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The heterogeneity and complexity of non-small cell lung cancer (NSCLC) tumors mean
that NSCLC patients at the same stage can have different chemotherapy prognoses.
Accurate predictive models could recognize NSCLC patients likely to respond to
chemotherapy so that they can be given personalized and effective treatment. We
propose to identify predictive imaging biomarkers from pre-treatment CT images and
construct a radiomic model that can predict the chemotherapy response in NSCLC. This
single-center cohort study included 280 NSCLC patients who received first-line
chemotherapy treatment. Non-contrast CT images were taken before and after the
chemotherapy, and clinical information were collected. Based on the Response
Evaluation Criteria in Solid Tumors and clinical criteria, the responses were classified
into two categories: response (n = 145) and progression (n = 135), then all data were
divided into two cohorts: training cohort (224 patients) and independent test cohort (56
patients). In total, 1629 features characterizing the tumor phenotype were extracted from
a cube containing the tumor lesion cropped from the pre-chemotherapy CT images. After
dimensionality reduction, predictive models of the chemotherapy response of NSCLC
with different feature selection methods and different machine-learning classifiers (support
vector machine, random forest, and logistic regression) were constructed. For the
independent test cohort, the predictive model based on a random-forest classifier with
20 radiomic features achieved the best performance, with an accuracy of 85.7% and an
area under the receiver operating characteristic curve of 0.941 (95% confidence interval,
0.898–0.982). Of the 20 selected features, four were first-order statistics of image intensity
and the others were texture features. For nine features, there were significant differences
between the response and progression groups (p < 0.001). In the response group, three
features, indicating heterogeneity, were overrepresented and one feature indicating
homogeneity was underrepresented. The proposed radiomic model with pre-
chemotherapy CT features can predict the chemotherapy response of patients with
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non-small cell lung cancer. This radiomic model can help to stratify patients with NSCLC,
thereby offering the prospect of better treatment.
Keywords: lung cancer, radiomics, CT images, chemotherapy response, machine learning
INTRODUCTION

According to the Global Cancer Incidence and Mortality Report
in 2018, lung cancer was the most commonly diagnosed cancer
(11.6% of all cases) and the leading cause of cancer deaths (18.4%
of all cancer deaths) (1, 2), with non-small cell lung cancer
(NSCLC) accounting for 80% to 85% of all lung cancers.
However, despite considerable advances in diagnosis and
treatment over the years, the 5-year survival rate of lung-
cancer patients is currently less than 18% (54% for localized-
stage disease, 26% for regional stage, and 4% for distant stage)
(3–5). As reported, 74% of cases are diagnosed at the regional or
distant stage (3), and any patient diagnosed as being at stage IIIA
or IV is virtually unresectable and has no choice but to receive
radiotherapy or chemotherapy with severe side effects.

The heterogeneity and complexity of NSCLC tumors mean
that NSCLC patients at the same stage can have different
chemotherapy prognoses (6). According to the Response
Evaluation Criteria in Solid Tumors (RECIST), treatment
responses can be divided into four types: (i) complete response
(CR), (ii) partial response (PR), (iii) progressive disease (PD),
and (iv) stable disease (SD) (7). However, there are currently few
quantitative criteria or models that can predict the NSCLC
chemotherapy response from pre-treatment information (8).
Accurate predictive models could recognize NSCLC patients
likely to respond to chemotherapy so that they can be given
personalized and effective treatment.

Radiomics is a potential bridge between medical imaging and
personalized medicine (9, 10). In this approach, artificial
intelligence is used to convert image data from a lesion region
into a high-dimensional feature space and to construct predictive
models for various clinical outcomes (11, 12). Radiomics has
been used successfully in biological oncology for detection,
differential diagnosis, phenotype or subtype stratification,
prognosis prediction, and even the prediction of invasiveness
and gene mutation status (13–17).

