in Section 4. Section 5 reports on the performed

experimental results in simulations and real-world

experimental deployments with a multi-legged robot

controlled by two motion gaits. In Section 6, we discuss the

strong points and limitations of the proposed approach. Section 7

concludes the study.

2 State of the art

This section presents an overview of works related to the

proposed approach. First, we focus on the traversability

assessment approaches. Then we survey mobile robot

exploration and environment modeling.

FIGURE 1
(A)Hexapodwalking robot (courtesy of Forouhar et al. (2021)) (B) and its deployment using the proposed approach. The visualized planned path
is to visit determined exploration goals for the spatial (in blue) and traversal cost models (in red). The spatial exploration goals are located close to the
boundary of the already explored part of the environment. The traversal cost exploration goals correspond to sites where the terrain traversal cost
model can be improved. Since the cost model is already partially learned, the red-tinted turf is known to be hard to traverse, and thus the robot
prefers the green-tinted pavement, which is relatively easy to traverse. The yellow-tinted terrain is yet to be experienced by the robot and thus carries
the terrain learning goal indicated by the red waypoint. The not-yet-observed area is gray.
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2.1 Mobile robot traversability

Two main questions emerge when reasoning about robot

traversability over terrains. First, can the terrain be safely

traversed, or should it be avoided? Second, if the terrain is

passable, how does it compare to other terrains, i.e., is it

easier and safer to traverse? Note that for the sake of clarity,

we further denote the binary (true/false) traversability,

which determines whether an area is an impassable obstacle

or passable terrain, as terrain passability. In contrast, the relative

comparison of the traversal difficulty over passable terrains is

denoted as assessing the traversal cost. The term traversability is

used to describe the notion in general, including both the

passability and traversal cost. A review of mobile robot

traversability assessment methods can be found in Papadakis

(2013), and an overview of learning-based methods for ground

robot navigation is in Guastella and Muscato (2021). Hence, we

focus on works relevant to how traversability is approached in

this study.

The passability discrimination can be directly incorporated

in mapping in the form of occupancy cell grids (Moravec and

Elfes, 1985), Gaussian mixtures (O’Meadhra et al., 2019), GP

models (O’Callaghan et al., 2009), or Hilbert maps (Ramos and

Ott, 2016). The distinction of terrain passability can be

understood as an instance of terrain classification, where

terrains are assigned individual classes, and each class carries

presumed terra-mechanical properties. For example, some

classes can be considered hard-to-traverse vegetation or

obstacles (Bradley et al., 2015). In addition to terrain

classification, terrains can be assigned continuous values

describing some observed terrain property such as roughness

(Krüsi et al., 2016; Belter et al., 2019), slope (Stelzer et al., 2012),

or step height (Homberger et al., 2016; Wermelinger et al., 2016).

For continuous measures, passability can be based on

thresholding the value, as in Stelzer et al. (2012), where the

passability is determined by individually thresholding terrain

slope, roughness, and step height. Moreover, classes may

correspond to a particular robot configuration, such as in

Haddeler et al. (2020), where the authors classify terrains into

modes of wheeled-legged locomotion.

In instances where the terra-mechanical properties are

unknown and thus terrains’ appearance and geometry features

are not sufficient to determine their traversability, the

traversability can be based on the robot’s prior experience

with similar terrains. The experience-based measures can be

derived from the robot proprioception and described using

stability (McGhee and Frank, 1968; Lin and Song, 1993),

slippage (Gonzalez and Iagnemma, 2018), vibrations (Bekhti

and Kobayashi, 2016), velocity, or energy consumption

(Kottege et al., 2015). The experience-based approaches

describe the traversal cost only over passable terrains since the

traversal is needed to acquire the robot experience. An exception

worth mentioning is haptic sensing to determine obstacle

passability (Baleia et al., 2015), which, however, still relies on

the direct interaction of the robot with the terrain.

Since the experience-based approaches use on-location robot

experience, they are difficult to use directly in path planning

where it is necessary to evaluate terrain traversability from a

distance using only exteroceptive measurements. Near-to-far

approaches pair traversability indicators that can be observed

only near the robot (such as proprioception or dense short-range

measurements) with terrain appearance and geometry that can

be observed from farther distances and thus learn to predict

traversability from the long-range measurements. Sofman et al.

(2006) incrementally learned the relation between dense laser-

based features characterizing ground unit traversability and

overhead features that can be used to assess traversability

from aerial images, whereas Bekhti and Kobayashi (2016)

learned to predict vibration-based traversability from terrain

texture. Quann et al. (2020) proposed an energy traversal cost

regressor considering both terrain position and appearance. In

addition, Mayuku et al. (2021) proposed a self-supervised

labeling approach for a near-to-far scenario, where vibration-

based traversal cost is inferred from image data, and the self-

supervised data gathering is based on identified terrain classes.

Following the approaches in the literature, we assume that

terrain is rigid, and it is possible to distinguish passable terrain

and non-traversable obstacles from the terrain geometry using a

step height similar to Stelzer et al. (2012), or Wermelinger et al.

(2016). Hence, this study focuses on modeling the traversal cost

over the determined passable terrains. Moreover, we are

motivated by the online cost assessment in mobile robot

exploration, where the computational requirements are

crucial. Therefore, we avoid high fidelity models, which

besides being costly to compute also rely on plan execution

with high precision (such as deterministic foothold placement),

whichmight not be available in practice. The traversal cost is thus

learned as a black box near-to-far model that uses terrain

appearance to predict the time to traverse over terrains. Since

the scope of the relation between the terrain appearance and

traversability might be limited to a particular environment, we

incrementally learn the cost predictor by sampling the robot’s

experience with traversing individual terrains. Similar to the

classification in Belter et al. (2019), a color histogram is

selected as the terrain appearance descriptor because it is

simple to compute and the histograms are sufficiently

descriptive to capture multi-colored terrains. Furthermore, we

consider locomotion gaits of the employed hexapod walking

robot that are suitable for different terrains. Thus, the passable

terrain is a terrain traversable by at least one gait, and obstacles

are terrain parts that none of the gaits can traverse. We propose a

decoupled approach that predicts the traversal cost for each gait

independently, and the robot then selects the most cost-efficient

gait for each terrain.

Regarding the existing methods, the proposed approach is

closest to Haddeler et al. (2020), where modes of the wheeled-
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legged robot are switched. In addition, the proposed approach is

also close to the self-supervised, near-to-far traversability-

learning approach proposed by Mayuku et al. (2021). In that

regard, the primary contribution of the proposed approach is the

integration of active traversability learning in mobile robot

exploration, where the robot plans a non-myopic path to

improve both the spatial and traversal cost models learned

online during the deployment.

2.2 Mobile robot exploration and
environment modeling

Mobile robot exploration is an active perception problem

that concerns behaviors where the robot seeks to build a model of

a priori unknown environment. The exploration entails the robot

seeking areas that are in some capacity unknown to construct a

map of the environment. The exploration thus inherently

combines localization, navigation, and planning (Schultz et al.,

1999) to decide where the robot should go next. Steering the

robot navigation to not-yet-observed areas yields frontier-based

exploration (Yamauchi, 1997), where the frontiers represent

boundaries between the observed traversable area and the

unknown space represented on an occupancy grid (Moravec

and Elfes, 1985). Recently, in the octree-based environment

model, frontiers are represented as mesh faces with few

neighbors (Azpúrna et al., 2021).

Bourgault et al. (2002) and Makarenko et al. (2002) exploit

the probabilistic representation on such an occupancy evidence

grid and navigate to maximize the approximated occupancy

information gain. Charrow et al. (2015) proposed to use

Cauchy–Schwarz quadratic mutual information to speed up

the information gain computation. In addition, approaches

that rely on non-grid-based representation for navigation,

such as meshes and topological maps, may retain cell or voxel

grids to quantify the information gain (Dang et al., 2020).

In addition to mapping, robots also build models of

environment-underlying phenomena that can be temperature

models (Luo and Sycara, 2018) or spread of gas (Rhodes et al.,

2020). The environment phenomenon can be considered spatial,

and the goal is thus to learn the mapping from the position in the

environment to the value of the phenomenon. Furthermore, a

spatiotemporal model can be considered (Ma et al., 2018) that

would require repeatedly visiting particular areas to build the

temporal model, which might be needed for changing

environments (Krajník et al., 2017).

Spatial-based modeling can be considered as informative

path planning (Singh et al., 2007), where the goal is to find

the most informative path through the environment (Hollinger

and Sukhatme, 2014) subject to a particular constraint such as the

robot energy budget (Binney and Sukhatme, 2012). Informative

path planning approaches can be broadly divided into myopic

and non-myopic methods. The myopic methods are greedy and

plan only with regard to the next goal, whereas non-myopic

methods plan with a longer horizon. For example, in the context

of frontier-based mobile robot exploration, seeking the closest

frontier is myopic, contrary to path planning to visit all the

representatives of the frontiers that is non-myopic (Faigl et al.,

2012).

Like seeking frontiers in spatial exploration, the explorer

learning an underlying model must actively locate sites to

sample novel information. Hence, GP regressors (Rasmussen

and Williams, 2006) are particularly suited for active learning

because it is relatively straightforward to identify uncertain

regions where the model should be improved. GP prediction

uncertainty is characterized by the differential entropy of the

predicted normal distribution, leading to the characterization

of information gained by observing individual areas. However,

in practice, directly computing the information gained by

possible observations is not feasible due to the number of

possible actions, especially for a long planning horizon.

Hence, various approximations and sampling strategies have

been proposed.

Pasolli and Melgani (2011) proposed to either directly seek

the most uncertain samples signified by the highest prediction

variance or to select areas that are the most remote in the feature

space given the GP hyper-parameters. In Viseras et al. (2019), the

robot selects paths with high average entropy per sampling to

tradeoff informativeness and the number of samplings. Martin

and Corke (2014) proposed to set the mean function of a GP

traversal cost regressors to zero, thus motivating a robot to

traverse unknown areas where the predictions are close to the

zero mean. TheGPUpper Confidence Bound (GP-UCB) (Srinivas

et al., 2010) is an exploration–exploitation method that combines

seeking the most uncertain areas with improving the model

around the highest value. It can be used when the learner is

interested in finding extreme values of the modeled

phenomenon, such as temperature (Luo and Sycara, 2018; Shi

et al., 2020). In addition, a depth-first variant of theMonte Carlo

Tree Search (MCTS) to select anytime informative paths can be

employed to consider both differential entropy and upper

confidence bound to model sampling informativeness

(Guerrero et al., 2021).

Karolj et al. (2020) computed a path to the closest spatial

frontier that visits all local sampling locations for a magnetism

model by solving the Traveling Salesman Problem (TSP) over the

respective goal locations. In localization in mapping, Ossenkopf

et al. (2019) note that occupancy information gained at an

unknown location holds little value and thus weight the

occupancy gains by a pose uncertainty (Vallvé and Andrade-

Cetto, 2015). Hence, the explorer must address how to combine

the occupancy and pose uncertainties. In Bourgault et al. (2002)

and Stachniss et al. (2005), the total exploration utility is a linear

combination of the occupancy uncertainty and the robot

localization uncertainty represented using the differential

entropy based on its position distribution. In Carrillo et al.
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(2018), it is argued that combining Shannon’s discrete and

differential entropies is neither practical nor sound because

the differential entropy is neither invariant under a change of

variable nor dimensionally correct. Therefore, both quantities

may differ significantly in value. Consequently, Carrillo et al.

