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Short-term folate deficiency has been linked to cognitive defects. Given folate’s role in

regulating nucleotide synthesis and DNA and histone methylation, these changes are

often linked to altered gene expression and might be controlled by specific regulatory

networks. In our study we examined the effects of folic acid (FA) deficient or replete diets

in mice, containing either no source of folate or normal FA intake, beginning post-weaning

and persisting through the end of adult life at 18 months. Our goal was to assess levels

of cognition in these mice using the novel object test and then connect the cognitive

results to genetic changes. FA deficient mice showed significant memory impairment

compared to control counterparts beginning at 5 months and persisting through 17

months, as determined by the novel object test. These deficits were associated with

363 significantly downregulated and 101 significantly upregulated genes in the deficient

condition compared to the control condition in microarray analysis of hippocampal

tissue. Many of these gene expression changes were determined to be specific to the

hippocampus. Significant ontological categories for differential genes included nucleotide

regulation, ion channel activity, and MAPK signaling; while some of these categories

contain genes previously mapped to cognitive decline, other genes have not previously

been associated with cognition. To determine proteins possibly involved in regulation of

these genes, we performed bioinformatics analysis and found enrichedmotifs of for MafB

and Zfp410 binding sites. These genes and enriched motifs may represent targets for

treatment or investigation of memory-related diseases.
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INTRODUCTION

Vitamin B9 can be found in a number of forms, referred to together as folates.
The two most common folates are 5-methyltetrahydrofolate (5MTHF), the biologically
active form found naturally in food, and folic acid (FA), the synthetic form used
in supplements and food fortification (1). Folates are important one-carbon carriers in
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a number a cellular reactions including nucleic acid metabolism,
amino acid metabolism, maintenance of DNA stability, and
production of S-adenosylmethionine (SAM) for methylation of
nucleic acids, neurotransmitters, phospholipids, histones, and
other proteins (2–5). Gene methylation and expression often
have an inverse relationship with decreasedmethylation resulting
in increased expression (6, 7). Therefore, maintenance of proper
folate levels helps avoid aberrant DNA methylation patterns,
thus ensuring normal transcriptional regulation (8). Similarly,
decreased folate levels can be associated with altered nucleic
acid metabolism and altered gene expression (9). As such,
folate deficiency has been associated with a number of diseases
including various cancers, cardiovascular disease, and cognitive
defects (10–18). Despite mandatory folate fortification in grains
in many Western cultures, a variety of circumstances can lead to
chronic folate deficiency including poor diet, chronic smoking,
chronic alcoholism, intestinal diseases, medications, and gene
polymorphisms (19–22). Although many of these habits and
diseases may lead to chronic folate deficiency for the duration of
adult life, little is known, regarding the effects of this deficiency
throughout adulthood. Further, most studies on folate deficiency
induce the deficiency early in life, either in utero or during
weaning (12, 23). Although valuable, these studies provide no
understanding of the many populations who receive adequate
folate early in life but become deficient during adulthood. As
such, it has yet to be determined to what extent adequate folate
intake during early life can protect against folate deficiency
later in life, despite the fact that this scenario likely affects
many people.

Evidence has accumulated in recent years linking folate
deficiency at many stages of life to neurological deficits, with the
largest investigative emphasis on early life since the discovery
of the critical role of folate in neural tube development (24–
26). Folate deficiency in rodent pups during weaning has been
linked to expression changes in genes associated with DNA
methyltransferases (DMNTs) in the rat hippocampus and a
reduced number of proliferating cells in the mouse hippocampus
(27). This observed alteration in hippocampus structure due
to folate deficiency holds true in the adult hippocampus as
well; dietary folate deficiency during early adult life in mice
reduces the number of proliferating cells in the hippocampus
(28). Further, consistent with clinical observations that many
dementia patients present with low plasma folate levels (29). A
study of elderly Swedish patients receiving no folate or vitamin
B12 supplementation determined that low serum levels of folate
or B12 are indicative of a nearly doubled the risk of developing
dementia compared to patients with normal folate or B12 levels
(30). However, many of the molecular mechanisms underlying
this relationship have yet to be elucidated.

While it is well established that folate deficiency during early
life results in cognitive impairments (12, 13, 16), it is not clear
whether adequate folate during major developmental milestones

Abbreviations: 5MTHF, 5-methyltetrahydrofolate; AD, Alzheimer’s

disease; DNMTs, DNA methyltransferases; FA, folic acid; HOMER,

Hypergeometric Optimization of Motif EnRichment; qPCR, quantitative PCR;

SAM, S-adenosylmethionine.

followed by inadequate folate in later life will exhibit the same
effect. Folates play essential roles in both methylation and nucleic
acid metabolism; therefore, we hypothesize that chronic post-
weaning folate deficiency will result in expression changes in
many additional hippocampal genes beyond DMNTs and that
those genes may be linked to cognitive deficits. Because of the
chronic nature of many conditions leading to folate deficiency in
adult life, we investigated the effects of folate deficiency beginning
post-weaning and extending through the duration of the adult
mouse’s life, in order to shed light on additional therapeutic
avenues for treatment and prevention of cognitive decline.