Radiomics has achieved exceptional results in predicting the
prognosis of NSCLC treatment with survival as the endpoint. For
example, based on a dataset of 1194 NSCLC patients treated with
either radiotherapy or surgery, Hosny et al. constructed
convolutional neural network models that could predict 2-year
overall survival from pre-treatment computerized-tomography
(CT) images with an accuracy of 70% (18). For 179 stage-III
NSCLC patients treated with definitive radiotherapy and
chemotherapy, Xu et al. designed a deep-learning model using
time-series CT scans and found that it was significantly
predictive of survival and cancer-specific outcomes (4). Wang
et al. collected CT images and clinical information for 173
NSCLC patients and trained a radiomic model that could
predict the range of a patient’s prognosis survival time (6).
2

Song et al. established a Cox regression model with a least
absolute shrinkage and selection operator for CT images to
predict the progression-free survival of stage-IV epidermal
growth factor receptor (EGFR)-mutated NSCLC patients being
treated with EGFR tyrosine kinase inhibitors (19). Paul et al. used
a transfer-learning model to extract deep features to predict
short-and long-term survivors with lung adenocarcinoma with
an accuracy of 90% (20). Lou et al. used deep-learning methods
of pre-treatment CT scans to analyze survival and found an
individualized radiation dose that gave an estimated probability
of treatment failure of below 5% (21).

Moreover, predicting the chemotherapy response in NSCLC
earlier in the course treatment is very useful and promising. It
can help clinicians make decisions on whether to adapt, intensify,
or alter treatment plans early and improve patient outcomes
(22). Compared with the long-term endpoint of survival,
treatment response is a short-term prognosis endpoint that
may help to identify precisely those NSCLC patients who are
likely to benefit from chemotherapy.

However, to the best of our knowledge, few predictive models
use chemotherapy response in NSCLC as the endpoint. Chen et
al. proposed a radiomic model to predict NSCLC lesions
shrinkage during treatment with either pembrolizumab or
combinations of chemotherapy and pembrolizumab (23). The
model used features extracted from lesions, margins, and blood
vessels and reached an area under the curve (AUC) of 0.73 in a
test cohort with 176 patients. Seki et al. had demonstrated the
usefulness of CT and Positron Emission Tomography (PET)/CT
in the early prediction of chemoradiotherapy in NSCLC (24). In
the present study, we constructed a radiomic model that
used pre-chemotherapy CT images to predict the NSCLC
chemotherapy response.
MATERIALS AND METHODS

Data Acquisition
We enrolled 622 patients with lung cancer being treated at
Shengjing Hospital of China Medical University between 2014
and 2019. The parameters for CT images acquisition are listed in
Table 1. As shown in Figure 1, after two steps of exclusion
criteria, 280 patients were included in our study. Their clinical
characteristics are given in Table 2. This study was approved by
the ethics committee of Shengjing Hospital of China Medical
University and the waived informed consent forms were waived
because it is a retrospective study.

Label of Treatment Response
NSCLC tumors were categorized according to RECIST jointly by
an experienced radiologist and an experienced oncologist: (i) CR:
July 2021 | Volume 11 | Article 646190
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disappearance of all target lesions, (ii) PR: at least 30% decrease
in the sum of the diameters of the target lesions, (iii) PD: at least
20% increase in the sum of the diameters of the target lesions,
and (iv) SD: neither sufficient shrinkage to qualify for PR nor
sufficient increase to qualify for PD.

According to the requirement of clinical applications and
radiologist’s advice, we had excluded the patients of SD in our
study. The CR and PR patients were combined into a category
named “response” and the PD patients were included into a
category named “progression.” Finally, 145 NSCLC patients were
labeled as response and 135 were labeled as progression.

Overview of Study Procedure
We split the total 280 patients into the training cohort (n = 224)
and the independent test cohort (n=56). As shown in Figure 2,
the study procedure had six steps. First, by comparing CT images
taken before and after chemotherapy, responses were determined
as being either response or progression. Second, in the
preprocessing step, the tumor lesion in the pre-chemotherapy
CT images was cropped to a cube. Third, radiomic features were
extracted from the cropped cube. Fourth, discriminative features
were selected with different methods and analyzed. Fifth, the
selected radiomic features, labels, and clinical information were
used to train the different models using the training cohort.
Finally, the performance of the radiomic models was evaluated
using the independent test cohort. The evaluation measures
included the AUC of receiver operating characteristic (ROC)
curve, confusion matrix, recall, precision, and F-score. The best
cutoff value of ROC curve to calculate the confusion matrix and
related measures was determined, whereas Youden index reach
the maximum value.