(2018) proposed to use the localization uncertainty to weigh the

Rényi entropy (Rényi, 1961) of the occupancy grid.

Based on the literature review on exploration approaches, we

propose to generalize the previous work (Prágr et al., 2019a)

toward a non-myopic approach. The therein proposed method

combines active learning of traversal cost over terrains with

spatial exploration using a greedy approach. The

approximated spatial information gains and cost models are

derived from Shannon’s discrete and differential entropies,

respectively. Considering the reasoning of Carrillo et al.

(2018), we avoid a direct combination of these two values in

this study. In addition, we aim to build a modular system that

supports the learning of models that range from the spatial map

and cost predictors used in this study to temperature and

pollution models. Hence, instead of creating a combined

information gain utility function using the Rényi entropy,

which is suitable for the combination of a map and robot’s

localization model used by Carrillo et al. (2018), we elect to use a

policy that combines the spatial exploration and cost learning

goals (and goals reported by any additional model), similarly to

the approach proposed by Karolj et al. (2020).

However, unlike the therein-built magnetismmodel, a spatial

GP, we assume that the terrain traversal cost correlates with the

terrain appearance. Therefore, the GP regressor infers the cost

from the terrain feature descriptors instead of the terrain

location. Consequently, rather than terrains nearby, sampling

the cost to traverse an unknown terrain primarily affects the

predictions over similarly appearing terrains close in the feature

space. The affected terrains are determined using a terrain

clustering scheme. Incremental growing neural gas (IGNG)

(Prudent and Ennaji, 2005) is used to continually construct

the terrain class structure, in which each class is assigned

traversal cost and sampling reward (information gain) based

on the GP’s predictions. As a result, we model the computation of

the goal visit sequence as an instance of the Generalized TSP

(GTSP) (Noon, 1988) (also called the Set TSP), which is a variant

of the TSP where nodes are grouped into mutually exclusive and

exhaustive sets. The problem is then to visit each set instead of

visiting each node. In the context of the proposed exploration

approach, the individual nodes correspond to possible sampling

locations, and the sets are either terrain classes extracted from the

cost prediction model or places where the robot can observe areas

unknown to the spatial model.

The problem of mobile robot exploration with traversal cost

learning is defined in the next section, whereas the strengths and

weak points of the proposed approach are further discussed in

Section 6.

3 Problem specification

The addressed exploration using an autonomous hexapod

walking robot combines spatial exploration with active learning

of terrain traversal cost models. The environment is modeled as a

2D grid W ⊂ R2 with cells ] ∈ W with size d] corresponding to

the size of the robot foothold. The position of the robot probot is

discretized as ]robot within the grid that is at the center of the

robot’s circular footprint with radius rrobot covering all the

potential robot’s footholds, as shown in Figure 2. Any path ψ

can be decomposed to a sequence of neighboring cells as follows:

ψ � ]1, ]2, . . . , ]n( ),
s.t.

∀i ∈ 1, . . . , n: π ]i( ) � 1,
∀i ∈ 1, . . . , n − 1: ]i+1 ∈ 8nb ]i( ),

(1)

where n is the number of cells in the respective sequence, the

function 8 nb(]) lists the cells in the 8-neighborhood of ], and
π(]) = 1 indicates that the cell ] is passable. In addition, the robot

can use a discrete set of walking gaitsG, and it is assumed that the

gait changes occur instantaneously at the particular grid cells

] ∈ W.

The robot desires to move through the environment as

efficiently as possible with respect to (w.r.t.) the cost C.

Therefore, it moves along the cheapest path between ] and ]′.

ψp ], ]′( ) � argminψ∈Ψ ],]′( )C ψ( ), (2)

where Ψ(], ]′) is the space of all paths from ] to ]′. The cost C(ψ)
of traversing ψ represents a generic path cost such as time to

traverse or expected consumed energy; without the loss of

generality, the time to traverse is the cost of choice in this

study. It is assumed that the cost is additive, thus permitting

to combine the costs of two consecutive path segments ψa and ψb

into the cost of the combined path ψa ⊕ ψb as follows:

FIGURE 2
Footprint around the robot position covers the cells with
potential multi-legged walking robot footholds.
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C ψa ⊕ ψb( ) � C ψa( ) + C ψb( ), (3)

where ⊕ denotes the concatenation of the paths. The cost of a

path is decomposed to the sequence of costs to traverse from

passable cell ]a to its neighbor ]b.

C ψ( ) � ∑n−1
i�1

‖ ]i, ]i+1( )‖c ]i, ]i+1( ), (4)

where ‖(]a, ]b)‖ is the Euclidean distance between the cells

(i.e., either d] or
�
2

√
d]), and c (]a, ]b) is the per-meter cost of

traversing from ]a to ]b.
In the spatial exploration, the robot builds the geometry

model P, which provides the cell passability assessment π(]). It is
assumed that the geometry is sufficient to distinguish the

passable areas; hence, the passability model P is constructed

directly from the continually streamed exteroceptive

measurements (observed point clouds zpcd).

3.1 Traversal cost modeling

The traversal cost is assumed to be too complex to be assessed

only from the terrain geometry. In this study, the task is to learn a

traversal cost predictor C that models the cost as a function of

terrain appearance. The cost assessments are used in path

planning w.r.t. (4). In addition, the cost model is also

responsible for selecting the gaits suitable for the particular

terrains traversed by the robot. Since the robot position is

abstracted as the center of its circular footprint, the

predictor’s per-meter-cost predictions are conservative

estimates that take into account all the cells on the footprint.

The cost predictor is learned online during the exploration from

the robot experience, which comprises the cost zc experienced by

the robot when traversing terrain described by the terrain

appearance descriptor ta using gait g.

The learned model is compared to the uninformed baseline

that represents a robot that only explores the spatial map and

does not learn the cost models and thus uses the optimistic flat

cost model.

ĉ ]a, ]b( ) � 1
vmax

, (5)

where vmax is the maximum robot velocity over all g ∈ G.

Notice that, in planning, the particular value of vmax is not

relevant as long as it is positive because it only scales the total

cost, thus not affecting the planning decisions. The baseline

selects the gaits reactively, using the fast gait capable of

reaching vmax by default and switching to slower yet

rough-terrain-capable gaits when the robot gets stuck on

the traversed terrain.

The proposed approach is evaluated in model scenarios as

follows. First, the robot is set to explore the environmentW, and

it incrementally learns the model C. Then the learned and

baseline models are used in navigating the robot between a set

of benchmark coordinates inW and the total cost C experienced

by the robot (i.e., the time needed to move between the

coordinates) using the particular model is considered to be

the benchmark value.

4 Proposed system for active terrain
learning in exploration

In this section, we describe the proposed system for active

terrain learning and exploration, which is overviewed in Figure 3.

During the exploration, which yields the spatial geometric

passability model P, the goal of the robot is also to learn the

traversal cost model C. The geometric passability model P
describes the shape of the environment and thus areas

passable by the robot. The traversal cost model is decomposed

into the set of models C � CG � {Cg}g∈G, where each traversal

cost model Cg predicts the costs associated with traversing the

passable terrain using the gait g ∈ G. The respective cost

predictors are Gaussian process (GP) regressors (Rasmussen

and Williams, 2006), which use terrain appearance to infer

the robot-experienced traversal cost accrued during the

deployment. Each GP is coupled with the incremental

growing neural gas (IGNG) (Prudent and Ennaji, 2005) that

clusters similarly appearing terrains and hence identifies terrain

types not yet visited by the robot. The exploration problem is

modeled as an open-ended instance of the generalized traveling

salesman problem (GTSP) (Noon, 1988), a variant of the TSP

where the vertices are organized in disjoint sets, and each set is

visited once. In this study, each set corresponds to an exploration

or learning goal (a set of sampling sites) yielded by the spatial or

cost model.

In the rest of the section, we describe the exploration process.

The symbols used in the description are listed in Table 1. First, we

show how the GTSP is used to find the exploration path. Then we

show the geometric environment model in detail and the related

passability modelP, the traversal cost models Cg, and their use to
find the exploration goals.

4.1 Exploration

The robot explores the passability model P and learns the

traversal cost models CG by visiting the exploration ΓP and

cost learning ΓCG goals, which are continually yielded by the

respective models. Each goal γ ∈ ΓP ∪ ΓCG is associated with a

set of sites (cells) γ � {]i}|γ|i�0 where the robot can improve its

models by sampling the respective goal. The robot needs to

visit one of the corresponding locations to sample the goal.

Geometric model goals γ ∈ ΓP are located at singular sites γ =
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{]}, where the robot can improve the spatial model by

observing new areas. Each traversal cost model goal

γ ∈ ΓCG, where ΓCG � ∪g∈GΓCg, is associated with a set of

sites γ � {]i}|γ|i�0 at which the robot can improve the model

by experiencing novel gait-terrain costs. The areas covered by

the individual goals in a given cost model are designed to be

disjoint. Thus, sampling the traversal cost model at a site

corresponding to the goal 2γC
g ∈ ΓCg provides no, or severely

limited, information regarding the traversal cost model at a

site corresponding to a different goal 1γC
g≠1γC

g. On the other

hand, the passability and traversal cost models are considered

independent. Sampling at one particular site might improve

both models since the robot can observe previously unseen

areas while experiencing untraversed terrain. However, two

cost models cannot be improved at once since the robot can

only experience the cost for the currently used gait.

Given the current robot position ]robott and modelsPt and CGt
at any time t during the exploration, the robot selects a shortest

exploration path ψE(probot
t ,Pt, CGt ) that visits at least one site

corresponding to each goal. The path planning is modeled as an

instance of the GTSP, where vertices (sites) are organized in

disjoint sets (goals), and each set is visited exactly once. The

distance matrix D describes the costs of paths between the

individual sites, including the distances between the current

robot position and the goal sites.

D ], ]′( ) � Ĉ ψp ], ]′( )( ). (6)

A total of two transforms are applied to the distance matrix D

to create an open instance of the GTSP. First, the robot does

not need to return to its current position after exploring the

environment. Hence, the problem is transformed by setting

the cost to reach the current robot position from any goal as

zero ∀γ ∈ ΓP ∪ ΓGC ,∀] ∈ γ: D(]γ, ]robot) � 0. Second, we apply

the Noon–Bean transformation (Noon and Bean, 1993) to

transform an instance of the GTSP into an instance of the TSP.