METHODS

Mice
Twelve female outbred CD-1 mice (Charles River Laboratories,
Wilmington, MA) were crossed with males of the same strain to
produce pups for this study. This strain was chosen for the high
genetic diversity, healthy offspring, and large litter size associated
with outbred strains. Two weeks prior to breeding the mice were
placed on a custom chow supplemented with FA (Figure 1A).
Parental mice were approximately 42 days old at the time of
breeding. Female pups were used for this study and remained on
the parental diet with their mothers until they had been weaned.
Female mice were used exclusively for this study due to housing
constraints, at a limit of 5 females per cage. Once the pups were
weaned, half of each litter continued on the parental diet while
the other half began a FA-deficient diet. Each dietary condition
contained three independent litters with multiple pups. At least
one mouse from each litter at 6 and 18 months was euthanized
by carbon dioxide asphyxiation, and all efforts were made to
minimize suffering. Experimental protocols were approved by
the Institutional Animal Care and Use Committee (IACUC) at
Liberty University (protocol 3.160309). Mice were kept on a 12 h
light/dark cycle in a temperature and moisture controlled room
for the duration of the study.

Diets
Parental mice were given a custom vitamin B-deficient chow
(Envigo-Teklad Diets, Madison, WI; Supplementary Table 1)
containing 1% succinylsulfathiazole to inhibit microbial folate
production in the gut. Vitamins B6 and B12 were supplemented
(35µg/mL and 125µ g/mL, respectively, Solgar, Leonia, NJ)
dissolved in drinking water for all mice since the custom chow
lacked these two B Vitamins and our study wanted to determine
the effects of folate (B9) only. FA supplemented mice were given
water also fortified with FA (10µg/mL), following normal dietary
recommendations (31). Initial calculations of average daily water
consumption was approximately 5mL per day per animal and
determined the supplemental vitamin concentrations in the
water (Supplementary Figure 1). Specifically, water bottles were
filled and weighed before placing them in the cage. Twenty-four
hours later bottles were removed and weighed again to determine
the water loss due to animals drinking and bottles dripping. This
procedure was conducted twice for 12 cages containing no more
than two mice each. In order to determine the amount of water
loss due solely to bottles dripping, 11 twenty-four hour trials
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FIGURE 1 | Study design. (A) Outbred 7-week-old CD1 mice were acclimated for this study with the introduction of a custom vitamin B deficient chow containing 1%

succinylsulfathiazole and supplemented with B6, B9, B12 for 5 weeks prior to the birth of their pups. Mothers and pups were kept on this diet during weaning. After

weaning (3 weeks post birth), the pups of half of the litters remained on the parental diet, and the pups of the other half of the litters were put on a folate-deficient diet.

Behavioral tests were administered 5 and 17 months after birth, and tissues were collected following the completion of behavioral tests at each time point (about 1

month after their initiation). Results from littermates were averaged and considered to be N =1. (B) Mice were weighed throughout the course of the study to

determine if diet had any effect on overall size of the mouse (N ≥ 3 for all ages and diets). Although all mice gained weight with age, there was no statistical difference

between the various dietary conditions at any single time point (one-tailed homoscedastic student t-test: 6 months FA vs. DEF P = 0.29, 12 months FA vs. DEF P =

0.14, 18 months FA vs. DEF P = 0.36).

were conducted in cages without mice. It was determined 2.7
+ 0.1mL (SEM) was lost due to water dripping. The average
daily water consumption per mouse per day for all 12 cages was
calculated as the daily change in water in each cage minus the
daily average loss due to dripping divided by the number of mice
in the cage, which was calculated to be 5.6 + 0.4mL (SEM).
Averages and error bars were calculated in Microsoft Excel using
standard error of the mean. Fortified water was made fresh and
changed every 3 days. This method of folate supplementation
has been previously reported in mice (32–35). Serum folate levels
were not measured since significant reduction in serum folate has
been observed following shorter periods of folate deficiency (36).
Further, the aim of this study was to assess the stress response of
a chronically folate deficient diet, whether or not the response is
directly linked to depleted serum folate. Mice were weighed at 3
stage of adult life (6, 12, and 18 months) to ensure that diets did
not affect overall health; average weights and standard error for
each dietary condition at each time point were analyzed using R
studio version 3.1.0.