Feature Extraction
First, all the pre-treatment CT images for the patients were
interpolated into voxels of 0.750 × 0.750 × 3.000 mm. To include
the characteristic information [both the tumor lesion and its
habitat (8, 12)], we cropped a 64 × 64 × 32 cube from the lesion
center[determined by software 3D Slicer (25)]. In our study, this
cube can include the largest lesion and no cube includes more
than one lesion. Because all the patients are in the advanced stage
FIGURE 1 | Criteria for data acquisition.
TABLE 2 | Clinical characteristics of NSCLC patients.

Characteristics Response group Progression group p value

Number of patients 145 135 –

Gender Male 79 77 0.605
Female 66 58

Age(years) 63.864 ± 10.042 64.402 ± 9.713 0.437
Histological type Adenocarcinoma 119 109 0.201

Squamous cell carcinoma 26 26
Smoking status Ever 49 74 0.002

Never 96 61
Number of treatment courses 4.492 ± 1.603 3.681 ± 1.396 <0.001
Chemotherapy drug AP 53 36 –

GP 29 34
TP 31 28
DP 32 37
July 2021 | Volume 11 | Article
TABLE 1 | Parameters for CT image acquisition.

Parameter Value

kVp (kV) 120
X-ray tube current (mean ±S.D.) (mA) 215.274 ± 70.816
Slice thickness (mm) 2.5 (n = 14); 3.0 (n = 244);

5.0 (n = 22)
Pixel size (mm) 0.783 ± 0.074
CT scanner manufacturer GE Medical (n = 10), Siemens (n = 11),

Toshiba (n = 13), Philips (n = 246)
646190
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and have taken chemotherapy, the lesion cannot be very small
compared with the cube of 64× 64 × 32.

Then, we used the open-source Python package PyRadiomics
to extract radiomic features from each cube (26). In total, 1,927
features were extracted from the original CT images, of which
1,629 meaningful features were used. Because the shapes and
sizes were same for all cubes, the related features had no
discriminative capability and were excluded (n=298).

It is should be noted that according to a previous study, besides
the intra-tumor region, the extra-tumor marginal region may also
provide predictive information for the treatment response and
overall survival (8, 27, 28). Therefore, the features extracted from
the cube in our study represent the characteristics not only of
intra-tumor region but also of extra-tumor region.

Feature Selection
Next, we used three algorithms to select discriminative features
and passed them into the model for training and testing: random
forest (RF) (29), mRMR (max-relevance and min-redundancy)
(30), and relief (31). RF can be easily applied to select the critical
features by ranking the importance score of features. It belongs to
the embedded feature selection using SelectFromModel.
Actually, the package of sci-kit learn has provided two ways of
feature selection by using RF: (1) mean decrease impurity; (2)
mean decrease accuracy. In our study, we directly used the
Frontiers in Oncology | www.frontiersin.org 4
way of “mean decrease accuracy.” Both mRMR and relief are
the feature selection methods based on filter and publicly
available (13).

Using the rule of thumb given by Gillies et al., with each
feature corresponding to 10 samples in a binary classifier (12), we
selected 20 features to represent each patient to do the next
classification, and the performance of RF, mRMR, and relief for
the feature selection was compared.

Construction of Predictive Models
We selected three representative machine-learning classifiers:
support vector machine (SVM), RF, and logistic regression
(LR). We constructed a model to clarify the role of clinical
information (gender, smoking status, age, pathology, course of
treatment, and medicine), and we constructed another model
with both clinical and radiomic features to assess whether that
combination increased the predictive performance. Moreover,
we also constructed a model with two clinical features of
smoking status and course of treatment because there was a
significant difference between the response and progression
groups for these two features (Table 2). Correspondingly, a
model with the combination of two significant clinical features
and the selected radiomic features was constructed.

The optimal parameters of the model were determined by
grid search technique and 10-fold cross-validation. Specifically,
FIGURE 2 | Flowchart of present study.
July 2021 | Volume 11 | Article 646190
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for each grid of parameters, the performance of the model was
evaluated by the average of 10-fold cross-validation. The optimal
parameters were determined after traversing all grids. During the
10-fold cross-validation, the training data were divided into 10
folds. For each of the 10 “folds,” a model was trained by using
nine folds as the training data and validated by the remaining
fold. With the determined optimal parameters, the model was
retrained by all training data (n=224). Finally, the independent
test cohort (n=56) was used to evaluate the retrained model and
gave the performance measures. All these procedures were
performed by strictly following the document given by the Sci-
kit learn website (https://scikit-learn.org/stable/modules/cross_
validation.html).