The open instances of the transformed TSP are solved by the

LKH solver (Helsgaun, 2000), a heuristic solver with

asymptotic time complexity bounded by O(m2.2), where m

is the number of vertices, which has been found sufficient for

updates with tens of goal sites. The solver returns the sequence

FIGURE 3
An overviewof the proposed exploration system. The robot uses the RGB-D data to build the color elevationmodel of the environment inwhich
it identifies the passable areas (Algorithm 2). The terrain appearance stored in themodel is paired with the costs experienced by the robot to learn the
traversal cost models for the individual locomotion gaits (Algorithm 5 and Algorithm 6). The cost predictions for the individual gaits and the terrain
passability are used to plan the exploration path in a TSP sequence (Algorithm 1) over every goal reported by the geometric and costmodels. The
robot navigates to the first goal in the sequence (Algorithm 4).
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of sites (]robot, ]0, ]1, . . . , ]n) to be visited through the

environment, see Figure 4A, where n is the number of

goals and each site ]i corresponds to a different goal. The

robot navigates toward the first site of the sequence and its

current exploration goal ]pE becomes ]pE � ]0, see an example of

the path in Figure 4B.

The plan is recomputed on-demand either when there is a

change in the goal set or as a result of reaching the current goal.

Moreover, upon reaching a cost model goal, the robot switches to

the model’s respective gait genforced and is forced to move forward

for Δtsample (or until an obstacle is reached) to sample the

traversal cost over the terrain. The exploration ends when

TABLE 1 Used symbols.

Description Symbol Description Symbol

World grid map model W Grid map cell ]

Grid map cell size d] Current robot position ]robot

Robot footprint radius rrobot Cell ] passability π(])

Path ψ Optimal path ψp

Walking robot gait g Robot gait set G

Cost (time to traverse) C Per-meter cost c

Geometric passability model P Cost model C
Measured cost zc Maximum robot velocity vmax

Colored elevation grid map M2.5D Robot sensor range rsensor

Terrain appearance desciptor ta Descriptor radius rhist

Spatial clustering radius cradius Cluster min cells cmin cells

Cost model, all gaits CG Cost model, particular gait Cg

Cost prediction, all gaits ĉ Cost prediction, particular gait ĉCg

Distance transform per-meter loss closs Cost measurement variance σ2sense

Cost measurement filter initial variance σ20

GP regressor R GP learning set L
GP prediction mean μ̂c GP prediction variance σ̂c

2

Prediction uncertainty/GP entropy H High cost in cost transform chigh

Min learning set size nmin
L GP model noise variance σϵ2

Exponential kernel length scale l Exponential kernel output variance σs

Maximum allowed cost cmax

Terrain class model T Terrain class T

Approximated cost information gain IC Terrain class uncertainty threshold HGT
C

Min GT terrain type size mT Sampling lattice S

Sampling lattice point pS Sampling lattice size dS

Goal set Γ Goal γ

Passability goal set ΓP Cost goal set, all gaits ΓCG

Cost goal set, particular gait ΓCg TSP distance matrix D

Current exploration goal ]pE Current exploration path ψE

Enforced sampling gait genforced Gait sampling duration Δtsample

IGNG structure Ω IGNG measurement x

IGNG neuron set Ωneurons IGNG connection set Ωconnections

IGNG neuron ω IGNG adaptation threshold σIGNG

IGNG winner warp rate ϵIGNG1 IGNG neighbor warp rate ϵIGNGnb

IGNG neuron mature age aIGNGmature IGNG connection maximum age aIGNGmax

Terrain type erosion steps nstepserode
Terrain type dilation steps nstepsdilate

Terrain type dilation size nsizedilate

Frontiers in Robotics and AI frontiersin.org08

Prágr et al. 10.3389/frobt.2022.910113

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.910113


every model reports zero goals. The exploration process is

summarized in Algorithm 1.

Algorithm 1. Exploration.

4.2 Environment geometry & passability
model

The grid environment W is represented by the colored

elevation grid map M2.5D with the cell size d]. The grid map

is built online during the exploration according to Algorithm 2

using the robot’s range measurements and RGB camera images.

The elevation at each cell ] ∈ M2.5D is obtained by fusing the

localized range measurements zpcdi into the grid map using an

one dimensional Kalman filter, as described in Fankhauser et al.

(2014) or Bayer and Faigl (2020). The localization of the robot,

and also the localization of the range measurements, is

considered to be solved by the Intel RealSense T265 tracking

camera, which estimates the robot’s full six DOF pose based on

visual simultaneous localization and mapping supported by an

inbuilt inertial measurement unit1. The grid map is used as a

model of the terrain geometry to identify passable places. It also

captures the color of the terrain texture that is processed to

compute the terrain appearance descriptors.

Algorithm 2. Spatial exploration.

We define the passability of the cell ] ∈ M2.5D as the

probability π(]) that the cell ] can be traversed by the robot.

The probability itself is based on the observed roughness of the

terrain computed based on Bayer and Faigl (2021) as follows:

ρ ]( ) � max
]′∈8nb ]( )

Δ ], ]′( ), (7)

where 8 nb(]) is the 8-neighborhood of the cell ], and the step

height Δ(]a, ]b) is as follows:

Δ ]a, ]b( ) � |elevation ]a( ) − elevation ]b( )|, (8)

where elevation(]) denotes the estimated height of the terrain at

]. The probability that the robot can pass a cell ] is as follows:

π ]( ) 0 if ρ ]( )> ρobstacle
1 otherwise

{ , (9)

where the threshold ρobstacle represents the lowest obstacle to be

detected. An example of the grid map is shown in Figure 5A.

In active perception scenarios, the information about the

terrain model M2.5D gained by observing the cell ]′ is evaluated

FIGURE 4
An example of a planned exploration path. (A)Global path over the sequence of goals determined by the TSP solver; (B) the local path to the first
goal.

1 In the simulated experiments, the localization is provided by the
simulator.
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by entropy based on the known passability. Since the distribution

of the passability is binary and depends on the 8-neighborhood of

the cell, information gained by observing ]′with unknown height
is approximated as follows:

IP
cell ]′( ) ≈ k ]′( ) + 1

9
, (10)

where k(]) is the number of the unknown cells in the

neighborhood of ]. Thus, the expected information gained by

perceiving the terrain from the position of the cell ] can be

expressed as follows:

IP
model ]( ) � ∑

]′∈δ rsensor ,]( )

IP
cell ]′( ) if observable ], ]′( )

0 otherwise
{ , (11)

FIGURE 5
Illustration of the color-geometric and cost models. (A) Visualization of the online built geometrical model with marked passability and clusters
based on the cells with non-zero information according to the shown color legend; (B) terrain appearance descriptor calculated as a histogram of
cell colors. The costs used in path planning; (C) minimal cost over gaits after the distance transform; (D) respective cheapest gait (gaits in red and
purple). (E) Colors used to build the color histogram terrain appearance descriptor; (F) measured costs used for learning the GP (adjusted by
hyperbolic tangent), visualized over the terrain appearance; (G) raw GP cost prediction; (H) GP prediction uncertainty. (I) Terrain clusters (arbitrary
colors used to distinguish clusters); (J) information gained with terrain learning goals (goal colors corresponding to clusters); (K) cluster costs used in
planning.
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where δ(rsensor, ]) is the sensor range rsensor-large neighborhood
of ]; the function observable (], ]′) returns true if and only if the
cell ]′ is observable from ], which is determined by casting a ray

from ] to ]′ in the current elevation map M2.5D. Using all the

cells with non-zero entropy in the TSP formulation is

computationally intensive. Thus, we propose to spatially

cluster the entropy to generate a limited number of spatial

entropy representants by Algorithm 3.

Algorithm 3. Cluster entropy representatives

In addition to the terrain geometry, the grid mapM2.5D also

carries the terrain texture calculated by the following approach.

Each cell is provided a 10-bit color by projecting the camera

image to the map M2.5D. Then the color space is shrunk to

nine different colors, defined by color prototypes listed in

Figure 5B. The relative amount of the cell colors within the

radius rhist matched to the selected color prototypes are used

to build a 9-dimensional terrain appearance descriptor ta(])
for each cell ] ∈ M2.5D, which is visualized as a color

histogram in Figure 5B.

4.3 Traversal cost model

The cost model C predicts the per-meter traversal cost c over

observed areas deemed passable by the geometric passability

model P. The traversal cost model predicts the traversal cost

from terrain appearance. Since the robot position is abstracted as

the center of its circular footprint, the C’s per-meter-cost

predictions are conservative estimates that take into account

all the cells on the footprint.

ĉ ]a, ]b( ) � max]′∈δ rrobot ,]a( )ĉ ]′( ), (12)

where δ(r, ]) lists all cells within the r-radius of cell ], and ĉ(]) is
the C cost estimate over cell ]. An example of the traversal cost

assessment is depicted in Figure 5C.

The cost ĉ is reported for the whole model set

C � CG � {Cg}g∈G, since it is the best gait-terrain cost.

ĉ ]( ) � ming∈GĉCg ]( ), (13)

where each gait-terrain cost ĉCg is the prediction of the

particular model Cg. In addition, when navigating through

the environment, the robot selects its gait w.r.t. the

minimization in Eq. 13, as depicted in Algorithm 4. An

example of gait selection is visualized in Figure 5D. A

distance transform with closs per-meter-loss is used over the

cell grid with the best-gait costs ĉ(]) to dissuade the robot

from navigating areas near terrain boundaries where frequent

gait changes are likely.

Algorithm 4. Navigate

Each gait-terrain model Cg comprises the cost regressor

R and the terrain type clustering T . In R, we use GP

regression to predict the traversal costs because it provides

the predicted values and models the prediction uncertainty.

Each traversal cost regressor R is learned from the learning

set L of the paired terrain descriptors and the respective

traversal costs observed when using the particular gait g that

are depicted in Figure 5E and Figure 5F, respectively. The

particular learned cost regressor R is used to predict the

normal distribution of the traversal cost at queried terrain

descriptor ta as follows:

N μ̂c, σ̂c
2( ) ta,R( ) � predict ta,R( ). (14)

The cost prediction (visualized in Figure 5G) is the expected

value.

ĉ ta,R( ) � E N μ̂c, σ̂c
2( ) ta,R( )( ) � μ̂c ta,R( ), (15)

and the uncertainty of the prediction (shown in Figure 5H) is

characterized by the differential entropy.

H N μ̂c, σ̂c
2( ) ta,R( )( ) � 1

2
log 2πeσ̂c

2 ta,R( )( ). (16)

The prediction uncertainty is used to approximate the

information gain IC associated with sampling the individual

observed terrains, thus identifying areas the robot needs to

visit to improve the traversal cost model.

The terrain type clustering T identifies the distinct terrain

types (terrain descriptor clusters) in the environment. The terrain

class set T is designed to be disjoint regarding the prediction

model. Thus, sampling the traversal cost model at a cell

corresponding to one terrain class provides no, or severely

limited, information regarding the traversal cost model at a

location corresponding to a different class. In particular,
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following Pasolli and Melgani (2011), the classes are selected to

be mutually distant in the terrain descriptor space. Each observed

cell is assigned the closest terrain class as the closest class in the

descriptor space.

Tp ]( ) � argminT∈T ‖ta ]( ), ta T( )‖, (17)

where ta(T) is the appearance assigned to the terrain class

T ∈ T . Since, on small terrain classes, it might not be possible

to acquire enough samples to learn the traversal cost with

sufficient certainty, we apply class erosion as described in

Supplementary Appendix S1. The erosion output is the

learning class assignment T and the planning class

assignment T̂. We avoid computing the cost prediction for

every cell independently2 and report the Cg prediction over a

particular area as the cost to traverse over its respective terrain

type.