Behavioral Tests
Novel object tests were performed on at least three mice
representing independent litters for each of the dietary groups at

5 and 17 months, allowing for 1 month of cognitive testing prior
to euthanization at each time point. Each test was composed of a
5-min interaction with two identical objects followed by a second
5-min interaction 24 h later with one of the objects replaced
with a new object. Two stopwatches recorded the amount of
time spent with the two objects during this second trial. Data
was recorded as the percentage of time spent investigating the
new object relative to the total time investigating both objects.
Familiar and novel object sets were different for each time point
tested to preserve the integrity of the test and provide multiple
object pairs testing reliability. At 5 months the familiar objects
were two T25 cell culture flasks filled with blue-colored water and
the novel object was a green Lego object of similar shape and size.
At 17 months the familiar objects were two green turtles made of
rubber and the novel object was a blue dolphin of similar size and
material. Results were analyzed using a two-tailed homoscedastic
student t-test at the 0.05 level comparing deficient to control diets
at each time point using Microsoft Excel.

Tissue Extraction and RNA Isolation
After the completion of behavioral studies at 6 months, mice
were sacrificed to obtain tissue samples for both dietary groups
(FA and DEF). After isolation of whole brain samples, a sagittal

Frontiers in Nutrition | www.frontiersin.org 3 November 2020 | Volume 7 | Article 574730

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Lawton et al. Folate-Dependent Cognitive Impairment

cut divided the hemispheres, and the samples were placed in
RNALater (Applied Biosystems, Foster City, CA) for 10min
to preserve RNA and dehydrate the tissue. The hippocampal
dissection procedure followed a previously described account
(https://www.youtube.com/watch?v=tdEvicXkMCk, permission
was obtained from the author for distribution of the video).
Isolated hippocampi were soaked in RNALater for 24 h at 4◦C
before storage at−80◦C.

RNA was extracted from hippocampal tissue using Trizol
(Invitrogen) according to themanufacturer’s instructions. Briefly,
tissue was homogenized in 0.1× Trizol volume and incubated
at room temperature for 5min. Chloroform was added up to
0.2× Trizol volume, and samples were incubated an additional
2min at room temperature before being centrifuged at 12,000
× g at 4◦C for 15min. The aqueous phase was separated,
mixed with 0.5× volume of isopropanol, incubated for 10min
at room temperature, then centrifuged at 12,000 × g at 4◦C for
10min. The pellet was resuspended in 75% ethanol, vortexed,
and centrifuged at 12,000 × g at 4◦C for 5min. Finally, the
sample was dried and resuspended in 30 µL of RNase-free
water and incubated at 55◦C for 10min. The sample was
quantified and purity was assessed using a Nanodrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA).

Microarray Analysis
The sample preparation and microarray hybridization were
performed based on the manufacturer’s standard protocols.
Purified RNAs for each dietary condition at 6 months (N =

3) were submitted to Arraystar for microarray analysis using
the V3.0 Mouse LncRNA Array. These replicates fell within
Arraystar’s suggested parameters of 3–6 samples per group for
detection of expression changes with an effect size of 2, false
discovery rate of 0.05, and statistical power of 0.8. A total
of 35,923 lncRNAs and 24,881 mRNAs were used to assess
the transcriptomes of these samples. A total of 5,000 ng of
RNA was provided at a concentration of 200 ng/µL. RNA
integrity and quantity were verified using standard denaturing
agarose gel electrophoresis and the NanoDrop ND-1000. For
microarray analysis, Agilent Array platform was employed, and
results were normalized by Lowess normalization using R version
3.1.0 (R Foundation for Statistical Computing, Vienna, Austria)
and the package “ggplot2” for images. Quantile normalization
and subsequent data processing were performed using the
GeneSpring GX v12.1 software package (Agilent Technologies).
After quantile normalization of the raw intensity data, the
differentially expressed genes between the comparison groups
were identified by fold change (FC ≥ 2.0) and by statistical
significance (P ≤ 0.05 by unpaired, two-tailed t-test) (37). This
data is available at the NCBI gene expression omnibus under
accession GSE148126.

