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Abstract

Background: Stroke is a chronic cardiovascular disease that puts major stresses on U.S. health and economy.

The prevalence of stroke exhibits a strong geographical pattern at the state-level, where a cluster of southern states
with a substantially higher prevalence of stroke has been called the stroke belt of the nation. Despite this
recognition, the extent to which key neighborhood characteristics affect stroke prevalence remains to be further
clarified.

Methods: We generated a new neighborhood health data set at the census tract level on nearly 27,000 tracts by
pooling information from multiple data sources including the CDC's 500 Cities Project 2017 data release. We
employed a two-stage modeling approach to understand how key neighborhood-level risk factors affect the
neighborhood-level stroke prevalence in each state of the US. The first stage used a state-of-the-art Bayesian
machine learning algorithm to identify key neighborhood-level determinants. The second stage applied a Bayesian
multilevel modeling approach to describe how these key determinants explain the variability in stroke prevalence
in each state.

Results: Neighborhoods with a larger proportion of older adults and non-Hispanic blacks were associated with
neighborhoods with a higher prevalence of stroke. Higher median household income was linked to lower stroke
prevalence. Ozone was found to be positively associated with stroke prevalence in 10 states, while negatively
associated with stroke in five states. There was substantial variation in both the direction and magnitude of the
associations between these four key factors with stroke prevalence across the states.

Conclusions: When used in a principled variable selection framework, high-performance machine learning can
identify key factors of neighborhood-level prevalence of stroke from wide-ranging information in a data-driven way.
The Bayesian multilevel modeling approach provides a detailed view of the impact of key factors across the states.
The identified major factors and their effect mechanisms can potentially aid policy makers in developing area-based
stroke prevention strategies.
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Background

Stroke is the leading cause of death and disability-adjusted
life years worldwide, including 795,000 new stroke cases
and 142,142 stroke-related deaths in the United States in
2018 [1]. There is now considerable evidence for the risk
factors of stroke at the individual level. For example, stroke
has been found to be correlated with modifiable risk fac-
tors, like high blood pressure, obesity and elevated choles-
terol level, and unhealthy behaviors like smoking and
sedentary lifestyle [2—4]. The incidence and prevalence of
stroke were also shown to be markedly higher among older
adults, Blacks and those with low socioeconomic status [5].

More recently, a growing number of studies reported
that neighborhood context was associated with stroke
incidence and mortality after stroke [6-15]. However,
relatively few studies [16—-20] have examined such asso-
ciations when both the potential risk factors and the
outcome are at the neighborhood level. Of note, three
studies characterized the neighborhood-level associa-
tions for focused research questions with predetermined
predictors, e.g., racial disparities in Howard G et al. [16]
and Pickle LW et al. [17], and the impact of fast food
restaurants in Morgenstern LB et al. [18]

Three other studies sought to identify and rank im-
portant predictors for the neighborhood-level prevalence
of cardiovascular diseases at the mean level [19, 21], and
for different percentiles of the response distribution [20].
A detailed summary of the related articles and methods
involved and study results appear in Table 1.

No studies have examined the effect mechanisms of
neighborhood level risk factors on stroke prevalence while
accounting for the multilevel data structure of the neigh-
borhood health data. As a direct consequence, there is a
lack of understanding about to what extent the differences
in stroke prevalence in the US states can be attributed to
differences in key neighborhood-level characteristics.

To fill the research gaps, our study employed a two-
stage modeling approach to understand how key neigh-
borhood characteristics affect the geographic variation in
stroke prevalence. The first stage focused on identifying
key determinants of stroke prevalence at the neighbor-
hood level using a novel and precise Bayesian machine
learning algorithm. The second stage used a Bayesian
multilevel modeling approach to evaluate the effects of the
key determinants on stroke prevalence across 49 states in
the US. The investigation would provide valuable guid-
ance for developing area-based interventions focusing on
key modifiable risk factors at the neighborhood level to re-
duce stroke prevalence in specifically targeted areas.