ĉCg ]( ) � ĉ ta T̂ ]( )( ),R( ) if T̂ ]( ) ≠ ∅,
cmax otherwise,

{ (18)

where the maximum cost cmax is reported for cells with no class

(i.e., eroded) ∅.

The rest of this section describes how the traversal cost

experience used to learn the models is measured, how the GP

regressor is learned, and how the terrain type clustering is used to

identify the locations where to improve the cost model.

4.3.1 Traversal cost measurement

The measured traversal cost describes the time needed to

traverse between cells as zc (], ]′). Since the distance between

2 cells is significantly lower than the robot stride length, the cost

is smoothed over path segments (cell sequences) with a fixed

duration. In particular, the per-meter cost c is continually

measured as the inverted robot velocity v−1 over the path

segment traversed by the robot in the last Δ t s.

v−1 ψs( ) � T ψs( )
‖ψs‖

, (19)

where ‖ψs‖ is the length of the segment in meters and T(ψ) is the

measurement duration that is fixed to Δt. If the robot had not

changed its gait on the segment, the cost is reported to the

particular model Cg as the cost to traverse the midpoint of the

segment as zc(]�|ψs|/2�, ]�|ψs|/2�+1). In addition, to remove potential

cost spikes, the cost is further smoothed using a moving average

window of the same (Δt) duration. Since the inverse velocity is

unbounded and has both high values and high variance for a

stuck robot, the cost to be used by the predictor is transformed as

follows:

c � chigh tanh
1

chigh

v−1

vmax
−1( ), (20)

where the maximum robot velocity vmax (maximum from all

g ∈ G) scales the cost of the robot moving over an ideal terrain

to 1, and the high cost chigh, which should only be experienced

by a stuck robot, is used in the transform to bound the cost

values.

4.3.2 Gaussian process traversal cost
regressor

The employed GP regressor predicts both the prediction

mean and variance making it suitable to model the prediction

distribution as in (Eq. 14). Its description is dedicated to

Supplementary Appendix S2 to make the study self-contained.

GP regressor is learned only if there are at least nmin
L learning

pairs in L to avoid learning overconfident predictors at the

beginning of the exploration. The learning is summarized in

Algorithm 5.

Algorithm 5. Traversal cost model learning.

The covariance function used in this work is the squared

exponential kernel.

K x, x′( ) � σs
2 exp −1

2
x − x′( )2

l2
( ), (21)

where σs2 is the output variance, and l is the length scale. We

consider that the robot’s cost and feature models have known

ranges based on (Eq. 20) and the histogram descriptor,

respectively. Therefore, similar to Karolj et al. (2020), the

kernel hyperparameters l and σs2 and GP’s σϵ2 have fixed

values that we consider to be dependent on the system

parameters.

The GP is continually relearned when new observations

using the particular gait g are experienced. The learning

complexity can be bounded by O(n4), where n is the

number of training points. The size of the learning set L is

limited by using at most one training point corresponding to

each cell in M2.5D and by storing measurements only when

2 In practice, for small environments, it is feasible to compute the
prediction for every cell, and we do so for visualization as depicted
in Figure 5G and Figure 5H.
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they are novel and thus likely to improve the model. Hence,

the relative traversal cost c(]) experienced at cell ] is paired

with the appearance descriptor ta(]) of the respective

traversed terrain, and when building the learning set L, the
model reports the pair (ta(]), c(])) for each cell where both

values are available.

Since the robot keeps only one measurement for each cell,

each novel cost measurement zc (], ]′) experienced when using

the gait g is allocated to the grid map cell ] and its neighbors in

8 nb(]), and the traversal cost c(]) at the cell ] is modeled using

the Kalman filter with the estimated value and covariance as

follows:

ck � σ2senseck−1 + σ2k−1z
c
k

σ2sense + σ2k−1
, σ2k �

σ2senseσ
2
k−1

σ2sense + σ2k−1
, (22)

where zck is the kth cost measurement at ] and σ2sense is its

variance. The filter is initialized by the first cost observation zc0 at

the respective cell, and the initial filter variance is σ20.

In total, two cases are considered as situations when the

cost is novel, and thus the model should be improved by

storing the cost w.r.t. (Eq. 22): 1) when the prediction is

erroneous and 2) when the prediction is uncertain. For the

former, the cost experienced at the cell ] is accumulated if the

measured cost zc is out of the approximate 95% confidence

interval |μ̂c(ta(])) − zc|> 2σ̂c(ta(])) of the prediction at ]. For
the latter, the approximated information gain of the

prediction is considered, and the robot accrues

measurements when there is a potential of information

gain IC(T(]))> 0, which computation is described in the

following paragraphs.

4.3.3 Terrain type clustering and goal
identification

The traversal cost exploration goals ΓCg are selected by the
robot as areas where the model can be improved and thus are

the areas where the traversal cost model is uncertain. Each

goal represents a terrain class where the robot can sample

novel information about the cost model. The overall

approach to goal identification is summarized in

Algorithm 6.

Algorithm 6. Terrain type clustering, goal identification, and

cost identification.

Algorithm 7. Cluster.

The clustering scheme presented in Algorithm 7 is based on

the IGNG, described in Supplementary Algorithm S1, to make

the study self-contained. In the neural gas, each neuron is a

terrain prototype ta(T) in the descriptor space that represents a

terrain class T. When separating the classes, the intuition is that

for exponential kernels, the length scale describes the range from

the data where the model can reliably extrapolate, as used, for

example, in Karolj et al. (2020). Hence, new classes are inserted

into the neural gas when the distance from all prototypes exceeds

σIGNG = 2l. The neural gas is constructed incrementally by

repeated adaptation using the appearance descriptors in the

environment, where the size of each adaptation batch is

limited to nIGNG descriptors that are randomly sampled from

all the descriptors, and the yielded terrain classes can be seen in

Figure 5I.

Algorithm 8. Compute information gain.

The terrain classes for which the cost model can be improved

are identified using the cost regressor R-predicted traversal cost

distributionN (μ̂c, σ̂c2)(ta(T)) at the class prototypes ta(T). The
traversal cost exploration goals are selected according to

Algorithm 8 as the classes where there is potential for

TABLE 2 Gait parameterization.

Gait parameter/gait Fast gait Tall gait

Gait cycle duration (s) 1.10 2.90

Step height (m) 0.04 0.07

Maximum forward speed (ms−1) 0.05 1.25e − 2
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TABLE 3 System parameterization.

Symbol Parameter Unit Value, split by environment

Real/Small Sim. Large Sim.

d] Grid map cell size m 0.05 0.10

rsensor Sensor range m 2.5 10.00

cradius Spatial clustering radius m 0.50 2.00

cmin _cells Spatial clustering, min cells per cluster - 10 10

rrobot Robot footprint radius m 0.25 0.40

ρobstacle Roughness passability threshold m 0.25 0.25

rhist Histogram descriptor radius m 0.25 0.30

Δt Cost measurement window duration s 5.00 1.00

vmax Maximum robot velocity m s−1 0.05 0.25

closs Cost distance-transform per-meter loss − 10.00/15.00* 7.5

chigh High cost for cost transform − 20.00 20.00

cmax Maximum cost for path planning − 20.00 20.00

σsense Kalman filter cost measurement variance − 0.10 0.10

σ20 Kalman filter initial variance − 1.00 1.00

σs GP output variance − 1.00 1.00

σϵ GP observation noise − 0.50 0.50

l GP length scale − 0.40 0.40

nmin
L Minimum learning set size − 25.00 25.00

nstepserode
Cluster erosion steps − 2.00 2.00

mT Minimum size of a ground truth cluster − 10.00 10.00

dS Cost-model sampling lattice cell size m 0.44 0.44

nstepsdilate
Cluster dilation steps − 3.00 3.00

nsizedilate Cluster dilation size − 2.00 2.00

ϵIGNG1 GNG warp scale winner − 1.00e − 3 1.00e − 3

ϵIGNGnb GNG warp scale neighbor − 1.00e − 5 1.00e − 5

aIGNGmature GNG age mature − 1.00e2 1.00e2

aIGNGmax GNG max edge age − 50.00 50.00

nIGNG GNG learning batch size − 5.00e3 5.00e3

Δtsample Cost sampling duration s 30.00 12.00

Δtfallback Stuck fallback duration s 30.00 3.00

* Different value used in small simulation/real deployment.

TABLE 4 System operation frequencies.

Module Frequency Condition

Elevation mapping 5.00 Hz

Spatial goal identification 0.33 Hz

Cost measurement 20.00 Hz Only if using the respective gait

Cost learning 0.10 Hz Only if not already running

Goal identification 0.10 Hz

Goal sequence planning 1.00 Hz Only after goal set change or reaching a goal

Path planning 1.00 Hz Only after goal set change or reaching a goal
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information gain; see the visualization in Figure 5J. The gain is

approximated from the prediction entropy.

IC T( ) ≈ max H σ̂c
2 ta T( )( )( ) −HGT

C L( ), 0( ), (23)

whereHGT
C is a threshold value associated with the uncertainty of

the experienced traversal costs. The robot learns when there is

potential of information gain IC > 0, and no information can be

gained at eroded cells IC(∅) � 0. We set the threshold value

based on the highest prediction uncertainty for terrains that are

considered certain since they cover cells that are already in the

learning set as follows:

HGT
C L( ) � max

T∈T : | ]∈M2.5D : T ]( )�T{ }∩L|>mT

H σ̂c
2 ta T( )( )( ), (24)

where we avoid overconfident GP-predictions for barely sampled

terrains by allowing only terrain classes with at leastmT observed

ground truth cost values. The threshold equals the maximum

value over such ground truth terrain classes.

Algorithm 9. Identify goals.

The sampling locations (visualized, for example, in Figure 5J)

corresponding to the terrain class are sampled along a lattice S

with the cell size dS ≫ d], as depicted in Algorithm 9. For each

lattice point pS, the closest cell ] in δ(
�
2

√
dS
2 , pS) radius that is not

associated with a traverability measurement and that is

informative with IC(T(]))> 0 is reported as a sampling site; if

no such cell exists, no site is reported for the lattice point. Since

only cells without measurements are considered, it is possible for

small terrain classes to run out of cells before reaching mT

measurements. In such a case, the class is considered too

small to learn and is no longer reported as a goal, and it is

pruned from the class set. In addition to the goals, the traversal

cost ĉCg(]) (visualized in Figure 5K) is also reported for the ]′s
prototype ta(T̂(])) w.r.t. (Eq. 13) according to Algorithm 10.

Algorithm 10. Set planning cost.

5 Experimental evaluation

The proposed exploration with active terrain learning has

been examined in simulated trials and real experimental

FIGURE 6
(A) 3D scan of the university campus at Charles Square in Prague, (B) section of the courtyard, and the respective simulated environment (C)
color and (D) relative traversability (light areas easier to traverse). The red bounding box represents the area where the robot should explore. The blue
points are the points to be visited by the robot in the first test tour.
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deployments using a hexapod walking robot. The simulated

and real scenarios have been set up so that the robot first

explores the environment and learns the cost models using the

proposed method and, in some tests, a selected baseline

method. Then the performance has been evaluated and

compared with the baseline approach by navigating the

robot over a sequence of benchmark waypoints using the

respective traversal cost models of the environment learned

during the exploration.