Quantitative PCR
Gene-specific quantitative PCR (qPCR) confirmations were used
to validate the microarray data. A High-Capacity RNA-to-cDNA
Kit (Applied BioSystems, Foster City, CA) was used to convert
RNA to cDNA according to manufacturer’s instructions. Briefly,
2 µg of RNA was incubated for 60min in a 30 µL reaction

containing 15 µL of 2× RT Buffer mix and 1.5 µL of 20× RT
enzyme mix brought up with nuclease-free water. The reaction
was stopped by heating to 95◦C for 5min. The cDNA was
diluted 1:100 with nuclease-free water for use in qPCR reactions.
Primers for qPCR were designed using the UCSC BLAT tool
on Arraystar probes for significant differentially expressed genes
from the microarray (https://genome.ucsc.edu/cgi-bin/hgBlat).
This tool allowed us to map all primers to the same transcript
as the one targeted by Arraystar probes by designing primers to
contain the probes region when possible or to be within the same
exon as the probe if the exact probe region was not possible.
Primer3 was then used to design primers based on the genetic
regions determined in BLAT (http://bioinfo.ut.ee/primer3-0.4.
0/primer3/). Parameters for Primer3 software were as follows:
primer Tm was 59 ± 2◦C, primer size was 20 ± 2 bp, and
GC clamps were used when possible; all other criteria were left
as the default software settings. Primer sequences are given in
Supplementary Table 2. The 25 µL qPCR reactions contained
0.02 µg of cDNA, 12.5 µL of 2× SybrGreen PCR Supermix,
and forward and reverse primers with a final concentration
of 0.625µM each. All reactions were performed in duplicate
for each cDNA pool (N = 3 independent biological replicates
for each condition) using Gapdh as the control gene; reactions
lacking cDNA template were included as controls for primer self-
annealing and amplification. Amplification was performed using
a BioRad MJ Mini Personal Thermal Cycler. The qPCR cycling
parameters were as follows: 95◦C for 3min (1 cycle), 95◦C for
10 s followed by 59◦C for 1min (40 cycles), finished with a melt
curve analysis. The amplification graphs were generated using
BioRad CFX manager 2.0. The quantification cycle (Cq) values
were obtained for all samples and used for quantification with the
21Cqmethod with one-tailed equal variance t-tests and standard
error of the mean using Microsoft Excel (38).

Gene Ontology
Gene ontology was performed on significantly differentially
expressed genes from microarray analysis using GeneCodis,
a gene annotation website (39–41). Two random gene lists
were also analyzed using GeneCodis and compared to the list
of differentially expressed genes. The following criteria were
used to determine significant single enrichment gene ontologies:
GeneCodis level 7 (most stringent), minimum of 28 genes
associated with the ontology, Chi-square value greater than Chi-
square from any random list. Additionally, the following criteria
were used to determine significant pathway enrichment gene
ontologies: GeneCodis level 7, at least twice as many genes as any
random list, Chi-square value greater than Chi-square from any
random list. The enrichment value was calculated in Microsoft
Excel using the following formula:

Number of annotated genes in input list
Number of genes in reference list

Total number of genes in input list
Total number of genes in reference list

where the input list consisted of all significantly expressed
genes from microarray analysis (with separate input lists for
upregulated and downregulated genes) and the reference list
consisted of all expressed genes on the microarray.
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Motif Analysis
A publicly available motif discovery tool called Hypergeometric
Optimization of Motif EnRichment (HOMER) was used to
identify transcription factor motifs within the target genes
regulated by FA (42). In this analysis, two files were run
separately: one containing the up regulated genes and one
containing the down regulated genes from the RNA microarray
results of the FA diets at 6 months. The HOMER script
findMotifs.pl was used for the genome of “mouse.” Parameters
included a starting point of 2,000 bases downstream of the TSS
and 500 upstream were specified with a background list of all the
genes from the microarray test. Results consisted of de novo and
known motif sequences generated by position weight matrixes
with their P-value, percent of the target and background, and
the best match of the protein that HOMER found based on their
database from UCSC.

RESULTS

Post-weaning Effects of Folate on Growth
Since little is known about long-term effects of folate deficiency,
we designed a study to follow folate deficient mice from infancy
through late adulthood (Figure 1A). Cohorts of 3 FA deficient
and 3 FA control mice were followed for each folate source. Since
mice remained on their designated diet for the duration of their
life, we weighed them at 3 stages of their adult life to ensure the
diet did not affect their overall health (6, 12, and 18 months—
representing young adult, middle-aged adult, and senior adult).
Although all mice in each diet gained weight as they aged, at any
given time point there was no significant difference between the
weights of mice on a folate diet compared to mice on a folate
deficient diet (Figure 1B, P ≥ 0.6 in all conditions).