Methods

Data source

We integrated three data sources and created a large-
scale neighborhood health data [19]. Census tract was
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used as a proxy of neighborhood. Data on the prevalence
of health outcomes, prevention, and health behavior
measures were drawn from the Centers for Disease Con-
trol and Prevention (CDC)’s 500 Cities Project 2017 data
release [22]. Socio-demographic measures for the se-
lected census tracts were from the 2011-2015 American
Community Survey 5-Year Estimates [23, 24]. We ob-
tained information on environmental exposures from
the Environmental Protection Agency (EPA)’s Environ-
mental Justice Screening (EJSCREEN) database [25].

The main outcome of the study was stroke prevalence
measured at census tract level. We included 24 potential
predictors of four types, sociodemographic information,
prevention measures, unhealthy behaviors, and environ-
mental measures, which are related to cardiovascular
health [20]. Detailed descriptions of the variables, their
data sources and distributions are shown in Table 2 and
Fig. 1. Both the outcome and the predictors were mea-
sured at the neighborhood level. After excluding missing
data on key variables, our final analytical dataset in-
cluded 26,697 census tracts across 49 US states. The
number of census tracts in a state varies from 11 to
5368 with a median value of 307.

Statistical analysis

We identified key neighborhood-level determinants of
and their impacts on the neighborhood-level stroke
prevalence using a two-stage modeling approach. In the
first stage, we used Bayesian machine learning to identify
key factors. The second stage applied a multilevel Bayes-
ian regression to evaluate the state-level effects on stroke
prevalence of these key factors.

We first used an iterative approach to remove the
minimum number of highly correlated predictor vari-
ables as redundant predictors for stable model perform-
ance [20, 26, 27]. Alternative feature selection methods
may be used for other study settings such as imaging
data [28, 29] or classification problems [30, 31]. We then
implemented a permutation-based variable selection al-
gorithm, BART-Machine, developed in Bleich et al. to
identify major determinants for the neighborhood-level
prevalence of stroke [32]. BART-Machine uses the infra-
structure of the most influential generative probabilistic
machine learning model, Bayesian Additive Regression
Trees (BART) [33]. BART has been shown to have bet-
ter predictive performance than many supervised ma-
chine learning methods, including random forests,
boosted models and neural nets, in a variety of study set-
tings [33, 34]. Details of the BART model have been de-
scribed elsewhere [19, 35]. BART-Machine uses the
variable inclusion proportions (VIPs), i.e., the proportion
of times each variable is selected as a splitting rule di-
vided by the total number of splitting rules in building
the BART model, as the measure of variable importance.
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Table 1 Literature studying associations between the neighborhood risk factors and stroke at individual-level or neighborhood-level

Outcome
stroke

Paper

Methods

Results

Individual-level

Neighborhood-
level

Osypuk TL, Ehntholt A, Moon JR, Gilsanz P,
Glymour MM. Neighborhood Differences in
Post-Stroke Mortality. Circ Cardiovasc Qual

Outcomes. 2017;10 (2):e002547.

Menec VH, Shooshtari S, Nowicki S, Fournier S.
Does the relationship between neighborhood
socioeconomic status and health outcomes
persist into very old age? A population-based
study. J Aging Health. 2010; 22:27-47.

Brown P, Guy M, Broad J. Individual socio-
economic status, community socio-economic
status and stroke in new zealand: A case
control study. Soc Sci Med. 2005; 61:
1174-1188.

Brown AF, Liang L-J, Vassar SD, Stein-Merkin S,
Longstreth WT, Ovbiagele B, Yan T, Escarce JJ.
Neighborhood disadvantage and ischemic
stroke: The cardiovascular health study (chs).
Stroke. 2011; 42:3363-3368.

Engstréom G, Jerntorp |, Pessah-Rasmussen H,
Hedblad B, Berglund G, Janzon L. Geographic
distribution of stroke incidence within an
urban population: Relations to socioeconomic
circumstances and prevalence of
cardiovascular risk factors. Stroke.