The hexapod walking robot, which can be seen in Figure 1, is

used in the real deployment, and the simulation is parameterized

to mimic the robot’s motion and sensory capabilities. The robot

has six legs, each comprising three Dynamixel XM430-W350

servomotors. The robot is equipped with the Intel RealSense

D435 camera used to construct the colored environment model

and the Intel RealSense T265 localization camera. The onboard

computation is provided by the Intel NUC 10i7FNK with Intel

Core i7 10710U accompanied with 64 GB memory, running

Ubuntu 18.04 with ROS Melodic (Quigley et al., 2009). The

robot locomotion is facilitated by a blind adaptive motion gait

(Faigl and Čížek, 2019). The robot uses two particular gait

configurations, see Table 2: The fast gait suitable for flat, even

FIGURE 7
Environment assessment after the simulated scenario run with regards to both gaits; (A) dominant color in the histogram feature; (B) merged
cost used for planning; (C) selected gait (fast in red, tall in purple); (D) costs used for learning the fast gaitmodel [adjusted by hyperbolic tangent in (Eq.
20)], visualized over the terrain appearance; (E) clusters used in the fast gait model (arbitrary colors used to distinguish clusters); (F) fast gait cost
predictions assigned by the dilated clusters; (G) costs used for learning the tall gait model [adjusted by hyperbolic tangent using (Eq. 20)],
visualized over the terrain appearance; (H) clusters used in the tall gait model (arbitrary colors used to distinguish clusters); (I) tall gait cost predictions
assigned by the dilated clusters; (J) exploration run; (K) test-tour run using the baseline model without the learned traversal costs; (L) test-tour run
using the learned traversal costs. The development of the path through the fully discovered simulated environment during the exploration; (M) at the
beginning of the exploration, the robot uses flat costs and thus does not avoid difficult terrains; (N) after learning the costs for the fast gait, the robot is
too cautious and avoids going near the costly turf; (O) after learning the tall gait costs, the robot is less cautious and is willing to walk near difficult
terrain.
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surfaces, and the tall gait that performs better than the fast gait

over rough terrain but otherwise is slower. The robot is equipped

with a reflex that detects that the robot is stuck with costs

exceeding cmax and switches over to the tall for Δtfallback
seconds to avoid the robot getting stuck when using the

baseline model or at the beginning of the learning process.

The parameterization of the proposed method can be found

in Table 3, and the operating frequencies of the proposed

method’s processes are depicted in Table 4.

5.1 Simulated scenarios

The simulated scenarios are based on a courtyard

environment captured by four 3D scans obtained using Leica

BLK 360 3D scanner and visualized in Figure 6A. The scanner

has standard deviation of 4 mm at 10 m and 7 mm at 20 m. The

scans total approx. 1.4×108 points.

In total, two virtual environments are created using the scan:

small and large. The small environment represents a small

section of the courtyard, where the simulated robot mimics

the real robot’s speed and sensory equipment. It is used to

test the benefit of the individual components of the proposed

approach by comparing them to baseline methods where the

particular component is removed or simplified. The large

environment comprises terrain segments observed in the scan

that are rearranged to create a larger, artificial environment with

obstacles where different exploration algorithms are compared

using a faster robot with an extended sensor range.

5.1.1 Small environment

The small environment is concerned with a section of the

environment that is detailed in Figure 6B. We have created a

simulation model of the environment containing several types of

pavement (gray and red) and turf (green, brown), shown in

Figure 6C. The turf is modeled as hard to traverse and can get the

robot stuck for the fast gait, whereas the pavement does not

impede the robot, see Figure 6D.

First, to demonstrate the benefits of using a cost model

learned from prior experience, the robot is tasked to execute

two tours in the environment using the learned cost model and a

flat-cost baseline model. Second, the utility of exploring along the

proposed GTSP-derived path is demonstrated by comparing its

time to explore the environment with a greedy, myopic baseline,

which drives the robot to the cheapest goal to reach w.r.t. the so

far learned costs.

The first tour comprises four waypoints. The robot starts at

the bottom-left point and executes the tour counter-clockwise

until reaching the start location again. The two particular areas

are designed to demonstrate the utility of the learned model: 1)

the segment between the bottom-right and top-right waypoints

where the robot can choose either a direct route over the turf or a

longer path over the pavement and 2) the area around the top-left

waypoint where the turf cannot be avoided and thus the robot

needs to switch to the tall gait. The second tour comprises

20 points randomly sampled in the environment, and it serves

to demonstrate the performance of the learned model over a tour

that was not handcrafted.

TABLE 5 Performance as the time (total cost) in seconds to traverse.

Small virtual environment, tour 1 (mean ± std of 25 runs)

Method/Time [s] Segment 1 Segment 2 Segment 3 Segment 4 Full tour

Baseline 79.99 ± 0.00 239.59 ± 6.62 133.20 ± 6.76 177.59 ± 13.04 630.39 ± 21.06

Gait selection 80.00 ± 0.00 275.00 ± 8.06 125.49 ± 7.39 164.00 ± 7.39 644.50 ± 7.34

Proposed 80.00 ± 0.00 119.99 ± 0.00 112.40 ± 4.27 142.40 ± 4.27 454.80 ± 4.27

Small virtual environment, tour 2 (25 runs) Small virtual Environment, exploration (5 runs)

Method/Time [s] Full tour Environment Time [s]

Baseline 2748.00 ± 30.59 GTSP 1382.68 ± 241.47

Gait selection 2523.12 ± 39.48 Greedy 1547.16 ± 203.71

Proposed 2271.99 ± 33.38

Large virtual environment (mean ± std of 5 runs) Real deployment

Method Full tour time [s] Exploration time [s] Test Time [s]

Proposed 554.00 ± 13.56 1167.15 ± 163.69 Test Segment, baseline 454.00

Spatial-only 859.99 ± 156.02 545.40 ± 137.43 Test Segment, proposed 143.00

Exploration, proposed* 1364.00

* The similarity between the real and simulated times to explore is coincidental.
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In addition to the proposed approach and the baseline, in

the simulated tests, we also deploy a hybrid gait selection

approach that chooses its gait using the proposed model but

does not plan its path w.r.t. the predicted costs and walks

directly to the next waypoint. Unlike the baseline approach,

which switches to the tall gait when stuck and repeatedly tries to

switch back to the fast gait, the hybrid gait selection approach

switches gaits only when approaching or leaving the terrain

identified as hard to traverse by the model. Hence, it should

outperform the baseline over longer sections on difficult

terrains, where the baseline is slowed down by trying to

switch back to the fast gait.

The simulation environment consists of the Intel i7-9700

3.00 GHz with 32 GB memory running Ubuntu 18.04 with ROS

Melodic. Since the captured environment comprises terrains that

might slow down the robot because they are somewhat non-rigid,

instead of using a geometry-based simulator such as Gazebo,

which cannot model such terrains, we elect to build a virtual

environment over a simple simulator using real-world data. The

simulation is performed using the simple two dimensional robot

simulator (STDR)3 within the ROS ecosystem. On top of the

simulator, we have implemented an interface that simulates the

robot’s RGB-D camera, which assigns each point in the robot’s

simulated exteroceptive measurements color based on the point’s

FIGURE 8
Large simulated environment (A) color and (B) relative traversability, (C) and the test tour through the environment, which starts at the starred
node and is counter-clockwise. The built maps of the large simulated environment: (D) geometric map and (E)merged costs used for planning after
exploration using the proposed approach; merged costs ofter exploration using the spatial-only model while (F) avoiding and (G) traversing rough
terrain, respectively.

3 http://stdr-simulator-ros-pkg.github.io
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position in the environment color map shown in Figure 6C and

filters the measurements to contain only points within the 87 deg

wide field of view of the simulated RGB-D camera. The terra-

mechanical properties are simulated by slowing down the robot

over the individual traversed terrains w.r.t. the performance

observed over such terrain in a real-world deployment, as

shown in Figure 6D.

In the evaluation, the robot first explores and learns the

models shown in Figure 7A to Figure 7I. An example exploration

path can be seen in Figure 7J. The robot learns that the turf,

which appears either green or brown, cannot be traversed by the

fast gait and thus selects the tall gait over that terrain type. On the

other hand, the pavement does not hinder the fast gait, which is

considerably faster and thus preferred.

Although the two gait models create the terrain clusters

independently, the clusters in Figure 7E and Figure 7H differ

only in cluster indices used in the internal representation (each

index is associated with a different color in the visualization). It

can be observed that the robot does not use any clusters

associated with the red line on the pavement, either removing

the thin cluster outright in the erosion or pruning the small

erosion remains after the robot finds out that it cannot get

enough samples to learn such a small terrain.

In the particular exploration run shown in Figure 7J, the

robot first walks along the left side of the exploration bounds,

learning the fast gait costs for both the pavement and turf and the

tall gait cost over the turf. Then the robot learns the tall gait cost

over the pavement while clearing the spatial exploration goals.

During the exploration, it can be seen that the robot avoids

walking over the remaining turf, only approaching it at the very

end of the exploration. Thus, the robot needs only to enter and

not leave the turf (minimizing the time on the costly terrain) to

reach the goal that lies on the turf.

The test runs using the baseline, and the learned model over

the first tour are shown in Figure 7K and Figure 7L, respectively.

In addition, the development of the tours that would be used at

different points during the exploration can be seen in Figure 7M

through Figure 7O. In the baseline test, the robot walks directly

between the waypoints and only switches to the tall gait after

getting stuck. On the other hand, when using the learned model,

the robot avoids the turf if possible and switches to the tall gait

before entering the turf while pursuing the top-left goal.

The performance over 25 simulated trials (five exploration runs,

each with five tour tests for the tour tests; 25 runs for the simulated

exploration tests) can be observed in Table 5. On the first tour, the

hybrid gait selection approach is slower than the reactive baseline. In

the authors’ opinion, it is caused by the conservative (large) value of

rrobot, which compels the robot to use the slow tall gait on the border

between the rough terrain and pavement, whereas the reactive

approach only tries to switch back to the fast gait (which is its

main disadvantage when compared to the hybrid approach) a few

times on the short rough terrain segment. Nonetheless, the proposed

learned model knows to avoid such areas and performs better or the

same as the other approaches over every tour segment. Hence, the

results suggest that robot benefits fromusing the learned costs in path

planning. Over the second tour, the robot performs similarly. The

learned model outperforms the baseline when moving around or

over the turf. Both approaches exhibit similar travel times when the

direct path between the waypoint leads only over the pavement.

Unlike over the first tour, the hybrid gait selection performs better

than the baseline approach, presumably due to longer sections over

hard-to-traverse terrains on the second tour. The proposed approach

consistently outperforms the baseline and hybrid gait selection

approaches; we conclude that the robot benefits from using the

learned model.