To find the optimal parameters in classification models, we
used the grid search with cross-validation (GridSearchCV) to
traverse the parameters within a certain range and with a specific
interval. In SVM, the kernel parameter was set as “linear” or “rbf”
(radial basis function); the parameter C ranged from 1 to 5 with
the interval of 1; the gamma parameter was set as 0.125, 0.25, 0.5,
1, 2, or 4. Through the ten-fold cross-validation of the training
cohort in each grid, the optimal value (or setting) of the kernel,
C, and gamma were determined as “linear,” 3, and 1, respectively.
In RF, n_estimators parameter ranged from 20 to 2000 with the
interval of 10; max_features parameter was set as 2 or 3;
min_sample_leaf ranged from 1 to 50 with the interval of 1.
The optimal value of n_estimators, max_features, and
min_sample_leaf was determined as 100, 3, and 2, respectively.
In LR, C parameter ranged from 1 to 5 with the interval of 1; the
penalty item was set as l1 or l2. By the same way, the optimal
value of C and penalty item was determined as 3 and
l1, respectively.
RESULTS

Clinical Characteristics
As shown in Figure 3A and Table 2, there was no significant
difference in gender between the response and progression
groups. Similarly, there was no significant difference for age or
histological type. For both groups, there were more patients with
Frontiers in Oncology | www.frontiersin.org 5
adenocarcinoma than with squamous cell carcinoma (119 vs. 26;
109 vs. 26). The progression group had a higher percentage of
smokers than the response group [54.8% (74/135) vs. 33.8% (49/
145)]. The response group had more treatment courses than the
progression group (4.492 ± 1.603 vs. 3.681 ±1.396).

A platinum-based dual-drug regimen is the gold standard for
the first-line treatment of advanced NSCLC. In our study, we
included four common chemotherapy regimens: (i) AP: cisplatin
or carboplatin combined with pemetrexed (n = 53 for response
and n = 36 for progression), (ii) GP: cisplatin or carboplatin
combined with gemcitabine (n = 29 for response and n = 34 for
progression), (iii) TP: cisplatin or carboplatin combined with
paclitaxel (n = 31 for response and n = 28 for progression), and
(iv) DP: cisplatin or carboplatin combined with docetaxel (n = 32
for response and n = 37 for progression).

As shown in Figure 3B, for adenocarcinoma treated by AP,
the response group had more patients than the progression
group (47 vs. 27), but the opposite was the case for
adenocarcinoma treated by GP (16 vs. 28). The situation for
squamous cell carcinoma was the opposite of that for
adenocarcinoma. For squamous cell carcinoma treated by AP,
the response group had fewer patients than the progression
group (6 vs. 9); for adenocarcinoma treated by GP, the
response group had more patients than the progression group
(13 vs. 6).

Radiomic Characteristics
Figure 4A shows the distribution of the 1,629 selected radiomic
features. Of the six feature classes (columns), GLCM (gray-level
co-occurrence matrix) had the most features (430/1629, 26.4%).
Of the 18 filter classes (rows), local binary pattern (LBP) (3D)
had the most features (279/1629, 17.1%).

Through three dimensionality reduction algorithms, the 20
most-informative features were selected from the 1629 radiomic
features and input into the machine-learning classifiers. The
distribution of these 20 features is shown in Figure 4B: gray-level
dependence matrix (GLDM) had seven features, and first order,
GLCM, and GLRLM (gray-level run-length matrix) each had
four features. For the filter classes (rows), LBP (3D) had the most
features (7/20, 35.0%). Figure 4C shows the mean values of these
20 highly informative features. In summary, 11 radiomic features
A B

FIGURE 3 | Analysis of clinical characteristics: (A) Statistics of ages, genders and smoking status; (B) Statistics of treatment courses and chemotherapy drugs.
July 2021 | Volume 11 | Article 646190
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differed significantly between the response and progression
groups [nine features with p < 0.001 (**) and two features with
p < 0.05(*)]. Figure 4D shows the importance of the 20 features
selected via dimensionality reduction.