2001; 32:1098-1103

Lisabeth L, Diez Roux A, Escobar J, Smith M,
Morgenstern L. Neighborhood environment
and risk of ischemic stroke: The brain attack
surveillance in corpus christi (basic) project.
Am J Epidemiol. 2007; 165:279-287.

Clark CJ, Guo H, Lunos S, Aggarwal NT, Beck T,
Evans DA, Mendes de Leon C, Everson-Rose
SA. Neighborhood cohesion is associated with
reduced risk of stroke mortality. Stroke. 2011;
42:1212-1217

Brown AF, Liang L-J, Vassar SD, Merkin SS,
Longstreth WT, Ovbiagele B, Yan T, Escarce JJ.
Neighborhood socioeconomic disadvantage
and mortality after stroke. Neurology. 2013;
80:520-527.

Aslanyan S, Weir CJ, Lees KR, Reid JL, McInnes
GT. Effect of area-based deprivation on the
severity, subtype, and outcome of ischemic
stroke.

Gerber Y, Weston SA, Killian JM, Therneau TM,
Jacobsen SJ, Roger VL: Neighborhood income
and individual education: Effect on survival
after myocardial infarction. Mayo Clinic
Proceedings. 2008, 83 (6): 663-669.
https://doi.org/10.4065/83.6.663.

Hu, L, Ji, J, Li, Y. et al. Quantile Regression
Forests to Identify Determinants of
Neighborhood Stroke Prevalence in 500 Cities
in the USA: Implications for Neighborhoods
with High Prevalence. J Urban Health (2020).
https://doi.org/10.1007/511524-020-00478-y

Cox proportional hazard models
(All individual-level variables)

Multilevel logistic regressions
(individual level variable and
neighborhood level variable)

Stepwise logistic regression
(all individual level variables)

Race-stratified multilevel Cox
proportional hazard models
(individual level variable and
neighborhood level variable)

Direct standardization with the
equivalent average rate method

Poisson regression (individual
level)

Marginal Cox proportional hazard
models (individual level)

Multilevel Cox proportional hazard
models (individual level variable
and neighborhood level variable)

Stepwise linear and logistic
regression (individual level)

Cox proportional hazards models

Quantile Regression Forests

Neighborhood characteristics (Race, income,
age) predict post-stroke mortality, but most
effects are similar for individuals without
stroke.

Relative to individuals living in the most
affluent areas, those in the poorest areas had
significantly higher odds of having stroke.
Significant neighborhood income effects
tended to be evident among individuals age
65 to 75 as well as those age 75 +.

Individual income and average household
income are significant predictors of onset of
stroke both independently and after
controlling for behavioural and medical risk
factors.

Higher risk of incident ischemic stroke was
observed in the most disadvantaged
neighborhoods among whites, but not
among Blacks.

Socioeconomic score correlated significantly
with area-specific stroke rates among men
and women. Incidence of stroke was
significantly associated with cardiovascular
risk score for each area.

In Poisson regression analyses comparing

the 90th percentile of neighborhood score
(median annual household income, education,
occupation, housing price) with the 10th, the
relative risk of stroke was 0.49 (95%
confidence interval: 0.41, 0.58).

Neighborhood-level social cohesion was
independently protective against stroke
mortality. Research is needed to further
examine observed race differences and

pathways by which cohesion is health-

protective.

Living in a socioeconomically disadvantaged
neighborhood is associated with higher
mortality hazard at 1 year following an
incident stroke.

Tackling health inequalities in stroke should
focus on stroke primary prevention by
tackling deprivation, including promoting
changes in lifestyle.

Poor neighborhood income was a powerful
predictor of mortality even after controlling
for a variety of potential confounding factors.

