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A B S T R A C T

Bariatric surgery has proven to be a valuable treatment option for morbid obesity. However, these procedures
can lead to impaired intestinal absorption of calcium and vitamin D, thereby challenging calcium homeostasis
and possibly contributing to bone loss leading to an increased fracture risk. Besides calcium and vitamin D
malabsorption, hormonal changes occurring after surgery can also be the source of observed bone loss. In this
review, first, a case report will be discussed, highlighting the relevance of this topic. Afterwards, changes in bone
density and fracture risk, after the two most performed types of bariatric surgery, Sleeve Gastrectomy (SG) and
Roux-en-Y Gastric Bypass (RYGB) will be discussed. In addition, we discuss the putative underlying mechanisms
leading to bone changes based on both preclinical and clinical observations. Nonetheless, it is clear further
research is needed to further elucidate the exact mechanisms of bone loss following bariatric surgery and sub-
sequently identify potential treatment options for bone preservation.

1. Case report

A 41-year-old non-smoking male patient was referred to our out-
patient clinic because he collapsed on the street and was unable to
stand up again. He had been complaining of increasing back pain for
the last months. An X-ray revealed multiple vertebral compression
fractures (thoracic vertebrae 10, 11, 12 and all lumbar vertebrae) and a
fracture of the sixth left rib. Two years earlier, he had undergone a
surgical procedure known as a biliopancreatic diversion according to
Scopinaro, which is a combination of a restrictive and malabsorptive
surgery, in order to lose weight. Blood tests revealed an extremely low
25-hydroxyvitamin D (25(OH)D) level at 3.8 μg/L and a low serum
calcium and phosphorus level at 6.18mg/dl and 2.11mg/dl, respec-
tively. The protein serum level was also decreased at 51 g/l. The serum
level of parathyroid hormone was elevated at 151.4 ng/L. A bone
density measurement revealed a T-score of −3.69 at the lumbar level
(L2–L4) and −2.37 at the femoral neck. Initially, he was supplemented
with oral vitamin D without success and subsequently intramuscular
injections of Cholecalciferol were given in order to restore normal vi-
tamin D levels. A 72 h faeces collection revealed extreme steatorrhea
with a total faeces volume of 756 g/day with 76.8 g of fat/day.
Consequently, treatment of pancreatic exocrine insufficiency was

started with lipase, amylase and protease. This restored serum levels of
calcium, phosphorus and vitamin D with a beneficial effect on bone
mineral density (BMD).

This case study illustrates an important complication after bariatric
surgery, often misdiagnosed and not linked to the surgery that was
performed a few years earlier. This can lead to wrong treatments, such
as bisphosphonates, inhibiting bone resorption, which in this case could
lead to hypocalcemia. This highlights the need for knowledge on long-
term complications arising after bariatric surgery and the need for post-
surgical follow-up and attention for these issues.

2. Introduction

Obesity and overweight are defined as abnormal or excessive fat
accumulation that often impairs health. Frequent health consequences
are cardiovascular diseases, diabetes, musculoskeletal disorders and
cancers. Over the last decades, obesity has risen to epidemic propor-
tions and poses a health threat for the individual patient as well as a
major socio-economic burden (World Health Organization, 2017).
Bariatric or weight-loss surgery has proven to be a valuable treatment
option for morbid obesity as it leads to manifest and sustainable weight
reduction and improves more than 40 obesity-related diseases or
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conditions (Buchwald et al., 2004; American Society for Metabolic and
Bariatric Surgery, 2010). Historically, bariatric surgeries have been
divided into three categories: restrictive, malabsorptive and the com-
bination of these two. Restrictive procedures, such as Sleeve Gas-
trectomy (SG), intentionally alter the anatomy of the gastrointestinal
tract to reduce the amount of food intake. Following malabsorptive
surgery, the amount of lipids and other nutrients that can be absorbed is
reduced. Roux-en-Y Gastric Bypass (RYGB) is a combination of re-
strictive and malabsorptive surgery. Because of the limited food intake
and/or malabsorption, bariatric surgery can indirectly induce nutri-
tional deficiencies. The most common nutritional deficiencies after
bariatric surgery include calcium, copper, folate, iron, vitamin B12, vi-
tamin D and zinc. These deficiencies can lead to various complications
such as osteoporosis, anemia, neurologic problems, fatigue and gen-
eralized weakness. In particular, changes in calcium and vitamin D
handling following bariatric surgery can induce bone loss, eventually
resulting in higher fracture risk (Rousseau et al., 2016).