Effects of Folate Restriction on Cognition
The novel object test for memory was administered to mice on
both diets to assess cognitive abilities associated with each diet.
Although the weights of the mice were not affected by dietary
condition, a significant difference was noted in cognitive abilities
beginning at 5 months (young adult) and persisting through
17 months (old adult). Mice on the FA deficient diet spent
significantly less time with the novel object (60 and 69% of time
with novel object in control mice compared to 47 and 53% of
time in deficient mice at 5 and 17 months, respectively; P <

0.05 for all comparisons) compared to mice on the FA control
diet, demonstrating decreased memory capabilities as assayed
over a 24-h period (Figure 2). Even though cognitive deficit
persisted through 17 months, the initial observance at 5 months
suggests that the effects of folate deficiency maybe be established
at this early time. For this reason, we focused our transcriptional
analysis on mice collected immediately following the 5-month
behavioral test.

Microarray Analysis to Determine
Folate-Regulated Genes
In order to characterize molecular mechanisms associated with
the cognitive decline observed in mice who were chronically
FA deficient, hippocampal gene expression in the FA deficient

mice was compared to expression in FA control mice using RNA
microarrays. These microarrays were obtained for the 6-month
time point to assess primary genetic changes associated with
the dietary conditions. These arrays found a high correlation
of expressed transcripts among all RNA preps both within and
between dietary groups reflecting the large similarity of the
transcriptomes from these mice (Figure 3A, r = 0.99). We
identified 363 transcripts to be significantly downregulated and
101 transcripts to be significantly upregulated (P < 0.05, fold
change > 2) in the deficient condition compared to the FA
condition (Figure 3B, Supplementary Table 3). A subset of 16
of these transcripts were confirmed by qPCR to be differentially
regulated due to FA supplementation (Figures 4A–C, P ≤ 0.05).

Folate-Dependent Genes Specific to
Hippocampus
Since folate is known to have tissue-specific effects, we further
investigated if any of our 16 confirmed differentially expressed
genes were indeed specific for hippocampus (43, 44). We
analyzed the same 16 transcripts using cDNA pools generated
from liver and heart tissue from the same mice. Interestingly,
none of these genes were differentially expressed in the heart,
and only one (Pacrgl, P = 0.04) was differentially expressed
in the liver (Figure 5A, Supplementary Figure 2). Further, we
observed that this Pacrgl gene was significantly downregulated in
the deficient hippocampus and significantly upregulated in the
deficient liver (Figure 5B), an observation that is consistent with
previous studies that noted the hippocampus and liver exhibit
opposite genetic responses to short-term folate deficiency (45–
48). Thus, it is likely that many of the differentially regulated
genes found on the microarray are specific to the hippocampus
and may be involved in the observed memory deficits found in
these animals.

Gene Ontology of Folate-Regulated Genes
To shed further light on the molecular mechanisms
involved in our observed memory deficits precipitated by
chronic FA deficiency, we performed gene ontology on the
differentially regulated genes using GeneCodis (Table 1,
Supplementary Table 4). The largest ontological category was
the 47 downregulated genes associated with the regulation of
nucleobase-containing compounds, which is not surprising
considering the crucial role the folate cycle plays in nucleotide
synthesis. Indeed, many of the other downregulated ontological
categories involved DNA and RNA associated mechanisms.
Perhaps a more interesting ontological category is the 11
downregulated genes associated with MAPK signaling pathway,
a number of which (Arrb2, Cacna1g, Fgfr4, Taok1, Cacna1h)
have been implicated in Alzheimer’s disease (AD) (49–53).
Additionally, two downregulated ontological categories involve
ion channel activity, which has also recently been implicated in
AD (54).

Motif Analysis
Since altered expression implies altered gene regulation, we
then examined the promoter sequences of folate-regulated
genes in order to determine if any transcription factor
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FIGURE 2 | Novel object test for object memory. A novel object test was used to assess memory in each dietary condition by comparing percent time the mouse

spends with a new object vs. an old object. Three litters of mice were used per condition with multiple litter mates averaged to represent one data point.

Five-month-old folic acid (FA) litters contained 4 mice each and FA-deficient (DEF) litters contained 3 mice each. Each 17-month-old litter contained 3 mice. All

comparisons represent P ≤ 0.03 (noted by astrisks). Error bars represent SEM values calculated from the independent biological replicates across all litters.

binding sites were enriched in a diet-dependent manner.
We used the motif discovery tool HOMER to determine
significantly enriched motifs associated with differentially
regulated transcripts from microarray analysis in the deficient
mice compared to the FA mice. To do this we compared
promoter sequences (−2000 bp to +500 bp) of the differentially
regulated genes searching for both known and de novo motifs.
HOMER determined 2 significantly enriched motifs (P ≤

0.0001) as de novo motifs that match previously identified
binding sites for MafB and Zfp410 (Figure 6A). This finding
is consistent with experiments demonstrating a potential
neuroplasticity role for Zfp410 in rat hippocampal dendrites
(55). We confirmed that MafB and Zfp410 are indeed expressed
in the hippocampal transcriptome using our microarray
data (Figure 6B).