Neighborhoods with a larger share of non-
Hispanic blacks, older adults or people with
insufficient sleep tended to have a higher
prevalence of stroke, whereas neighborhoods
with a higher socio-economic status in terms
of income and education had a lower preva
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Table 1 Literature studying associations between the neighborhood risk factors and stroke at individual-level or neighborhood-level

(Continued)

Outcome
stroke

Paper

Methods

Results

Hu L, Ji J, Liu B, Li Y. Tree-Based Machine
Learning to Identify and Understand Major
Determinants for Stroke at the Neighborhood
Level. J Am Heart Assoc. 2020; 00: e016745.
https://doi.org/10.1161/JAHA.120.016745.

Morgenstern LB, Escobar JD, Sdnchez BN,
Hughes R, Zuniga BG, Garcia N, Lisabeth LD.
Fast food and neighborhood stroke risk. Ann
Neurol. 2009; 66:165-170.

Pickle LW, Mungiole M, Gillum RF: Geographic
variation in stroke mortality in blacks and
whites in the United States. Stroke. 1997, 28
(8): 1639-1647.
https://doi.org/10.1161/01.5TR.28.8.1639.

Howard G, Howard VJ, Katholi C, Oli MK,
Huston S: Decline in US stroke mortality - An
analysis of temporal patterns by sex, race, and
geographic region. Stroke. 2001, 32 (10): 2213~
2218. https://doi.org/10.1161/hs1001.096047.

Hu L, Liu B, Li Y. Ranking sociodemographic, BART
health behavior, prevention, and

environmental factors in predicting

neighborhood cardiovascular health: A

Bayesian machine learning approach.

Preventive Medicine. 2020;141:106240.

BART, Bayesian linear
regression model

Poisson regression and
generalized estimating
equations

Multilevel regressions

Logistics regression
(analyses were performed
at the county level)

lence of stroke.

Of the five most important predictors
identified by our method, higher prevalence of
low physical activity, larger share of older
adults, higher percentage of non-Hispanic
blacks and higher ozone levels were
associated with higher prevalence of stroke

at the neighborhood level. Higher median
household income was linked to lower
prevalence.

Controlling for demographic and SES factors,
there was a significant association between
fast food restaurants and stroke risk in
neighborhoods in this community-based
study.

Mortality rates in the Southeast also remain
high, especially for Blacks.

White men have experienced the largest
decline in stroke mortality, and black men
have seen the smallest. Generally, stroke
mortality appears to still be slowly declining
for blacks but not for whites. Geographic
differences in stroke mortality are predicted to
persist.

Neighborhood behavioral factors such as the
proportions of people who are obese, do not
have leisure-time physical activity, and have
binge drinking emerged as top five predictors
for most of the neighborhood cardiovascular
health outcomes.

The variable selection procedure can be outlined as fol-
lows: i) Compute the VIP for each predictor from the
BART model fitted to the observed data. ii) Permute the
response variable and rebuild the model and compute
the VIPs for all predictors, which we refer to as “null”
VIPs. Repeat this process 100 times to create a null per-
mutation distribution of the VIPs. iii) Include a predictor
if its VIP from the observed data exceeds the 95% quan-
tile of the distribution of the null VIPs.

The BART-Machine variable selection procedure
can be implemented using the R package bartMa-
chine. This permutation-based variable selection ap-
proach does not require any additional assumptions
beyond those of the BART model. The sum-of-trees
plus normal errors is a flexible assumption that per-
forms well across a wide range of data settings, espe-
cially relative to methods that make stronger
parametric demands [32]. A disadvantage of the
BART permutation-based procedure is the computa-
tional cost associated with running BART models on
multiple (e.g., 100) permutation sets. However, paral-
lel computing on multiple cores can be used to speed

up computation. Comparisons of the performance of
BART-Machine versus other tree-based machine
learning approaches, including random forests [36],
[36] and boosting [37], have been described elsewhere
and have shown that BART-Machine tends to identify
the most parsimonious set of important predictors
while maintaining high prediction accuracy [19].