Bone loss is observed to some extent after every type of bariatric
surgery, and several mechanisms have been proposed, which are mu-
tually non-exclusive. The most important mechanisms are mechanical
unloading of the skeleton, intestinal malabsorption of calcium and vi-
tamin D (Wucher et al., 2008) and hormonal changes in response to the
reduced caloric intake and the resulting energy deficit after surgery.
These hormonal changes include reduced sex steroid production (tes-
tosterone and oestradiol) (Sainsbury and Zhang, 2012) and alterations
in the secretion of gut-derived (Glucagon-like peptide 1 (GLP-1), pep-
tide YY (PYY) and ghrelin) and adipocytic (leptin and adiponectin)
hormones (Sainsbury and Zhang, 2012; Brzozowska et al., 2013).

In this review, we will provide a comprehensive overview of al-
terations in bone metabolism following the currently most performed
bariatric procedures, namely SG and RYGB. First, we will discuss the
consequences of SG and RYGB on bone mass and risk of fractures, based
on pre-clinical and clinical data. Next, we will discuss whether changes
in bone resorption or rather formation lead to bone loss after surgery
and what the possible underlying mechanisms are.

3. Effect of bariatric surgery on BMD and fractures

Several clinical studies have reported lower BMD after bariatric
surgery, in particular when the duodenum is bypassed, like in RYGB
(Fig. 1). Indeed, the duodenum is the site where active calcium trans-
port can be enhanced to achieve sufficient calcium absorption when
dietary calcium intake is low. After RYGB, bone loss is consistently
observed during the first two years (Campanha-Versiani et al., 2017;
Frederiksen et al., 2016; Obinwanne et al., 2014; Casagrande et al.,

2012; Shanbhogue et al., 2017; Yu et al., 2015; Bazzocchi et al., 2015;
Kaulfers et al., 2011; Maghrabi et al., 2015; Carrasco et al., 2014;
Vilarrasa et al., 2013; Muschitz et al., 2016; Hsin et al., 2015; Muschitz
et al., 2015; Bredella et al., 2017). Longer follow-up for three to six
years still showed persistent bone loss, although the number of studies
is limited (Rousseau et al., 2016; Vilarrasa et al., 2013; Elias et al.,
2014; Raoof et al., 2016). After SG, which only reduces the stomach
volume, it is generally considered that the effects on the skeleton would
be less pronounced than after RYGB. However, recent studies seem to
refute this hypothesis as not only RYGB, but also SG appears to have
detrimental effects on bone density. It is, however, important to note
that at this moment the studies on SG are still limited, both in terms of
duration of follow-up and sample size (Maghrabi et al., 2015; Carrasco
et al., 2014; Vilarrasa et al., 2013; Muschitz et al., 2016; Hsin et al.,
2015; Muschitz et al., 2015; Pluskiewicz et al., 2012; Adamczyk et al.,
2015a; Adamczyk et al., 2015b; Ruiz-Tovar et al., 2013). Nevertheless,
most studies on SG reported decreased BMD (Maghrabi et al., 2015;
Carrasco et al., 2014; Vilarrasa et al., 2013; Muschitz et al., 2016; Hsin
et al., 2015; Muschitz et al., 2015; Pluskiewicz et al., 2012; Adamczyk
et al., 2015a), whereas two studies described an opposite trend with
increased BMD (Adamczyk et al., 2015b; Ruiz-Tovar et al., 2013). A
possible explanation for this discrepancy is that Adamczyk et al. in-
vestigated solely men, and this observation might indicate sex-depen-
dent responses (Adamczyk et al., 2015b).