In addition to the tour tests, the results suggest that the robot

benefits from using the non-myopic GTSP planner compared to

the myopic greedy approach. Even though the performance of

the two approaches appears relatively close, the Mann–Whitney

U Test (Mann and Whitney, 1947) rejects the null hypothesis of

the same exploration time distribution at 99.5% confidence

against both the two-sided and the relevant one-sided

alternative. In the authors’ opinion, the high variance in the

observed exploration times can be attributed to the effect of

random chance in exploration since neither myopic nor non-

myopic approaches are informed about the terrains in

unexplored areas. However, the myopic explorer is more likely

to make a bad decision, such as not clearing some of the goals in a

particular area that needs to be visited later. Therefore, the

proposed non-myopic approach performs better overall.

5.1.2 Large environment

The large environment is an artificial 20 × 25 m outdoor/

indoor scenario. The map comprises patches from the courtyard

FIGURE 9
The 2m × 6m large deployment area with a green artificial
turf. The area boundary is in red, and the waypoints of the test tour
are depicted in blue. The shown robot is at the starting position.
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scan rearranged as shown in Figure 8. Given the size of the

environment, the robot is sped up five times. The cell size is

increased to 0.1m, and other parameters are adjusted

accordingly, see Table 3. In addition, the robot uses an

omnidirectional sensor with the increased range of 10 m,

which expands the range of terrains that can be observed

without the respective terrain’s traversal. To accommodate the

simulation of the increased sensor range, the virtual environment

is run on AMD Ryzen Threadripper 3960× 3.8 GHz with 48 GB

memory running Ubuntu 18.04 and ROS Melodic, using STDR

in the same manner as for the small environment.

Similar to the small environment, the robot is first set to

explore the environment and then is tasked to visit the set of

waypoints shown in Figure 8C. The proposed algorithm is

FIGURE 10
Environment evaluation and the real robot exploration run; (A) dominant color in the histogram feature; (B)merged cost used for planning; (C)
selected gait (fast in red, tall in purple); (D) costs used for learning the fast gait model (adjusted by hyperbolic tangents), visualized over the terrain
appearance; (E) clusters used in the fast gait model (arbitrary colors used to distinguish clusters); (F) fast gait cost predictions assigned by the dilated
clusters; (G) costs used for learning the tall gait model (adjusted by hyperbolic tangents), visualized over the terrain appearance; (H) clusters
used in the tall gait model (arbitrary colors used to distinguish clusters); (I) tall gait cost predictions assigned by the dilated clusters; (J) exploration
run; (K) test-tour run using the baseline model without the learned traversal costs; (L) test-tour run using the learned traversal costs.
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compared to a spatial-only baseline approach, which learns the

cost models only as a result of experiencing cost while pursuing

spatial exploration goals. The spatial-only changes the gaits in a

reactive fashion when stuck and hence only learns the model for

the tall gait if it enters the difficult green or brown turf during the

exploration.

The quantitative results for the large environment are

shown in Table 5. Since the proposed approach actively

tries to sample every terrain type, it is slower to explore the

whole environment. However, the proposed approach

performs better in the tour evaluation. Closer examination

suggests that while the tour times of the proposed approach

remain similar in all trials, the spatial-only times vary wildly

since the learned models differ based on which terrains the

robot has traversed during the exploration. This randomness

can be attributed to differences in simulation and plan

execution. In addition, Figures 8D–G shows the learned

maps for the proposed model, and for the spatial-only

model in both the cases when the rough terrain was and

was not traversed. For the case when a rough terrain was

traversed by the spatial-only model, the costs differ between

the individual rough areas. However, the ground truth costs

shown in Figure 8B suggest that they should be the same, as is

the case for the proposed model. Likely, this is caused by the

robot traversing only the brown-green rough terrain located

on the left of the environment. The green terrain, located in

the center and right of the environment, appears somewhat

similar to the brown-green terrain. Hence, the robot considers

it to be difficult to traverse to a certain degree. However, since

the spatial-only model does not deliberately sample the

terrains, the model’s guess differs somewhat from the exact

cost to traverse the particular terrain, decreasing the fidelity of

the predictions.

Overall, the presented results suggest that the proposed

approach presents a tradeoff in terms of exploration and

execution time: the longer time spent exploring the

environment and learning the cost models provides the robot

with better cost maps, which shorten the time to navigate the

environment after it is explored. It should be noted that since the

behavior of the spatial-only model is affected by random chance

(differences in simulation and plan execution), it can provide

models as good as the proposed approach. However, there is no

guarantee that this would happen regularly, whereas the

proposed approach has returned high fidelity maps in every

test case.

5.2 Real robot experimental deployment

The viability of the proposed approach is demonstrated in the

real experimental deployment, where the robot explores an

indoor 2 × 6 m area visualized in Figure 9. The office-like

environment comprises flat synthetic terrain that is easy to

traverse but appears to the robot differently colored at

different locations since it is glossy and carries the color of

nearby objects located next to the arena. When building the

colored elevation map M2.5D, we use the first color observed at

each location to account for the issue. In addition to the flat

terrain, a green artificial turf is placed in a part of the test area to

provide a relatively hard terrain to traverse. The robot interacts

with the real terrains similarly to the simulation: the fast gait may

get stuck on the turf but is faster than the tall gait over the flat

parts of the arena. During the experiment, the robot is set to

explore the area; even though it can leave the bounds of the 2 m ×

6 m large area, it does not pursue goals located outside of the

bounds.

Figure 10 shows the maps learned in the experimental run,

which is also presented in the accompanying Supplementary

Video S1. A colored map of the environment is depicted in

Figure 10A. The overall costs and selected gaits through the

environment are shown in Figure 10B and Figure 10C,

respectively.

During the experimental deployment, the robot first

learns the largest gray appearing flat terrain using the fast

gait. Then it learns on the turf for both gaits and returns to the

gray area to learn for the tall gait. Afterward, the robot

pursues the yet unvisited spatial goals and smaller off-

color terrain clusters that appear near the environment

boundary and are caused by the glossy floor that carries

the color of the nearby objects.

Compared to the simulation, the robot needs a larger amount

of the measurements to learn the terrains (see Figure 10D and

Figure 10G), and there are more terrain clusters (see Figure 10E

and Figure 10H). It suggests that the real environment is noisier

and contains multiple differently colored areas, which is in line

with our observations regarding the glossy floor material.

Nevertheless, the traversal costs learned by the robot for the

individual gaits (see Figure 10F and Figure 10I) are within

expectations, as is the overall planning cost depicted in

Figure 10B and gait selection visualized in Figure 10C.

The test run scenarios are set up similarly to the tours

used in the simulated test; the robot is placed in front of the

hard-to-traverse turf and tasked to reach a goal location

behind the hard-to-traverse terrain, slightly out of the

exploration bounds, see Figure 9. The paths shown in

Figure 10K and Figure 10L show that when using the

baseline without the learned model, the robot tries to

reach the goal directly over the turf, gets stuck, and needs

to switch to the slow tall gait. On the other hand, when using

the learned model, the robot avoids the hard-to-traverse areas

and reaches its goal quickly using the fast gait. The

performance in the presented run can be seen in Table 5.

Overall, we conclude that the real deployment confirms that

the robot can actively learn the traversability as a part of the

exploration mission and benefits from using such learned

models.
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6 Discussion

The presented exploration system is proposed as a

combination of spatial geometric modeling and learning

terrain-gait traversal cost models. However, the system is

designed to support additional models that do not describe

the robot’s traversal cost. Moreover, since the models are kept

separate, there is no need to use the same feature set for each of

them. Therefore, the approach is compatible with spatial

models such as magnetism models (Karolj et al., 2020) or

GP-based occupancy (Wang and Englot, 2016). The only

requirement for a model is that it produces a set of

learning goals in the environment that are resolved once

particular information is sampled. Hence, the proposed

system can be extended by including additional

traversability models, such as modeling the passability of

potentially non-rigid obstacles.

In addition, we approach the traversal cost prediction so that

it supports any cost model that is additive along the traversed

path, such as time to traverse or consumed energy. Besides,

individual cost predictors describe the gaits of a hexapod walking

robot, but they can also describe any discrete set of robot

configurations. Hence, the approach is viable for any mobile

robot that describes its motion experience using an additive cost

and can also be used to model the energy a tracked robot

consumes, for example, with adjustable flippers. A particular

limitation of the cost modeling used in the presented approach is

that we assume that the individual gaits are switched for free

w.r.t. the cost (i.e., instantaneously for cost modeled as the time to

traverse), whereas in practice, the gait requires some time to

exhibit its properties. In this study, we leave the question of how

to predict gait-change cost open for future work.

The used cost model goal generation stems from the idea that

adding new observations does not increase GP uncertainty if the

hyper-parameters are fixed (Rasmussen and Williams, 2006).

Therefore, sampling new measurements should not increase

uncertainty and thus not spawn new goals in areas containing

none. In practice, even though we use fixed GP hyper-

parameters, the non-increasing nature of the uncertainty does

not strictly hold for the approximated information gain since, in

addition to the GP hyper-parameters, the information gain also

depends on the terrain clusters and the costs and descriptors in

the learning set, all of which might drift during the exploration.

However, the robot behavior demonstrated in both evaluation

setups shown in Figure 7J and Figure 10J suggests that the

assumption holds in general. The robot clears the areas

corresponding to the individual terrains (goals) and is not

compelled to return to previously visited areas.

The primary limitation of the proposed approach is identified

in its inability to compare the utility of the goals originating from

the different models.We are motivated to build amodular system

that would support different model types; therefore, the proposed

decoupled approach considers each goal equally valued,

regardless of the source model. This limits how the models

are used since the goal utility, such as the information gain, is

relegated to be used only inside the particular model to determine

which environment features (locations or terrain types) are goals

to use in creating an instance of the GTSP. The proposed

approach provides a non-myopic solution to visit the goals

reported by the individual models, where the models are also

non-myopic since each can report multiple goals. Myopic models

that would report their respective highest utility goal (potentially

with multiple sampling sites) can be used. However, similarly to

the myopic planner with the results reported in Table 5, the time

to explore would likely increase since the GTSP planner would

lack the information on where to go after the current goals are

sampled, and thus the exploration path would often change

significantly. Integrating goal utility into the decoupled

planning and using alternative utility functions such as the

GP-UCB remains the subject of future work.

7 Conclusion

In this study, we present a system for autonomous mobile

robot exploration that incorporates active learning of traversal

cost models in addition to spatial model building. During the

exploration, the robot builds the spatial geometric model of

the environment and learns the traversal cost models, each

comprising a Gaussian process regressor and a growing neural

gas terrain clustering scheme. The geometric model is used to

determine areas passable by the robot, while the cost models

predict the traversal costs over the passable terrains from the

terrain’s appearance. Each cost model corresponds to a

particular hexapod walking robot locomotion gait. The

robot approaches exploration in a decoupled manner,

creating a set of goals for the spatial exploration and for

each traversal cost model. The exploration path is planned by

solving an instance of the generalized traveling salesman

problem over the goals that are sets of possible sites of

visits to improve the particular model. The proposed

system has been evaluated in simulation setup and real

experimental deployment with two different walking gaits.