DISCUSSION

We demonstrated that chronic post-weaning folate deficiency in
mice produced memory deficits observed in early adulthood and
in old age. Although the mice received adequate folate during
major developmental milestones, this early life folate was not
sufficient to protect against detrimental outcomes of late life
folate deficiency. Since the hippocampus is largely responsible for
memory consolidation, we mapped differences in hippocampal

gene expression between FA control and FA deficient mice and
found a large number of genes to be differentially expressed
in the FA deficient group. We believe that many of these
genes may have implications in memory functions (Table 1,
Supplementary Table 4).

The MAPK signaling pathway findings from our gene
ontology of downregulated genes present an interesting category
of potential genes to target for memory-related diseases,
especially given that half of our genes in this category are
already implicated in AD (Supplementary Table 3) (49–
53). Specifically, Arrb2 polymorphisms are indicated as
risk factors for late onset AD; Taok1 has been shown to
actively phosphorylate tau in Alzheimer’s brains; folate
receptor α, which binds to promotor regions of Fgfr4,
showed increased expression in AD fibroblasts; Cacna1g is
downregulated in AD brains; and Cacna1h is downregulated
in AD human neurons. MAPK signaling in general has
been implicated in AD, so the additional genes noted in our
ontology list may present novel specific targets for Alzheimer’s
investigations (56).

Similarly, ion channels have been generally implicated in
AD, so our ion-channel ontological category genes may present
specific targets for nutrition-related cognitive decline (54).
Mcoln1 (a.k.a. Trpml) is implicated in Alzheimer’s pathology
through dysregulation of autophagy (57). Trpml was shown to be
downregulated in a mouse model of AD (58) and downregulated
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FIGURE 3 | Microarray analysis of mice with and without FA. (A) A scatter plot is shown comparing the microarray data of the average normalized signal intensities for

the three FA replicates vs. the average normalized signal intensities for the three deficient (DEF) replicates. The correlation coefficient was calculated using R version

3.1.0. Correlations between individual replicates within the FA group (0.99, 0.98, 0.98) and within the deficient group (0.98, 0.99, 0.98) were also calculated to show

the similarities within each condition. (B) A total of 363 mRNA or lncRNA regions were downregulated (green) in the deficient condition compared to the FA condition,

and a total of 101 mRNA and lncRNA regions were upregulated (red) in the same comparison as indicated by the volcano plot. An additional 35,358 mRNA and

lncRNA regions were not differentially regulated (black). Genes were considered differentially regulated if they had fold change >2 and P < 0.05 by microarray analysis.

in our folate deficient/cognitively impaired mice (2.4-fold down,
P = 0.001; Supplementary Table 3). Additionally, a growing
body of evidence has implicated Tomm40 polymorphisms as
predictors of late onset AD (59–61) The extended regulatory
region of TOMM40 in humans, which includes APOE and
APOC2, has recently been reported to be hypomethylated
in AD subjects correlated with its increased expression in
AD (62). We have demonstrated that folate-deficient mice
which exhibit cognitive impairment also have an increase
in Tomm40 expression further implicating this gene. Grid1
expression in human females is positively correlated with
protection from AD risk (63). Our study with cognitively
impaired female mice demonstrated a downregulation of Grid1
(2.9-fold down, P < 0.001; Supplementary Table 3) which
also suggests the positive correlation of Grid1 expression and
cognitive health. It is interesting to note that this previous
study also demonstrated Grid1 expression was associated
with AD risk in male mice. Although our study did not
include male mice, future investigation would be warranted to
determine if folate deficiency was associated with an opposite
transcriptional response (i.e., upregulation of Grid1) in those
animals. Our data also indicates that Vdac2 expression is
positively correlated with cognitive health as it is downregulated
in the folate-deficient mice (2.3-fold down; P = 0.035;
Supplementary Table 3) which is consistent with lower Vdac2

protein levels in the brains of AD patients (64) yet were shown
to be elevated in the brains of an AD mouse model (65, 66).
Regarding Vdac2, we are unable to resolve this contradiction
between these two models although our results using folate
restriction in a non-transgenic mouse may more accurately
model the genetic changes occurring in cognitive decline
in humans.

Further, altered sensory perception is associated with AD
(67, 68). Specifically, olfaction deficits have long been associated
with AD (69, 70) and even used in some cases as a diagnostic
factor (71). Additionally, expression of a number of olfactory
receptors is altered in the cortex and hippocampus of AD
mice, and olfactory receptors are found near amyloid plaques
(72). Genome wide association studies have implicated Col11a1
in AD, as this gene was downregulated in the hippocampus
of Alzheimer’s patients (58). Thus, our data is consistent
with prior studies linking gene regulation differences with
cognitive decline.