At present, most studies focused on BMD and much less on fracture
risk, which is, however, an important clinical outcome. Only a limited
number of studies have followed up fracture risk after bariatric surgery
on the long-term, until 12 to 14 years (Rousseau et al., 2016; Nakamura
et al., 2014; Lu et al., 2015). Although all three studies used different
control groups, comprising comparison to the general population
(Nakamura et al., 2014), obese individuals (Lu et al., 2015) or both
obese and non-obese persons (Rousseau et al., 2016), they consistently
showed an increased fracture risk ranging from 1.2 to 2.3 fold. Inter-
estingly, two studies that followed mainly patients after adjusted gastric
banding for 4 to 5 years, found no relation with fracture risk or only an
increased trend, when compared to a matched control group
(Lalmohamed et al., 2012) or obese control group (Douglas et al.,
2015). These findings indicate that the restrictive procedure of gastric
banding likely induces less harmful effects than malabsorption proce-
dures (Lalmohamed et al., 2012; Douglas et al., 2015).

Research in animal models supports the findings in humans. Studies
in rats (Abegg et al., 2013; Stemmer et al., 2013; Canales et al., 2014)
and mice (Yu et al., 2016a) found manifest bone loss after RYGB, even
when comparing to body weight-matched animals (Abegg et al., 2013).
With respect to SG, relatively little is known in animals, although some
data suggests limited to no bone loss, in contrast to RYGB (Stemmer
et al., 2013).

Taken together, most clinical and preclinical studies point towards
bone loss and increased fracture risk after RYGB and SG, which is,
however, less pronounced after purely restrictive procedures such as
banding.

4. Bone loss after bariatric surgery: resorption versus formation

Bone is continuously remodeled during adult life by local cycles of
bone resorption followed by bone formation. In order to preserve bone
mass, bone resorption has to be balanced by bone formation and bone
loss occurs when bone resorption outpaces bone formation. Each of
these two processes can be assessed by analyzing specific bone turnover
markers in serum. To assess bone formation, osteocalcin (OC) and N-
terminal propeptide of type 1 procollagen (P1NP) are used as bio-
markers. OC is a bone-specific protein produced by active, mature os-
teoblasts when they synthesize bone matrix, and increased OC levels
therefore correlate with bone formation (Hauschka et al., 1989). Al-
though OC remains a good marker for bone formation, it primarily
functions as a hormone by stimulating β-cells to release insulin andFig. 1. Sleeve Gastrectomy (left) and Roux-en-Y Gastric Bypass (right).
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white adipocytes to produce adiponectin, which on its turn increases
the sensitivity to insulin (Karsenty and Ferron, 2012). The bone for-
mation marker P1NP also reflects bone matrix formation, as it is
cleaved from type 1 procollagen during its extracellular processing and
assembling into collagen fibrils, which are then incorporated into the
bone matrix. A useful marker for bone resorption is C-terminal telo-
peptide of type I collagen (CTX-1), as it is formed by proteolytic clea-
vage of collagen when osteoclasts degrade the bone matrix (Szulc et al.,
2017). Another marker of bone resorption is Tartrate-resistant acid
phosphatase (TRACP) 5b. This form of TRACP enzyme is highly ex-
pressed in osteoclasts (Halleen et al., 2006). These serum markers help
to evaluate the degree of bone resorption versus bone formation after
bariatric surgery and assist to determine the types of changes in bone
turnover that lead to bone loss. For RYGB, numerous clinical studies
showed major increases in bone resorption markers such as CTX and
TRACP 5b, but only small increases in bone formation markers P1NP
and OC (Obinwanne et al., 2014; Casagrande et al., 2012; Shanbhogue
et al., 2017; Yu et al., 2015; Muschitz et al., 2015; Bredella et al., 2017;
Elias et al., 2014; Yu et al., 2016b; Ivaska et al., 2017; Stein et al., 2013;
von Mach et al., 2004; Coates et al., 2004; Riedt et al., 2006; Riedl et al.,
2008; Fleischer et al., 2008; Carlin et al., 2009; Bruno et al., 2010; Yu
et al., 2014; Sinha et al., 2011; Yu, 2014; Biagioni et al., 2017; Hofsø
et al., 2016). After SG, an increase in resorption markers has also been
noticed, however this was less pronounced than after RYGB (Muschitz
et al., 2015; Bredella et al., 2017; Ivaska et al., 2017; Stein et al., 2013;
Schollenberger et al., 2015). Taken together, the present studies point
towards a high bone turnover with unbalanced increased bone re-
sorption after bariatric surgery.