In the response group, the features small dependence
emphasis (SDE), run length non-uniformity (RLNU),
dependence non-uniformity (DNU), high gray level run
emphasis (HGLRE), and uniformity are overrepresented,
whereas dependence variance (DV) is underrepresented. SDE
measures the distribution of small dependencies, with a larger
value indicating less dependence and less-homogeneous textures.
Similarly, larger values for RLNU and DNU indicate that there is
Frontiers in Oncology | www.frontiersin.org 6
less homogeneity among run lengths and dependencies in the
image, respectively. DV measures the variance independence size
in the image. Overall, the representation of these features
indicates that NSCLC tumors in the response group are more
likely to be heterogeneous in CT images than are those in the
progression group.

Dependence of Performance on the
Feature Selection Method
We tried three different feature selection methods, RF, relief, and
mRMR, to clarify their impact on the classification results. In
Figure 5, in the training cohort, for the feature selection method
A B

DC

FIGURE 4 | Analysis and selection of radiomic features: (A) Distribution of 1629 extracted features; (B) Distribution of 20 selected features; (C) Mean values of 20
highly informative features and significance analysis between two groups (* p < 0.05, ** p < 0.001); (D) Importance of 20 selected features.
July 2021 | Volume 11 | Article 646190
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of RF, the AUC of RF, SVM, and LR classification models was
0.891 ± 0.05 (95% confidence interval (CI), 0.854–0.926), 0.882 ±
0.06 (95% CI, 0.844–0.916), and 0.883 ± 0.06 (95% CI, 0.842–
0.918), respectively. For mRMR, the AUC was 0.886 ± 0.07 (95%
CI, 0.832–0.928), 0.798 ± 0.09 (95% CI, 0.725–0.855), and 0.889 ±
0.07 (95% CI, 0.835–0.925), respectively. For relief method, the
AUC was 0.890 ± 0.06 (95% CI, 0.841–0.939), 0.886 ± 0.06 (95%
CI, 0.839–0.921), and 0.888 ± 0.06 (95% CI, 0.840–0.920),
respectively. In the independent test cohort, for the feature
selection method of RF, the AUC of RF, SVM, and LR
classification models were 0.941 (95% CI, 0.898–0.942), 0.932
(95% CI, 0.865–0.995), and 0.935 (95% CI, 0.886–0.974),
respectively. For mRMR, the AUC was 0.901 (95% CI, 0.826–
0.974), 0.804 (95% CI, 0.731–0.869), and 0.923 (95% CI, 0.878–
0.962), respectively. For relief method, the AUC was 0.902 (95%
CI, 0.817–0.983), 0.921 (95% CI, 0.843–0.997), and 0.926 (95%
CI, 0.856–0.984), respectively. The combination of the feature
selection by RF and the classification model of RF generated the
Frontiers in Oncology | www.frontiersin.org 7
best predictive performance in both the training cohort and the
independent test cohort.

Performance of Machine-Learning Models
Table 3 lists the performance of the three machine-learning
models, and Figure 6 shows the receiver operating characteristic
(ROC) curves and the areas under the curve (AUC). In the
training cohort, the RF model with radiomic features had the
best performance, its AUC was 0.891 ± 0.05 (95% CI, 0.854–
0.924). In the independent test cohort, the RF model with
A B

FIGURE 5 | Comparison of predictive models with different classifiers and different methods of feature selection: (A) ROC curve of three models using features
selected by RF, mRMR, and relief in the training cohort; (B) ROC curve of three models using features selected by RF, mRMR, and relief in the independent test cohort.
TABLE 3 | Predictive performance of machine-learning models with radiomic
features, clinical features, and combined features in the independent test cohort.

Classifier Accuracy AUC Recall Precision F-score

RF_Radiomics 85.7% 0.941 0.875 0.808 0.840
RF_Clinic 42.9% 0.503 0.625 0.395 0.484
RF_Combination 82.1% 0.936 0.875 0.750 0.808
July 2
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radiomic features had the best performance. Its AUC was 0.941
(95% CI, 0.898–0.982), and its accuracy, recall, precision, and F-
score were 85.7%, 0.875, 0.808, and 0.840, respectively. The cutoff
of ROC curve was 0.438.

The RF model with five clinical features had an AUC of only
0.523 ± 0.11 (95% CI: 0.444–0.596) in the training and 0.503
(95% CI: 0.438–0.562) in the independent test cohort, which
indicates that clinical features played hardly any role in
predicting chemotherapy response in our study. The cutoff of
ROC curve in the independent test cohort was 0.459.