Knowing that folate is relevant in regulating nucleotide
synthesis and methylation patterns in all tissue throughout the
body, we compared expression of a subset of our significant
hippocampal genes to expression in two other body tissues: heart
and liver. None of the genes we tested were significantly different
in the heart and only one was differentially expressed in the
liver, demonstrating tissue-specific effects of folate deficiency.
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FIGURE 4 | qPCR confirmations of specific genes shown to be differentially expressed in microarray data. A subset of genes considered to be significant (fold change

≥2 and P ≤ 0.05) by microarray analysis of the hippocampus were confirmed to be significant by qPCR (P ≤ 0.05). In addition one gene (Lrrc34) was chosen below

the threshold (fold change 1.9). Genes were chosen for confirmation to represent a variety of P-values, fold changes, and ontologically significant genes. Primers were

designed around the same region or within the same exon as the microarray probe when possible to ensure qPCR was targeting the same transcript as the

microarray. Each gene was tested using at least N = 2 for independent biological samples for each dietary condition. (A) Four examples of microarray vs. qPCR

comparisons of confirmed genes are shown. A number of genes were confirmed to be downregulated (B) or upregulated (C) in the deficient condition compared to

the FA condition (P ≤ 0.05 for all comparisons as noted by astrisks). Each experimental gene was normalized to the average Gapdh expression for its respective

dietary category. Gapdh expression was not significantly altered in any deficient vs. folate comparisons. Plotted Gapdh levels are relative to the expression of one FA

Gapdh replicate to demonstrate the lack of variability between independent replicates and to demonstrate the lack of folate dependence. Error bars represent SEM

values calculated from the three normalized array values or 3-fold values prepared from three independent biological replicates.

Further, the one gene (Pacrgl) that was differential expressed in
the liver showed an opposing expression pattern between the
two tissues, being downregulated in the deficient hippocampus
and upregulated in the deficient liver. This is consistent with
short-term folate deficiency studies that demonstrate opposite
outcomes of folate deficiency in the liver vs. the hippocampus
(46, 47, 73). This opposing expression pattern together with
a large lack of long-term studies examining gene-specific
outcomes of folate deficiency, indicate the need for future
studies investigating the effects of chronic folate deficiency
on other tissues. This is particularly true for both the liver
due to its central role in folate metabolism and the heart
due to the documented association between folate deficiency
and cardiovascular disease (74, 75). Additionally, our tissue-
specific findings demonstrate the likelihood that many of the
genes we found to be statistically significant in the folate
deficient hippocampus are likely associated with our observed
cognitive outcomes and may serve as targets for treatment
and prevention of memory-related diseases such as Alzheimer’s
and dementia.

All of our ontological categories containing genes with known
cognitive implications represent genes downregulated in the
folate deficient condition; indeed, we found that of all of our
differentially expressed genes, over three times more genes
were downregulated than upregulated. This may initially seem
counterintuitive since folate is an important methyl donor,
and decreased DNA methylation often leads to increased gene
expression (6, 7). Indeed, this inverse relationship between
methylation and expression has been shown to hold true in
a folate-deficient liver, with overall global hypomethylation
observed in mice on folate deficient diets (46). However, while
global hypomethylation is often an outcome of folate deficiency,
site-specific hypermethylation also occurs (73). Further, folate
deficiency may result in different outcomes in different tissue
types; the rat liver and brain have been shown to react to folate
deficiency in opposing manners with brains exhibiting global
hypermethylation while livers exhibit global hypomethylation in
response to folate deficiency (26).

Our bioinformatics analysis of differentially expressed genes
implicates factors that may influence the gene expression
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FIGURE 5 | Folate-dependent genes are not ubiquitously expressed. Each of the genes confirmed to be differentially expressed in hippocampus was also tested in

liver and heart tissue of the same mice to determine if differential expression was systemic or tissue specific. Each gene was tested on 3 independent biological

replicates in the FA and deficient (DEF) conditions. (A) Of the 15 genes tested, only one was found to be differentially expressed in the liver (Pacrgl), and no genes were

found to be differentially expressed in the heart. The blue dotted line represents a significant P-value (≤0.05). (B) Interestingly, only one of the differentially expressed

hippocampus genes was also differentially expressed in the liver (Pacrgl, hippocampus P = 0.05, liver P = 0.04; significance noted by asterisks). Further, Pacrgl was

significantly downregulated in the hippocampus and significantly upregulated in the liver in the deficient vs. folate comparison. This same gene was not differentially

expressed in the heart (P = 0.43). Error bars represent SEM values calculated from the 3-fold values prepared from three independent biological replicates.