5. Potential mechanisms underlying bone loss after bariatric
surgery and possible therapeutic targets

In the next section, four possible mechanisms underlying bone loss
after bariatric surgery will be discussed. First, the effect of mechanical
unloading will be considered as weight loss is substantial after surgery,
thereby decreasing mechanical loading. Secondly, the contribution of
calcium and vitamin D malabsorption, with effects on parathyroid
hormone (PTH) will be discussed. Thirdly, the role of the local Wnt
signaling on bone mass will be considered. Lastly, the connection with
adipose tissue, either through changes in adipokines or local alterations
in the bone marrow, will be reviewed.

5.1. Mechanical unloading

After bariatric surgery, body weight decreases up to 30%, indicating
that the mechanical load on the skeleton is also reduced. Theoretically,
this lower mechanical load can lead to less bone formation, increased
bone resorption and thus decreased BMD, as has been observed in other
models of mechanical unloading (Komori, 2015). However, weight loss-
induced bone loss is an adaptive response and might thus not evolve to

a pathological level. In addition, even when mechanical loading de-
creases BMD, it might not result in increased fracture risk as the load on
the skeleton also decreases. Pre-clinical data also question the con-
tribution of weight loss-related mechanical unloading, since animals
after bariatric surgery have a lower bone mass even when compared to
weight-matched animals, indicating that the weight loss per se is not
responsible for the lower bone mass (Abegg et al., 2013). Therefore, it is
unlikely that unloading-induced bone loss is avoidable or even neces-
sary to circumvent.

5.2. Calcium and vitamin D handling

5.2.1. Intestinal malabsorption of calcium and vitamin D
Because of the alterations in intestinal anatomy induced by bariatric

surgery, malabsorption of calcium and vitamin D is assumed, an effect
that may contribute to bone loss. Calcium plays an essential role in
processes such as muscle contraction, protein secretion, blood clotting
and neuronal excitability. Serum calcium levels are therefore very
tightly regulated by an interplay between the intestine, kidneys, para-
thyroid glands and the skeleton. The intestine is responsible for ade-
quate absorption of calcium after oral intake, whereas the kidneys
contribute to serum calcium levels by the reabsorption of filtered cal-
cium. When intestinal and renal calcium (re)absorption is insufficient,
calcium will be released from the skeleton, as it functions as a calcium
reservoir, in order to maintain normal serum calcium levels.
Unfortunately, the increased bone resorption needed to preserve serum
calcium homeostasis will deteriorate bone quality and mass, with in-
creased fracture risk as a consequence.