The results suggest that the proposed system yields the robot

to explore the environment and learn the traversal cost

models. The learned models benefit the robot’s operation in

the environment. In future work, we plan to model the gait

change costs, include additional traversability models such as

obstacle rigidity, and extend the proposed approach to

support goal utility and exploration–exploitation models.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Frontiers in Robotics and AI frontiersin.org22

Prágr et al. 10.3389/frobt.2022.910113

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.910113


Author contributions

With the support of JF, MP, and JB designed the proposed

system. MP and JB performed the experiments and processed the

data. MP, JB, and JF wrote the manuscript. All the authors

contributed to the manuscript and approved the submitted

version.

Funding

The work was supported by the Czech Science Foundation

(GAČR) under research project No. 18-18858S and 19-20238S.

The support under the OP VVV funded project CZ.02.1.01/0.0/

0.0/16_019/0000765 “Research Center for Informatics” is also

gratefully acknowledged.

Acknowledgments

We would like to thank Petr Čížek and Jiří Kubík for their

help with the hexapod walking robot maintenance.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frobt.2022.

910113/full#supplementary-material

References

Azpúrna, H., Campos, M. F. M., and Macharet, D. G. (2021). Three-dimensional
terrain aware autonomous exploration for subterranean and confined spaces. IEEE Int.
Conf. Robotics Automation (ICRA), 2443. –2449. doi:10.1109/ICRA48506.2021.9561099

Baleia, J., Santana, P., and Barata, J. (2015). On exploiting haptic cues for self-
supervised learning of depth-based robot navigation affordances. J. Intell. Robot.
Syst. 80, 455–474. doi:10.1007/s10846-015-0184-4

Bayer, J., and Faigl, J. (2021). “Decentralized topological mapping for multi-robot
autonomous exploration under low-bandwidth communication,” in European
Conference on Mobile Robots (Bonn, Germany: ECMR), 1–7. doi:10.1109/
ECMR50962.2021.9568824

Bayer, J., and Faigl, J. (2019). “Speeded up elevation map for exploration of
large-scale subterranean environments,” In 2019 Modelling and Simulation
for Autonomous Systems (Palermo, Italy: MESAS), 192–202. doi:10.1007/
978-3-030-43890-615

Bayer, J., and Faigl, J. (2020). “Speeded up elevation map for exploration of large-
scale subterranean environments,” in 2020 Modelling and Simulation for
autonomous systems (MESAS). 190–202.

Bekhti, M. A., and Kobayashi, Y. (2016). “Prediction of vibrations as a measure of
terrain traversability in outdoor structured and natural environments,” in Image
and video technology, 282–294. doi:10.1007/978-3-319-29451-3_23

Belter, D., Wietrzykowski, J., and Skrzypczyński, P. (2019). Employing natural
terrain semantics in motion planning for a multi-legged robot. J. Intell. Robot. Syst.
93, 723–743. doi:10.1007/s10846-018-0865-x

Binney, J., and Sukhatme, G. S. (2012). Branch and bound for informative path
planning. IEEE Int. Conf. Robotics Automation (ICRA), 2147. –2154. doi:10.1109/
ICRA.2012.6224902

Bourgault, F., Makarenko, A. A., Williams, S. B., Grocholsky, B., and Durrant-
Whyte, H. F. (2002). “Information based adaptive robotic exploration,” in IEEE/
RSJ international conference on intelligent robots and systems (Lausanne,
Switzerland: IROS), 540–545. doi:10.1109/IRDS.2002.1041446

Bradley, D. M., Chang, J. K., Silver, D., Powers, M., Herman, H., Rander, P., et al.
(2015). “Scene understanding for a high-mobility walking robot,” in IEEE/
RSJ international conference on intelligent robots and systems (Hamburg,
Germany: IROS), 1144–1151. doi:10.1109/IROS.2015.7353514

Brown, D., and Webster, G. (2010). Now a stationary research platform, NASA’s Mars
rover Spirit starts a new chapter in red planet scientific studies. Pasadena, CA: NASA Press
Release.

Carrillo, H., Dames, P., Kumar, V., and Castellanos, J. A. (2018). Autonomous
robotic exploration using a utility function based on Rényi’s general theory of entropy.
Auton. Robots 42, 235–256. doi:10.1007/s10514-017-9662-9

Charrow, B., Liu, S., Kumar, V., and Michael, N. (2015). Information-theoretic
mapping using cauchy-schwarz quadratic mutual information. IEEE Int. Conf.
Robotics Automation (ICRA), 4791–4798. doi:10.1109/ICRA.2015.7139865

Dang, T., Tranzatto, M., Khattak, S., Mascarich, F., Alexis, K., and Hutter, M.
(2020). Graph-based subterranean exploration path planning using aerial and
legged robots. J. Field Robot. 37, 1363–1388. doi:10.1002/rob.21993

Faigl, J., and Čížek, P. (2019). Adaptive locomotion control of hexapod walking
robot for traversing rough terrains with position feedback only. Robotics Aut. Syst.
116, 136–147. doi:10.1016/j.robot.2019.03.008

Faigl, J., and Kulich, M. (2013). “On determination of goal candidates in frontier-
based multi-robot exploration,” in European conference on mobile robots
(Barcelona, Spain: ECMR), 210–215. doi:10.1109/ECMR.2013.6698844

Faigl, J., Kulich, M., and Přeučil, L. (2012). “Goal assignment using distance
cost in multi-robot exploration,” in IEEE/RSJ international conference on
intelligent robots and systems (Vilamoura-Algarve, Portugal: IROS),
3741–3746. doi:10.1109/IROS.2012.6385660

Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M., and Siegwart, R. (2014).
World Scientific, 433–440.Robot-centric elevation mapping with uncertainty
estimatesMob. Serv. Robot.

Forouhar, M., Čížek, P., and Faigl, J. (2021). “Scarab II: A small versatile six-
legged walking robot,” in 5th full-day workshop on legged robots at IEEE
international conference on robotics and automation (Xi’an, China: ICRA), 1–2.

Fritzke, B. (1994). “A growing neural gas network learns topologies,” in
Conference on neural information processing systems (Denver, CO: NIPS), 625–632.

Gonzalez, R., and Iagnemma, K. (2018). Slippage estimation and compensation
for planetary exploration rovers. State of the art and future challenges. J. Field
Robotics 35, 564–577. doi:10.1002/rob.21761

Guastella, D. C., and Muscato, G. (2021). Learning-based methods of perception
and navigation for ground vehicles in unstructured environments: A review. Sensors
21, 73. doi:10.3390/s21010073

Guerrero, E., Bonin-Font, F., and Oliver, G. (2021). Adaptive visual information
gathering for autonomous exploration of underwater environments. IEEE Access 9,
136487–136506. doi:10.1109/ACCESS.2021.3117343

Frontiers in Robotics and AI frontiersin.org23

Prágr et al. 10.3389/frobt.2022.910113

https://www.frontiersin.org/articles/10.3389/frobt.2022.910113/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2022.910113/full#supplementary-material
https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1007/s10846-015-0184-4
https://doi.org/10.1109/ECMR50962.2021.9568824
https://doi.org/10.1109/ECMR50962.2021.9568824
https://doi.org/10.1007/978-3-030-43890-615
https://doi.org/10.1007/978-3-030-43890-615
https://doi.org/10.1007/978-3-319-29451-3_23
https://doi.org/10.1007/s10846-018-0865-x
https://doi.org/10.1109/ICRA.2012.6224902
https://doi.org/10.1109/ICRA.2012.6224902
https://doi.org/10.1109/IRDS.2002.1041446
https://doi.org/10.1109/IROS.2015.7353514
https://doi.org/10.1007/s10514-017-9662-9
https://doi.org/10.1109/ICRA.2015.7139865
https://doi.org/10.1002/rob.21993
https://doi.org/10.1016/j.robot.2019.03.008
https://doi.org/10.1109/ECMR.2013.6698844
https://doi.org/10.1109/IROS.2012.6385660
https://doi.org/10.1002/rob.21761
https://doi.org/10.3390/s21010073
https://doi.org/10.1109/ACCESS.2021.3117343
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.910113


Haddeler, G., Chan, J., You, Y., Verma, S., Adiwahono, A. H., and Meng Chew, C.
(2020). “Explore bravely: Wheeled-legged robots traverse in unknown rough
environment,” in IEEE/RSJ international conference on intelligent robots and
systems (Las Vegas, NV: IROS), 7521–7526. doi:10.1109/IROS45743.2020.9341610

Helsgaun, K. (2000). An effective implementation of the lin-kernighan traveling salesman
heuristic. Eur. J. Operational Res. 126, 106–130. doi:10.1016/s0377-2217(99)00284-2

Hollinger, G. A., and Sukhatme, G. S. (2014). Sampling-based robotic information
gathering algorithms. Int. J. Rob. Res. 33, 1271–1287. doi:10.1177/0278364914533443

Homberger, T., Bjelonic,M., Kottege,N., and Borges, P. V. K. (2016). “Terrain-dependant
control of hexapod robots using vision,” in International symposium on experimental
robotics (Nagasaki, Japan: ISER), 92–102. doi:10.1007/978-3-319-50115-4_9

Karolj, V., Viseras, A., Merino, L., and Shutin, D. (2020). An integrated strategy
for autonomous exploration of spatial processes in unknown environments. Sensors
20, 3663. doi:10.3390/s20133663

Kottege, N., Parkinson, C., Moghadam, P., Elfes, A., and Singh, S. P. N. (2015).
Energetics-informed hexapod gait transitions across terrains. IEEE Int. Conf.
Robotics Automation (ICRA), 5140–5147. doi:10.1109/ICRA.2015.7139915

Krajník, T., Fentanes, J. P., Santos, J. M., and Duckett, T. (2017). Fremen: Frequency
map enhancement for long-term mobile robot autonomy in changing environments.
IEEE Trans. Robot. 33, 964–977. doi:10.1109/TRO.2017.2665664

Krüsi, P., Bosse, M., and Siegwart, R. (2016). Driving on point clouds: Motion
planning, trajectory optimization, and terrain assessment in generic nonplanar
environments. J. Field Robot. 34, 940–984. doi:10.1002/rob.21700

Lin, B., and Song, S. (1993). Dynamic modeling, stability and energy efficiency of
a quadrupedal walking machine. J. Robot. Syst. 18, 657–670. doi:10.1002/rob.8104

Luo, W., and Sycara, K. (2018). Adaptive sampling and online learning in multi-
robot sensor coverage with mixture of Gaussian processes. IEEE Int. Conf. Robotics
Automation (ICRA), 6359–6364. doi:10.1109/ICRA.2018.8460473

Ma, K.-C., Liu, L., Heidarsson, H. K., and Sukhatme, G. S. (2018). Data-driven
learning and planning for environmental sampling. J. Field Robot. 35, 643–661.
doi:10.1002/rob.21767

Makarenko, A. A., Williams, S. B., Bourgault, F., and Durrant-Whyte, H. F. (2002). in
IEEE/RSJ international conference on intelligent robots and systems, 1, An experiment in
integrated exploration534–539. doi:10.1109/IRDS.2002.1041445(IROS)

Mann, H. B., and Whitney, D. R. (1947). On a test of whether one of two random
variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60. doi:10.
1214/aoms/1177730491

Martin, S., and Corke, P. (2014). Long-term exploration &amp; tours for energy
constrained robots with online proprioceptive traversability estimation. IEEE Int.
Conf. Robotics Automation (ICRA), 5778–5785. doi:10.1109/ICRA.2014.6907708

Mayuku, O., Surgenor, B. W., and Marshall, J. A. (2021). “A self-supervised near-
to-far approach for terrain-adaptive off-road autonomous driving,” in IEEE
international conference on robotics and automation (Xi’an, China: ICRA),
14054–14060. doi:10.1109/ICRA48506.2021.9562029

McGhee, R. B., and Frank, A. A. (1968). On the stability properties of quadruped
creeping gaits. Math. Biosci. 3, 331–351. doi:10.1016/0025-5564(68)90090-4

Moravec, H., and Elfes, A. (1985). “High resolution maps from wide angle sonar,”
in 1985 IEEE international conference on robotics and automation proceedings,
116–121. doi:10.1109/ROBOT.1985.1087316

Noon, C. E., and Bean, J. C. (1993). An efficient transformation of the generalized
traveling salesman problem. INFOR Inf. Syst. Operational Res. 31, 39–44. doi:10.
1080/03155986.1993.11732212

Noon, C. E. (1988). The generalized traveling salesman problem. Ann Arbor, MI:
Ph.D. thesis, University of Michigan.