TABLE 1 | Gene ontology of folate-regulated genes.

Gene set Gene ontology Genes P-value Enrichment

Genes downregulated (317 genes) Regulation of nucleobase-containing compounds 47 Genes 0.0489 1.44

Transcription from RNA polymerase II promotor 22 Genes 0.0226 1.85

Intracellular protein kinase cascade 18 Genes 0.00276 2.34

Detection of stimulus in sensory perception 7 Genes 2.6 × 10−5 5.72

Ion channel activity 9 Genes 0.0397 2.35

Gated channel activity 8 Genes 0.0202 2.72

Double stranded DNA binding 5 Genes 0.0312 3.22

MAPK signaling pathway 11 Genes 0.000968 3.58

Genes upregulated (89 genes) Heparin binding 3 Genes 2.41 × 10−6 10.6

All genes that were differentially expressed in the deficient condition compared to the FA condition according to microarray analysis (fold change > 2 and P < 0.05) were analyzed with

GeneCodis using all of the microarray probes as the background list. Two random lists of genes of the same size as the upregulated and two of the same size as the downregulated

experimental lists were also run as controls for false positives in gene ontologies. Annotations are presented in this table if (a) the gene ontology represented a greater number of genes

and a lower P-value than those resulting from a corresponding random list and (b) the annotations appeared to be relevant to this study. P-values were calculated by GeneCodis using

Chi-square tests.

changes due to folate deficiency. We observed enriched
motifs of binding sites for two proteins, MafB and Zfp410
(Figure 6). Although expression levels of these two genes
are not significantly different between dietary conditions by
microarray analysis, they may play in important role in
regulating a number of genes whose expression was observed
to be significant in the FA deficient condition. Perhaps folate’s
role in altering the hippocampal expression landscape can
be partially explained by post-translational modification of
MafB and Zfp410 or by altered methylation status in their
binding regions. This is consistent not only with folate’s pivotal

role in DNA methylation, but also with the implications of
folate deficiency on post-translational modification of various
proteins including histones, septins regulating neural tube
closure, and endothelial nitric oxide synthase in cardiovascular
disease (76–78).

It is important to note that although these genes changed

expression in response to inadequate folate intake, the exact

mechanisms by which these genes changed were not determined

in this study. Furthermore, observed gene expression differences
at 6 months that correlate with early cognitive deficits may

not persist at later time points (18 months). It is tempting
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FIGURE 6 | Sequence motifs enriched in folate-regulated genes. (A) Differentially expressed RNA was analyzed with HOMER to determine significant transcription

factors associated with differentially regulated genes. A target list of 224 sequences was compared to 19,048 background sequences. Transcription factor binding

sites were mapped to be −2000 or +500 bp relative to the TSS of differentially expressed microarray genes. This table shows a list of motifs and their respective

transcription factor that were enriched in the deficient condition compared to the FA condition and associated with each motif. (B) HOMER analysis showed two

significantly enriched motifs that match the binding sequence for Mafb and Zfp410, respectively. The average normalized microarray levels (log2 values) for these

genes are shown. Mafb and Gapdh are represented by one probe each while Zfp410 (which has three probes on the array) is represented by the probe with the

highest expression level. The expression of Gapdh is a reference along with the median normalized value of all transcripts on the array (red dotted line). Error bars

represent SEM values calculated from the three normalized array values prepared from three independent biological replicates.

to assume that since folate plays a major role in DNA
methylation, which in turns plays a major role in gene expression,
the genes may exhibit altered expression patterns due to
altered methylation status. However, methylation status was
not determined in this study, nor were levels of folate or
SAM in the blood and hippocampus; therefore, we cannot rule
out alternative mechanisms leading to the observed behavioral
deficits and associated alterations in gene expression. Moreover,
thus study used female pups due to housing constraints.
Additional studies using male mice would need to be conducted
to evaluate the potential of sex bias in our data. Taken
together, data presented here emphasizes the importance of
folate supplementation for the prevention of cognitive decline in
adolescence and early adulthood. This is of particular importance
to at risk categories such as malnutrition, substance abuse,
and alcoholism.

In summary, we showed that folate deficiency beginning
post-weaning and persisting through late adulthood induced
memory deficits which can be linked to expression changes
in over 400 genes, most of which were downregulated in
the FA deficient condition. While many of these genes are

expectedly related to regulation of nucleotide-related functions,
a significant number are also associated with MAPK signaling
and ion channel activity. Further, binding sites for two
proteins MafB and Zfp410 were enriched in the FA deficient
condition, perhaps representing regulatory pathways altered
by folate deficiency. These genes and motifs may present
novel targets for treatment of memory-related diseases such
as AD.
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