Intestinal calcium transport occurs through an active, saturable,
transcellular, energy-dependent pathway as well as a passive, non-sa-
turable, paracellular, diffusional pathway (Fleet and Schoch, 2010). In
case of high calcium intake, absorption mainly occurs through passive
transport, viewed as calcium diffusing through tight junctions between
the cells. The amount of calcium absorbed by this pathway is directly
related to the calcium concentration within the intestinal lumen and the
contact time between calcium and intestinal cells (Fleet and Schoch,
2010). However, when calcium intake is normal to low, the active
transcellular transport predominates. This transport mechanism con-
sists of three steps. First, calcium enters into the cell through the
transient receptors potential vanilloid type 6 (TRPV6). Subsequently,
calcium is transported across the cytosol by binding to calbindin-D9k

and finally, calcium moves out the cell through the plasma membrane
calcium ATPase (PMCA1b) into the blood (Fig. 2, left) (Bronner et al.,
1986; Christakos et al., 2016). This active calcium transport is regulated
by 1,25-dihydroxyvitamin D (1,25(OH)2D), the active form of vitamin
D. Renal calcium transport occurs in a similar manner, but with dif-
ferent transporters (Fig. 2, right).

Since bariatric surgery alters the anatomy of the gastrointestinal
tract, it has a major influence on the biological availability of all nu-
trients, including calcium and vitamin D. Both, SG and RYGB lead to

Fig. 2. Intestinal (left) and renal (right) calcium (re)absorption. Calcium is taken up by the cell through TRPV6 or TRPV5, transported in the cytoplasm bound to calbindinD9k and
transported across the basolateral membrane into the blood by PMCA1b or NCX1.
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decreased acid secretion, which influences the disintegration and so-
lubility of nutritional components. Additionally, RYGB influences the
absorption capacity for calcium since the duodenum is bypassed and
most of the active transporters for calcium are located in the duodenum
and jejunum (Fleet and Schoch, 2010). Also after SG, the contact time
with the intestinal mucosa is shortened, which thus may hamper nu-
trient absorption (Fig. 1) (Chakhtoura et al., 2016; Aarts et al., 2011). In
addition, food and supplements do not mix with bile and pancreatic
enzymes until the intestines join in the common channel after RYGB.
This altered anatomy has major consequences for the absorption of
vitamin D as it is a fat-soluble hormone and hence needs biliary acids
and digestive enzymes for uptake. Moreover, vitamin D deficiency is
extremely prevalent in candidates for bariatric surgery, and this pre-
surgery deficiency further worsens after RYGB and according to some
studies also after SG (Chakhtoura et al., 2016; Aarts et al., 2011; Van
der Schueren et al., 2011).

To investigate the effect of the surgery-induced new anatomical
situation on calcium absorption, fractional calcium absorption is used.
This technique measures the percentage of an orally given dose of
calcium that is absorbed. Schafer et al. recently investigated calcium
absorption 6months after RYGB surgery using dual stable isotope
methodology (Schafer et al., 2015a). Despite maintaining 25(OH)D
serum levels above 30 ng/ml and calcium intake at 1200mg daily,
fractional calcium absorption decreased from 33 ± 14% before sur-
gery to 7 ± 4% after surgery, indicating a manifest reduction in the
absolute amount of calcium that is daily absorbed, decreasing from
392 ± 168mg to 82 ± 45mg (Schafer et al., 2015a). Accordingly,
24 hour urinary calcium decreased from 191mg to 109mg.

In an effort to elucidate intestinal molecular mechanisms after
bariatric surgery, Elias et al. investigated jejunal mucosa biopsies in
patients 6 to 8months after RYGB and vertical banded gastroplasty,
who did not receive calcium supplements (Elias et al., 2014). This study
revealed decreased expression of TRPV6, possibly due to reduced pro-
tein levels of heat-shock protein 90β, a co-activator of the vitamin D
receptor, whereas vitamin D receptor levels were increased. These
findings are consistent with the reduced calcium absorption observed at
early time points after surgery (6months, (Schafer et al., 2015a)).
Nonetheless, over time, the gut may compensate for the decreased
ability to absorb calcium. Indeed, TRPV6 mRNA levels were strongly
increased in the jejunum and ileum of rats, 16 weeks after RYGB, which
is a rather late time point (Abegg et al., 2013).