To investigate the contribution of identified key deter-
minants to the prevalence of stroke, we fitted a fully
Bayesian multilevel linear regression model to all census
tracts in the US. The model explicitly took into account
that individual census tracts (first level) are clustered in
the states (second level). This was accomplished by pool-
ing information across clusters, which tends to improve
estimates about each cluster. The improved estimation
leads to several benefits, including improved estimates
for repeat sampling caused by multiple observations aris-
ing from the same unit, improved estimates for imbal-
ance in sampling, explicit modeling of variation among
units or groups within the data, and avoiding averaging
which can manufacture false confidence [38]. The multi-
level model is specified as
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Table 2 Distribution of 24 potential neighborhood-level predictors and prevalence of stroke across 500 cities

Domain

Variable Name

Definition Data source

Health Outcomes

Unhealthy Behaviors

Prevention

Socio-demographic Status

Environmental factors

STROKE

SMOKING

NO_PA

OBESITY
INSUF_SLEEP
LACK_INSURANCE
DENTAL
COLON_SCREEN

CORE_PREV_M

CORE_PREV_W

AGE65_OVER
AGE18_34
COLLEGE_HIGHER
HS_COLLEGE
FEMALE
NON_HIS_ASIAN
NON_HIS_BLACK
NON_HIS_OTHER
NON_HIS_WHITE
POVERTY
MED_INCOME
HOUSE_PRE1960
TRAFFIC

OZONE

PM25

CDC 500 Cities Data
CDC 500 Cities Data®

Stroke among adults aged =18 years

Current smoking among adults aged =18 years

No leisure-time physical activity among adults aged =18 years
Obesity among adults aged =18 years

Sleeping less than 7 h among adults aged =18 years

Current lack of health insurance among adults aged 18-64 years CDC 500 Cities Data
Visits to dentist or dental clinic among adults aged 218 years

Fecal occult blood test, sigmoidoscopy, or colonoscopy among
adults aged 50-75 years

Older adults aged 265 years who are up to date on a core set of
clinical preventive services (Men: Flu shot past year, Pneumococcal
polysaccharides vaccine (PPV) shot ever, Colorectal cancer screening)

Older adults aged 265 years who are up to date on a core set of
clinical preventive services (Women: Same as above and Mammogram
past 2 years)

Population aged 65 and over ACS?
Population aged between 18 and 34

Bachelor's degree or higher

High school graduate or higher

Female

Not Hispanic or Latino: - Asian alone

Not Hispanic or Latino: - Black or African American alone

Not Hispanic or Latino: - Other

Not Hispanic or Latino: - White alone

Below poverty level; Estimate; Families

Median household income in the past 12 months (in thousands)
Pre-1960 housing (lead paint indicator) (in thousands)

Traffic proximity and volume (average number of vehicles/distance)
Ozone level in air (ppb) EPA-EJSCREEN®

PM,5 level in air
(ug/m?)

@ census tract level 500 Cities Data from the Centers for Disease Control and Prevention (CDC), which were modeled based on population-based survey data from
the Behavioral Risk Factor Surveillance System (BRFSS).; ® census tract level data from the 2011-2015 American Community Survey 5-Year Estimates provided by
the Census Bureau; © To match the geospatial unit of census tract available in the other two data sources, we aggregated the census block group level
environmental measures to the census tract level by taking the means for PM, s and O3, and the sum for the housing data, and the sum of block-group-level
population weighted traffic data. PM, 5 concentrations are annual average of the daily ambient average, and ozone concentrations are average of daily maximum
8-h level for the summer season. Both PM, s and ozone were from a space-time downscaling fusion model based on monitoring data and modeled data. Traffic
data reflect annual average daily traffic count of vehicles, i.e. count of vehicle at major roads within 500 m divided by distance in meters, and was calculated
based on traffic data from the U.S. Department of Transportation. Pre-1960 housing data were based on ACS from the U.S. Census

Yy = Boj + B + o + By + €

Bi= {ﬂop e ﬁk;} /~MVNormal(;¢, 3,

allowed to vary across states and are assigned their own
distributions. We have also allowed the intercept, S, to
vary across states in a similar manner. Let ; denote the
vector of f; ’s. We assume f; ’s are realizations from a
common, multivariate normal distribution, f8;~ MVNor-
mal(y¢, X), where g is a (k+ 1) x 1 mean vector and X is a

where y;; is the prevalence of stroke for census tract i in
state j, Xy ..., %x; are k key determinants for census
tract i in state j, and €;;~N (0, 62) is the residual term as-
sumed to normal. The parameters ..., B, which re-
spectively encode the effects of k key determinants, are

(k+ 1) x (k+ 1) covariance matrix.