The RF model with combined clinical and radiomic features
did not perform better than the RF model with only radiomic
features. The AUC of training cohort was 0.890 ± 0.05 (95% CI:
0.850–0.930). In the independent test cohort, the accuracy, recall,
precision, and F-score of the former were 82.1%, 0.875, 0.750,
and 0.808, respectively, which are lower than those of the RF
model with only radiomic features. The AUC was 0.930 (95% CI:
0.865–0.995) with a cutoff of 0.543.
Frontiers in Oncology | www.frontiersin.org 8
The RF models with two significant clinical features are
compared with those with five clinical features in Figure 7. The
RF model with two significant clinical features had an AUC of
0.498 ± 0.15 (95% CI: 0.378–0.602) and 0.456 (95% CI: 0.398–
0.502) in the training and independent test cohort, respectively.
The RF model with the combination of two significant clinical
features and the selected radiomic features had an AUC of 0.882 ±
0.06 (95% CI: 0.846–0.914) and 0.936 (95% CI: 0.868–0.992) in the
training and independent test cohort, respectively. The
performance of models with two significant clinical features was
not as good as that of models with five clinical features.
Performance for Different Chemotherapy
Drugs and Histological Subtypes
Table 4 presents the prediction accuracy of the RF model with 20
radiomic features for different chemotherapy drugs and histological
subtypes. The prediction accuracy was higher for adenocarcinoma
A B

DC

FIGURE 6 | Comparison of machine-learning models: (A) ROC curves for different machine-learning models in the training cohort; (B) Confusion matrix of different
machine-learning models in the training cohort; (C) ROC curves for different machine-learning models in the independent test cohort; (D) Confusion matrix of different
machine-learning models in the independent test cohort.
July 2021 | Volume 11 | Article 646190
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than squamous cell carcinoma (84.2% vs. 75.0%). A possible reason
was the smaller number of patients with squamous cell carcinoma
(n = 52). For chemotherapy drugs AP, GP, TP, and DP, the
accuracy was 84.6% (77/91), 88.6% (62/70), 67.2% (41/61), and
87.9% (51/58), respectively. Of all eight combinations, the accuracy
was highest at 93.8% (45/48) for adenocarcinoma treated by DP.
The lowest accuracy was 54.5% for squamous cell carcinoma treated
with TP; similarly, there were only 11 instances of this combination,
which might have influenced the prediction.
A

B

FIGURE 7 | Comparison of predictive models with different clinical features: (A) ROC curves for different models in the training cohort; (B) ROC curves for different
models in the independent test cohort.
TABLE 4 | Prediction accuracy for different chemotherapy drugs and histological
subtypes.

Chemotherapy
drugs

Adenocarcinoma Squamous cell
carcinoma

Total

AP 85.2% (69/81) 80.0% (8/10) 84.6% (77/91)
GP 87.8% (43/49) 90.5% (19/21) 88.6% (62/70)
TP 70.0% (35/50) 54.5% (6/11) 67.2% (41/61)
DP 93.8% (45/48) 60.0% (6/10) 87.9% (51/58)
Total 84.2% (192/228) 75.0% (39/52) –
July 2021 | Volume 11 | Article 646190
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DISCUSSIONS

Clinical Characters
In this study, the progression group had a higher percentage of
smokers than the response group, possibly indicating that
NSCLC patients who smoke have a higher risk of progression
during chemotherapy. Smoking is a high-risk factor for lung
cancer (32, 33), and patients with lung cancer who continue to
smoke after diagnosis can experience increased treatment-related
toxicity and may have a decreased survival rate.

Another finding is that for the response group, a high
percentage of those with adenocarcinoma were treated with
AP and a high percentage of those with squamous cell
carcinoma were treated with GP. This result agrees with the
recommendation of AP for adenocarcinoma and GP for
squamous cell carcinoma (34–37).
Heterogeneity of Tumors
One of our main findings is that NSCLC tumors in CT images
are more heterogeneous in the response group than in the
progression group. In the response group, the measures of
heterogeneity (SDE, RLNU, and DNU) are overrepresented
whereas the measure of homogeneity (DV) is underrepresented
(Figure 8). This CT-driven textural heterogeneity may correlate
with the tumor micro-environment heterogeneity, so the tumor
growth rate, invasion ability, drug sensitivity, and prognosis will
show differences in CT images (38). Imaging heterogeneity and
micro-environment heterogeneity are important for therapeutic
response, resistance, and clinical outcomes (39–41). NSCLC
patients whose tumors have higher CT-driven textural
heterogeneity have a longer overall mean survival (34.5 vs. 22.1
months) (42). Moreover, EGFR-mutated (EGFR+) lung
adenocarcinoma is more heterogeneous than EGFR− in CT
images (43).