O’Callaghan, S., Ramos, F. T., and Durrant-Whyte, H. (2009). Contextual
occupancy maps using Gaussian processes. IEEE Int. Conf. Robotics Automation
(ICRA), 1054–1060. doi:10.1109/ROBOT.2009.5152754

O’Meadhra, C., Tabib, W., andMichael, N. (2019). Variable resolution occupancy
mapping using Gaussian mixture models. IEEE Robot. Autom. Lett. 4, 2015–2022.
doi:10.1109/LRA.2018.2889348

Ossenkopf, M., Castro, G., Pessacg, F., Geihs, K., and De Cristóforis, P. (2019). “Long-
Horizon Active SLAM system for multi-agent coordinated exploration,” in European
conference on mobile robots (Prague, Czech Republic: ECMR), 1–6. doi:10.1109/ECMR.
2019.8870952

Papadakis, P. (2013). Terrain traversability analysis methods for unmanned
ground vehicles: A survey. Eng. Appl. Artif. Intell. 26, 1373–1385. doi:10.1016/j.
engappai.2013.01.006

Pasolli, E., and Melgani, F. (2011). Gaussian process regression within an active
learning scheme. IEEE Int. Geoscience Remote Sens. Symposium, 3574–3577. doi:10.
1109/IGARSS.2011.6049994

Prágr, M.,Čížek, P., Bayer, J., and Faigl, J. (2019a). “Online incremental learning of the
terrain traversal cost in autonomous exploration,” in Robotics: Science and systems, (RSS)
(Freiburg im Breisgau, Germany). 1–10. doi:10.15607/RSS.2019.XV.040

Prágr, M., Čížek, P., and Faigl, J. (2018). “Cost of transport estimation for legged
robot based on terrain features inference from aerial scan,” in IEEE/
RSJ international conference on intelligent robots and systems (IROS) (Prague,
Czech Republic: IEEE), 1745–1750. doi:10.1109/IROS.2018.8593374

Prágr, M., Čížek, P., and Faigl, J. (2019b). “Incremental learning of traversability cost
for aerial reconnaissance support to ground units,” in 2018 modelling and simulation for
autonomous systems (Prague, Czech Republic: MESAS), 412–421. doi:10.1007/978-3-
030-14984-0_30

Prudent, Y., and Ennaji, A. (2005). An incremental growing neural gas learns
topologies. Int. Jt. Conf. Neural Netw. (IJCNN) 2, 1211–1216. doi:10.1109/IJCNN.
2005.1556026

Quann, M., Ojeda, L., Smith, W., Rizzo, D., Castanier, M., and Barton, K. (2020).
Off-road ground robot path energy cost prediction through probabilistic spatial
mapping. J. Field Robot. 37, 421–439. doi:10.1002/rob.21927

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009).
ICRA Workshop on Open Source Software, 1–6.Ros: An open-source robot
operating system.

Ramos, F., and Ott, L. (2016). Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent. Int. J. Rob. Res. 35, 1717–1730. doi:10.
1177/0278364916684382

Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian processes for machine
learning. Adaptive computation and machine learning. Cambridge, Mass: MIT Press.

Rényi, A. (1961). On measures of entropy and information. Berkeley Symposium
Math. Statistics Probab., 547–561.

Rhodes, C., Liu, C., and Chen, W.-H. (2020). “Informative path planning for gas
distribution mapping in cluttered environments,” in IEEE/RSJ international
conference on intelligent robots and systems (Las Vegas, NV: IROS), 6726–6732.
doi:10.1109/IROS45743.2020.9341781

Schultz, A. C., Adams, W., and Yamauchi, B. (1999). Integrating exploration,
localization, navigation and planning with a common representation.Auton. Robots
6, 293–308. doi:10.1023/A:1008936413435

Shi, Y., Wang, N., Zheng, J., Zhang, Y., Yi, S., Luo, W., et al. (2020). “Adaptive
informative sampling with environment partitioning for heterogeneous multi-robot
systems,” in IEEE/RSJ international conference on intelligent robots and systems (Las
Vegas, NV: IROS), 11718–11723. doi:10.1109/IROS45743.2020.9341711

Singh, A., Krause, A., Guestrin, C., Kaiser, W., and Batalin, M. (2007). “Efficient
planning of informative paths for multiple robots,” in International joint conference
on artifical intelligence, 2204–2211.

Sofman, B., Lin, E., Bagnell, J. A., Cole, J., Vandapel, N., and Stentz, A. (2006).
Improving robot navigation through self-supervised online learning. J. Field Robot.
23, 1059–1075. doi:10.1002/rob.20169

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010). “Gaussian process
optimization in the bandit setting: No regret and experimental design,” in Intl. Conf.
International conference on machine learning (ICML) (Haifa, Israel, 1015–1022.

Stachniss, C., Grisetti, G., and Burgard, W. (2005). “Information gain-based
exploration using rao-blackwellized particle filters,” in Robotics: Science and
systems, 1–8. doi:10.15607/RSS.2005.I.009

Stelzer, A., Hirschmüller, H., and Görner, M. (2012). Stereo-vision-based
navigation of a six-legged walking robot in unknown rough terrain. Int. J. Rob.
Res. 31, 381–402. doi:10.1177/0278364911435161

Vallvé, J., and Andrade-Cetto, J. (2015). Potential information fields for mobile
robot exploration. Robotics Aut. Syst. 69, 68–79. doi:10.1016/j.robot.2014.08.009

Viseras, A., Shutin, D., and Merino, L. (2019). Robotic active information
gathering for spatial field reconstruction with rapidly-exploring random trees
and online learning of Gaussian processes. Sensors 19, 1016. doi:10.3390/
s19051016

Wang, J., and Englot, B. (2016). Fast, accurate Gaussian process occupancy maps
via test-data octrees and nested Bayesian fusion. IEEE Int. Conf. Robotics
Automation (ICRA), 1003–1010. doi:10.1109/ICRA.2016.7487232

Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P., Siegwart, R., and
Hutter, M. (2016). “Navigation planning for legged robots in challenging terrain,” in
IEEE/RSJ international conference on intelligent robots and systems, 1184–1189.
doi:10.1109/IROS.2016.7759199

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration.
CIRA (IEEE), 146–151. doi:10.1109/CIRA.1997.613851

Zlot, R., and Stentz, A. (2006). Market-based multirobot coordination for
complex tasks. Int. J. Rob. Res. 25, 73–101. doi:10.1177/0278364906061160

Frontiers in Robotics and AI frontiersin.org24

Prágr et al. 10.3389/frobt.2022.910113

https://doi.org/10.1109/IROS45743.2020.9341610
https://doi.org/10.1016/s0377-2217(99)00284-2
https://doi.org/10.1177/0278364914533443
https://doi.org/10.1007/978-3-319-50115-4_9
https://doi.org/10.3390/s20133663
https://doi.org/10.1109/ICRA.2015.7139915
https://doi.org/10.1109/TRO.2017.2665664
https://doi.org/10.1002/rob.21700
https://doi.org/10.1002/rob.8104
https://doi.org/10.1109/ICRA.2018.8460473
https://doi.org/10.1002/rob.21767
https://doi.org/10.1109/IRDS.2002.1041445
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/ICRA.2014.6907708
https://doi.org/10.1109/ICRA48506.2021.9562029
https://doi.org/10.1016/0025-5564(68)90090-4
https://doi.org/10.1109/ROBOT.1985.1087316
https://doi.org/10.1080/03155986.1993.11732212
https://doi.org/10.1080/03155986.1993.11732212
https://doi.org/10.1109/ROBOT.2009.5152754
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1109/ECMR.2019.8870952
https://doi.org/10.1109/ECMR.2019.8870952
https://doi.org/10.1016/j.engappai.2013.01.006
https://doi.org/10.1016/j.engappai.2013.01.006
https://doi.org/10.1109/IGARSS.2011.6049994
https://doi.org/10.1109/IGARSS.2011.6049994
https://doi.org/10.15607/RSS.2019.XV.040
https://doi.org/10.1109/IROS.2018.8593374
https://doi.org/10.1007/978-3-030-14984-0_30
https://doi.org/10.1007/978-3-030-14984-0_30
https://doi.org/10.1109/IJCNN.2005.1556026
https://doi.org/10.1109/IJCNN.2005.1556026
https://doi.org/10.1002/rob.21927
https://doi.org/10.1177/0278364916684382
https://doi.org/10.1177/0278364916684382
https://doi.org/10.1109/IROS45743.2020.9341781
https://doi.org/10.1023/A:1008936413435
https://doi.org/10.1109/IROS45743.2020.9341711
https://doi.org/10.1002/rob.20169
https://doi.org/10.15607/RSS.2005.I.009
https://doi.org/10.1177/0278364911435161
https://doi.org/10.1016/j.robot.2014.08.009
https://doi.org/10.3390/s19051016
https://doi.org/10.3390/s19051016
https://doi.org/10.1109/ICRA.2016.7487232
https://doi.org/10.1109/IROS.2016.7759199
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.1177/0278364906061160
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.910113

	Autonomous robotic exploration with simultaneous environment and traversability models learning
	1 Introduction
	2 State of the art
	2.1 Mobile robot traversability
	2.2 Mobile robot exploration and environment modeling

	3 Problem specification
	3.1 Traversal cost modeling

	4 Proposed system for active terrain learning in exploration
	4.1 Exploration
	4.2 Environment geometry & passability model
	4.3 Traversal cost model
	4.3.1 Traversal cost measurement
	4.3.2 Gaussian process traversal cost regressor
	4.3.3 Terrain type clustering and goal identification

	5 Experimental evaluation
	5.1 Simulated scenarios
	5.1.1 Small environment
	5.1.2 Large environment
	5.2 Real robot experimental deployment

	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