For a fully Bayesian analysis, we place prior distribu-
tions on the parameters, for which we chose weakly-
informative priors. We specify weakly informative priors
as follows.
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Fig. 1 Boxplots of 24 potential neighborhood-level predictors and prevalence of stroke across 500 cities. Measures are in percentages for all
variables except those marked with an asterisk, which are in absolute measurements

Z = D(0p)RD(0p)
R~LK]JCorr(2)

o,~Half Cauchy(0,1)
oe~Half Cauchy(0,1)
u~N(0,10),0 =1, ...k + 1,

where D(og) is a diagonal matrix with each diagonal
element o; representing the standard deviation of fj;, I =

1, ..., k+1, on which we specified a Half Cauchy (0,1)
prior distribution, and R is the corresponding correlation
matrix for which we assigned a LKJ-Correlation prior
with a shape parameter of 2 as recommended in McEI-
reath [19]. We also used Half Cauchy (0,1) prior for o,
and assumed a normal distribution for each mean of the
Bi ’s, up with large enough standard deviation to be
noninformative.

We used R package brms to get full Bayesian statis-
tical inference with Markov chain Monte Carlo (MCMC)
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sampling for our Bayesian multilevel model [39]. The
brms package provides a flexible interface to fit Bayes-
ian multilevel models using Stan, which is a state-of-the-
art platform for statistical modeling and high-
performance statistical computation [40]. We used Stan’s
default no-U-turn sampler (NUTS), which is a highly ef-
ficient algorithm that avoids the random walk behavior
and sensitivity to correlated parameters and allows faster
convergence to high-dimensional target distributions
[39, 41]. To ensure convergence of posterior distribu-
tion, we used four MCMC chains, each with 5000 itera-
tions, of which the first 2000 iterations were warmup to
calibrate the sampler, leading to a total of 12,000 poster-
ior samples. The data analysis in this manuscript was
conducted in 2020.

Results
We first identified and removed eight redundant vari-
ables. We then implemented BART-Machine to the
remaining 16 variables and identified, for the prevalence
of stroke at the neighborhood level, four most important
predictors: the proportion of people who are older than
65, the proportion of non-Hispanic black, median house-
hold income and ambient ozone level. These four vari-
ables were selected as they all had proportion included
above their corresponding thresholds, as shown in Fig. 2.
We generated a ring map using the R software 3.6.2 in
Fig. 3 to visualize the geographic variations in the
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prevalence of stroke and the four identified key determi-
nants. The R codes can be found in the supplementary
materials. Levels of these variables were categorized by
tertiles. States with a high stroke prevalence were con-
centrated in the southern US. Ten out of 16 southern
states had stroke prevalence ranked in the highest tertile.
These ten states also tended to have low median house-
hold income and high proportion of non-Hispanic
blacks. The northeast region appeared to have the lowest
ozone level and youngest population, and the West has
the highest median household income and the lowest
prevalence of stroke. The proportion of older residents
and non-Hispanic blacks is also higher overall in the
South.