Taken together, these data suggest that adaptations in intestinal
absorption occur after SG and RYGB and that it is important to elucidate
the mechanisms underlying these changes. Investigating intestinal cal-
cium absorption in detail is difficult in patients, as only minimally in-
vasive techniques are available. Animal models can likely provide more
thorough mechanistic insight into the temporal changes in intestinal
calcium and vitamin D absorption that occur after bariatric surgery and
that may contribute to bone loss.

5.2.2. PTH and 1,25(OH)2D
Since normal serum calcium levels are critical for several processes,

they are tightly regulated involving mainly PTH and 1,25(OH)2D sig-
naling (Fig. 3). When serum calcium levels drops, the parathyroid
glands will secrete PTH. Subsequently, PTH stimulates the osteoblasts
to produce the osteoclastogenic factor Receptor activator of nuclear
factor kappa-β ligand (RANKL), which binds to RANK expressed on
osteoclasts, thereby promoting osteoclast differentiation and survival.
Osteoclasts will resorb the bone matrix and release calcium to maintain
serum calcium levels in the normal range, but this occurs at the ex-
penses of bone mass (Christakos et al., 2016). In addition, PTH activates
the enzyme 1α-hydroxylase (CYP27B1) in the kidneys, which hydro-
xylates the inactive form 25(OH)D to its active form 1,25(OH)2D
(Christakos et al., 2016; Jones et al., 2014; Holick, 2016). 1,25(OH)2D
mediates its actions through binding to the Vitamin D receptor (VDR).
As a negative feedback, 1,25(OH)2D suppresses PTH synthesis and

reduces its own production by inhibiting CYP27B1. It also stimulates
the enzyme CYP24A1, which degrades 1,25(OH)2D and thus limits the
amount of free circulating active vitamin D. In the intestine,
1,25(OH)2D stimulates calcium absorption by increasing the expression
of mainly TRPV6, calbindin-D9K and possibly PMCA1b (Fig. 2). When
the supply of calcium is normal, 1,25(OH)2D has no major effect on
bone mass. Besides the reciprocal regulation between 1,25(OH)2D and
PTH, a comparable interaction exists between 1,25(OH)2D and Fibro-
blast growth factor 23 (FGF23). Indeed, 1,25(OH)2D induces FGF23
expression by osteocytes and osteoblasts. FGF23 acts as an endocrine
factor by promoting renal phosphate excretion which in turn can in-
fluence PTH and calcium serum levels (Christakos et al., 2016). FGF23
signaling also inhibits CYP27B1 expression and induces CYP24A1,
thereby decreasing 1,25(OH)2D levels and avoiding calcium levels to
rise too high (Hu et al., 2013). Together, these mechanisms allow a
tight regulation of serum calcium levels.

Several clinical studies show a high prevalence of secondary hy-
perparathyroidism (SHPT) after bariatric surgery, which is believed to
be caused by intestinal calcium malabsorption (Ybarra et al., 2005;
Youssef et al., 2007; DiGiorgi et al., 2008; Clements et al., 2008;
Compher et al., 2008; Valderas et al., 2009; Signori et al., 2010; Søvik
et al., 2011; Grethen et al., 2011; Hewitt et al., 2013). However, the
control groups in those studies often consist of normal weight in-
dividuals and not weight-matched controls which may also show high
PTH levels. Indeed, a few of these studies report high PTH levels al-
ready before surgery, which would suggest that it could be obesity per
se, more than the malabsorption that induces SHPT. Additionally, de-
clines in BMD after surgery have been reported in multiple studies, even
without increased PTH levels (Shanbhogue et al., 2017; Yu et al., 2015;
Vilarrasa et al., 2013; Bredella et al., 2017; von Mach et al., 2004; Yu
et al., 2014), further questioning whether SHPT is truly responsible for
bone loss following bariatric surgery. Information on surgery-induced
changes in FGF23 levels is very limited with only one study showing an
increase in FGF23 after bariatric surgery in women (Grethen et al.,

Fig. 3. Calcium and vitamin D homeostasis. PTH and 1,25(OH)2D tightly regulate serum
calcium levels. When calcium levels drop, PTH is secreted by the parathyroid glands. PTH
will have its effects on kidneys and bone to increase calcium levels in the serum. Red lines
indicate inhibitory effects, green lines indicate stimulatory effects.
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2012).
Animal studies did not yet increase our insight in the importance

and contribution of SHPT in the observed bone loss following surgery.
Rodent studies did not find significant differences in PTH levels be-
tween bariatric groups and controls (Abegg et al., 2013; Stemmer et al.,
2013; Canales et al., 2014; Yu et al., 2016a). On the other hand, Abegg
et al. observed a strong induction of CYP27B1 and inhibition of
CYP24A1 expression, which resulted in increased 1,25(OH)2D levels,
which theoretically may suppress PTH and avoid SHPT (Abegg et al.,
2013).

Taken together, these findings suggest that although intestinal cal-
cium absorption is decreased after bariatric surgery, other mechanisms
than increased PTH levels seem to contribute to the observed bone loss,
but the exact mechanisms remain elusive. It would be interesting to
follow PTH levels longitudinally, starting from the pre-operative stage
and analyzing several time points after surgery to exclude or not con-
tribution of PTH to bone loss. At this moment, simply targeting PTH
levels to prevent bone loss or titrate supplementation of calcium and
vitamin D might therefore not be sufficient.

5.3. Wnt-signaling

The function of skeletal cells is not only regulated by hormones, but
also by locally produced factors like regulators of Wnt signaling. This
pathway affects osteoblast number, maturation and differentiation, and
is inhibited by osteoblast or osteocyte secreted factors such as sclerostin
and Dickkopf-1 (DKK-1). Sclerostin, encoded by the SOST gene, is
produced by osteocytes and inhibits osteoblast differentiation
(Muschitz et al., 2015; Viapiana et al., 2013). In mice, Sclerostin levels
are down-regulated by mechanical loading and by PTH (Bellido et al.,
2005; Jia et al., 2017). DKK-1 has been associated with bone resorption
and osteopenia (Li et al., 2006; Li et al., 2011). Studies examining the
effect of bariatric surgery on Wnt-signaling, show conflicting results.
Two studies reporting decreased BMD, also found an increase of scler-
ostin, but, surprisingly, also a decrease of DKK-1 after SG or RYGB
(Muschitz et al., 2016; Muschitz et al., 2015). Another study did not
find different sclerostin levels after RYGB (Grethen et al., 2012), but
BMD was not measured. Taken together, although Wnt signaling is an
important pathway regulating bone mass, its contribution to bariatric
surgery-induced bone loss remains elusive.

5.4. Link with adipose tissues

5.4.1. Adipokines
Bariatric surgery has a profound impact on the body fat mass and

will consequently affect adipocyte-secreted hormones, i.e. adipokines.
Leptin can affect bone mass by locally inducing bone formation and by
a central nervous relay that activates the sympathetic nervous system
(Wucher et al., 2008) and cocaine- and amphetamine-regulated tran-
script (CART) signaling in the hypothalamus. Studies on the role of
leptin in mice resulted in discordant observations (Karsenty and Oury,
2012). A possible explanation to reconcile the data is the model stating
that leptin has a complex, dual effect on the skeleton leading to in-
creased cortical bone, but to decreased trabecular bone (Hamrick and
Ferrari, 2008). In humans, a positive association of leptin and a nega-
tive association of adiponectin with BMD have been demonstrated
(Biver et al., 2011; Blain et al., 2002; Pasco et al., 2001). Recent studies
in mice have further elucidated that adipokines not only affect the
function of skeletal cells and thereby regulate bone mass, but also
control systemic mineral homeostasis. Indeed, leptin can directly sti-
mulate FGF23 synthesis in osteocytes, whereas adiponectin decreases
FGF23 release (Fig. 4) (Tsuji et al., 2010; Rutkowski et al., 2017). On
the other hand, 1,25(OH)2D signals to adipocytes and can enhance the
production of leptin and adiponectin. Consistent herewith, vitamin D3