Figure 4 summarizes the posterior distributions of the
effects of the four key neighborhood characteristics ob-
tained from our Bayesian multilevel model. First, overall,
higher proportion of older inhabitants and larger share
of non-Hispanic blacks were consistently associated with
higher prevalence of stroke across the states. Medium
household income was inversely associated with the
prevalence of stroke. The ozone-stroke associations were
found to be positive in 10 states, Connecticut, Florida,
Illinois, Indiana, Michigan, Minnesota, Ohio, South Car-
olina, Tennessee and Texas. On the other hand, negative
ozone-stroke associations were also found in California,
Massachusetts, New Jersey, New York, Washington. Sec-
ond, there appears to be substantial variation in the

correspond to variables that are not selected
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Fig. 2 Visualization of the variable selection algorithm. The vertical lines are the threshold levels determined from the “null” distributions for
Variable Inclusion Proportions computed from 100 permutated data. Variables passing this threshold are displayed as solid dots. Open dots
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Fig. 3 Ring map visualization of stroke prevalence and four major determinants for 50 states and the District of Columbia states. The median
value of the measures of census tracts was used for each state. Low, Medium and High were categorized based on tertiles of the distribution of
median values across the states. There were no ozone measures for Hawaii and Alaska. Ring map was created using the open source R software
version 3.6.1. URL https//www.R-project.org/. The R codes are provided in the supplementary materials
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effect of each of four determinants across states with
nonoverlapping credible intervals for some states. For
example, the effect of median household income and ad-
vancing age were substantially stronger in Mississippi
than in the District of Columbia (about 6 and 2 times
larger effects, respectively, with nonoverlapping inter-
vals.) The most pronounced effect of age structure was
observed in Mississippi, and the effect of racial/ethnic
composition was strongest in Georgia while smallest in
Arizona.

Discussion

The rise of machine learning techniques and algorithmic
advances have enabled computer systems to carry out
complex processes by learning from data, rather than
following pre-programmed rules. The advent of the Big
data era has stimulated novel approaches using machine
learning techniques to generate relevant solutions -- fas-
ter and more accurately -- to impacting health. Machine
learning has been used to predict healthcare outcomes
including cost, utilization, and quality [42-45].
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Fig. 4 Posterior mean of the state-specific effects of four key neighborhood-level determinants (solid dots) and corresponding 95% credible
intervals (error bars). Effect estimates represent average changes in percent of stroke per 10% increase in AGE65_OVER or NON_HIS_BLACK, and
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We leveraged a large-scale cardiovascular health data-
set with information on unhealthy behaviors, prevention
measures, sociodemographic status and environmental
factors garnered from more than 20,000 census tracts in
500 US major cities. The key neighborhood-level deter-
minants identified via the BART-Machine algorithm
were in general in good agreement with known patient-
level risk factors. Research from other studies also
suggested a relationship between stroke and low
neighborhood-level income [7, 9, 11-15, 19, 20], age [14,
15, 19, 20] and Hispanic blacks [8, 15-17, 19, 20]

We employed a Bayesian multilevel modeling ap-
proach to attribute the geographic variability in the
prevalence of stroke to major determinants while recog-
nizing the hierarchical structure of the data set. Multi-
level modeling improves estimates about each state by
allowing partial pooling and explicitly modeling of varia-
tions among census tracts and states, which is particu-
larly beneficial in the presence of highly unequal sample
size — ranging from 11 to 5368 — across the states [38,
46, 47]. By explicitly modeling the variability in stroke
prevalence across the states, our results provided a high
resolution of how the neighborhood-level prevalence of
stroke was attributed to key neighborhood characteris-
tics across different states. Comparison of the blue lines
representing the average effects with the state-specific
posterior means and intervals in Fig. 4 suggests that ig-
noring the variability would lead to biased
characterization of these associations, which can be dir-
ectional (ozone effects) or of significant magnitude (age,
income or non-Hispanic blacks).