deficiency is associated with low leptin levels (Wagner et al., 2017).
After SG and RYGB, serum leptin levels decrease due to loss of adipose

tissue (Shanbhogue et al., 2017; Biagioni et al., 2017; Grethen et al.,
2012), whereas adiponectin levels increase (Shanbhogue et al., 2017;
Carrasco et al., 2014; Biagioni et al., 2017; Grethen et al., 2012;
Carrasco et al., 2009). BMD was decreased in the limited number of
studies in which BMD and adipokines were measured together
(Shanbhogue et al., 2017; Carrasco et al., 2014; Carrasco et al., 2009).
Taken together, some correlations between levels of adipokines and
bone mass after surgery have been reported, but further research is
needed to explore the contribution of adipokines to surgery-induced
bone loss and to hormonal changes related to mineral homeostasis.

5.4.2. Paracrine effects: local interaction between bone marrow adipose
tissue and bone cells

Recently, another fat depot than white adipose tissue (WAT), has
gained attention as a potential mediator of bone loss after bariatric
surgery: bone marrow adipose tissue (BMAT). This hypothesis is based
on research in women with anorexia nervosa in which higher levels of
BMAT have been found compared to controls, although peripheral WAT
is lost (Bredella et al., 2009). In mice, caloric restriction resulted in high
levels of BMAT as well (Devlin et al., 2010). These findings indicate that
BMAT is differentially regulated from visceral WAT and led to the hy-
pothesis that it is used as an energy depot in the setting of starvation
(Scheller and Rosen, 2014). Over the last years, BMAT has been sug-
gested to negatively affect bone strength (Schellinger et al., 2001). Six
months after RYGB, 6 diabetic and 5 nondiabetic patients showed de-
creased BMD with no differences between diabetic and nondiabetic
patients (Schafer et al., 2015b). Interestingly, BMAT was decreased in
diabetic patients, but not in the nondiabetic patients, although the
overall fat mass decreased in all patients. Two other studies did not find
any difference in BMAT 6 and 12months after RYGB (Bredella et al.,

Fig. 4. The relationship between adipose tissue and bone homeostasis. Lean white adi-
pose tissue produces more adiponectin. With obesity, adipose tissue expands and more
leptin will be produced. These hormones are influenced by factors from the bone
homeostasis and vice versa, as indicated by the lines. Red lines indicate inhibitory effects,
green lines indicate stimulatory effects. The black dashed line indicates the relationship
between bone and leptin, which is not entirely clear yet.
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2017; Ivaska et al., 2017), although BMD was decreased after
12months (Bredella et al., 2017). One year after SG, an increase in
BMAT was observed associated with a decrease in BMD (Bredella et al.,
2017), while, another study did not report these effects after 6months
(Ivaska et al., 2017). More extensive research is necessary to unravel
the effect of bone marrow fat after surgery.

6. Conclusion

Over the last decades, bariatric surgery has become a very im-
portant treatment for obesity. It leads to sustained weight loss and
strongly reduces the risk for obesity-associated comorbidities. However,
it can also lead to nutritional deficiencies of which the long-term con-
sequences are not fully known yet. Bone loss and increased fracture risk
is often observed after bariatric surgery and requires adequate therapy.
Mechanistically, calcium malabsorption and vitamin D deficiency may
contribute to bone loss by inducing secondary hyperparathyroidism
that increases bone resorption. However, increased PTH levels are not
always detected, suggesting that also other mechanisms are involved.
Possible other mechanisms that need to be explored include Wnt sig-
naling and the connection with adipose tissue. In addition, future re-
search needs to focus on the long-term adaptations of the body in re-
sponse to the anatomical and physiological changes of bariatric surgery.
Hopefully, a better understanding of the impact of bariatric surgery on
the bone will indicate how to prevent or cure the bone loss.
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