Understanding these state-level variations is also im-
portant from the public health and policy perspectives,
particularly for urban areas. In general, we found that
neighborhoods with older and more non-Hispanic black
populations tended to have a higher prevalence of
stroke, while wealthier communities tended to have
lower stroke prevalence. We also noted a stronger effect
of income in poorer states (e.g. Mississippi, Ohio) than
in affluent states (e.g. Virginia, District of Columbia). In
addition to the region-specific effects estimated by our
Bayesian multilevel modelling approach, our study was
the first to shed lights on the association between stroke
and ozone level both at the neighborhood level. We
found that the effect of ozone on stroke prevalence at
neighborhood-level is mixed, as it was found to be posi-
tively associated with stroke in less wealthy states while
negatively associated with stroke in more affluent states.
At individual-level, findings of the effect of ozone on
stroke and stroke-related health outcomes have also
been inconsistent. Montresor et al. and Wing et al. have
demonstrated a negative association between average
ozone levels and risk of strokes in South Carolina and
Texas [48, 49]. Henrotin et al. found that there was a
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positive association between risk of ischemic stroke and
daily ozone exposure, while Yu et al. suggested protect-
ive effects of ozone on incidence and outcomes of stroke
[50-52]. Investigation into the link between ozone and
cardiovascular health merits further research. These re-
sults are in line with those from patient-level studies and
suggest that there is at present no general agreement
about the effect of ozone on stroke and further research
in this area is warranted.

Our study has important implications related to public
health and policy. Identifying major neighborhood-level
determinants allows in-depth investigation into the
exposition of geographic variation in the prevalence of
stroke by major neighborhood characteristics. The find-
ings from our study can provide tailored area-based
interventions to reduce the burden of cardiovascular
disease. For example, interventions aimed at tackling
disparities in the prevalence of stroke could focus on the
older population structure in states like Mississippi and
Alabama in the South region, and on ozone level in
densely populated states like New York and Massachu-
setts. As the proportion of non-Hispanic blacks was
shown to have the largest effect in Gregoria, Kansas and
Kentucky, it may be critical for these states to address
avoidable inequalities and to eliminate health and health
care disparities [53].

There are several limitations to this study. First, the
prevalence of stroke only reflects the proportion of
population who are alive and have a history of stroke,
therefore it may not accurately and completely reflect
the incidence of stroke and severity of the disease, and is
subject to survivor bias [54]. However, these measures
offer the best evidence available for these specific areas
and the small area estimation approach used by the
CDC has been well validated [55]. Second, due to the na-
ture of cross-sectional data and ecological design, we
could not establish the causal association between predic-
tors and stroke health outcomes. Our study results can
potentially motivate future research on causality with
patient-level longitudinal data [54, 56, 57]. Third, investi-
gating the relationship between environmental risk factors
such as ozone and cardiovascular health could be a worth-
while contribution. Finally, future efforts are needed to in-
tegrate neighborhood- and individual-level data and study
how risk factors at the neighborhood level jointly impact
stroke incidence and other health outcomes after stroke
with individual characteristics, such as diet, education and
social support. Ultimately it will be critical to incorporate
these knowledge into interventions to improve stroke care
at a population level.

Conclusions
We used a large-scale neighborhood-level data on 500
cities in the US pooled from multiple sources, and
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implemented a two-stage approach to first identify the
key determinants for stroke prevalence at the neighbor-
hood level and then quantify the geographic variability
in the effects of key determinants. This was the first
study to contribute insights into the underlying effect
mechanisms between neighborhood characteristics and
stroke prevalence while taking into account the multi-
level data structure, when both predictors and outcomes
are measured at the neighborhood level. We used a
state-of-the-art Bayesian machine learning technique in
the first stage and the multilevel modelling approach for
the second stage. We found that a higher proportion of
older inhabitants and a larger share of non-Hispanic
Blacks were associated with a higher prevalence of stroke
across the states. Medium household income was in-
versely associated with the prevalence of stroke. Ozone
was found to be positively associated with stroke preva-
lence in 10 states, while negatively associated with stroke
in five states. There was substantial variation in the asso-
ciations between these four key factors with stroke
prevalence across the states, in both the direction and
the magnitude. With the large sample size, wide-ranging
data information and methodologically rigorous ana-
lyses, our study results improve our understanding of
how neighborhood-level risk factors contribute to the
neighborhood-level stroke prevalence in each state of
the U.S. which can facilitate developing area-based
stroke prevention strategies.
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