For the cropped CT image cube used as the input in our
study, the heterogeneity includes intra- and extra-tumor
Frontiers in Oncology | www.frontiersin.org 10
components. The information in the extra-tumor region has
been considered to be useful for predicting the treatment
response and overall survival (8, 27, 28). Extra-tumor
heterogeneity emphasizes the contour between the tumor
lesion and its habitat. Therefore, here, the higher heterogeneity
in the NSCLC response group indicates the higher combination
of intra-tumor texture heterogeneity and extra-tumor
heterogeneity (the complexity of the tumor contour or shape).

Advantage and Significance of Radiomic
Model and Feature Selection
The RF model had an AUC of 0.941, and this test is simple, non-
invasive, and quick. A predictive radiomic model could be used in
the clinic before treatment to estimate the probability that a patient
will respond to chemotherapy and high possibilities would give the
oncologists more confidence in the chemotherapy, whereas
otherwise other optional treatment plans should be considered.

We tried three different methods of feature selection to know
which was suitable for our data and the RF method achieved the
better performance than mRMR and relief. The possible reasons
are given as follows: a) the mRMR algorithm does not provide a
clear determination of the optimal amount of features and can
thus still retain redundant features. b) relief is a filter-based
feature selection method, but it is easy to ignore small samples
and cannot reduce redundant features. We used RF feature
selection method based on mean decrease accuracy strategy, it
sorts the importance of features to find the most suitable feature
subset (13, 44–46).

Clinical Features Do Not Help Prediction
Of the five clinical features, smoking status and number of
treatment courses differed significantly between the response
and progression groups. Histological type and chemotherapy
drug may influence the response (36, 47), but these clinical
features do not help to predict the chemotherapy response. Using
only clinical features gives a prediction with an AUC of only
0.523 ± 0.09 and combining clinical features with radiomic
FIGURE 8 | Typical CT images for response and progression groups.
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features does not improve the prediction as well. There are two
possible reasons. First, the significance comparison is for groups,
whereas response prediction involves individuals; features or
parameters with significant differences are not necessarily
discriminative nor do they always work for individual
prediction (12). Second, the relation between clinical and
radiomic features is more likely to be correlated than
complementary; the radiomic features may represent the
information underlying the clinical features and thus, make the
latter redundant.

Whether combining clinical features with radiomic features
improves the prediction is uncertain and specific to the task. For
example, Velazquez et al. found that doing so substantially
improved the predictive performance (AUC = 0.86) of EGFR
mutation status, whereas using only clinical features gave a
predictive model with an AUC of 0.81 (43). Moreover, Lou et
al. found that models with both radiomic and clinical features
were significantly better at predicting treatment failures than
those with only radiomic features (21).

Limitations and Future Work
The present study has limitations. First, our data set comprises
CT images and treatment records of only 280 patients. Although
overfitting was controlled, the sample size was relatively small.
Second, the numbers of patients were unbalanced between
adenocarcinoma and squamous cell carcinoma (228 vs. 52).
Third, the type and dose of chemotherapy drug were not
accounted. Finally, none of the predictive models were
constructed using either deep learning or the hybrid method of
deep learning and machine learning.

As future work, we will use a predictive model with overall
survival as the prognostic endpoint. A deep convolutional neural
network will be used to improve the predictive performance and
the radiomic nomogram will help facilitate clinical applications
(48–50). For a given NSCLC histological type and choice of
chemotherapy drug (AP, GP, TP, or DP), a predictive response
model may help oncologists choose the correct chemotherapy
drug according to the patient’s histological type and pre-
treatment CT images.
CONCLUSION

The chemotherapy response of NSCLC patients can be predicted
by a radiomic model based on machine leaning of pre-
chemotherapy CT images. Several radiomic features differed
Frontiers in Oncology | www.frontiersin.org 11
significantly between the response and progression groups and
could be used as imaging biomarkers to predict the chemotherapy
response. The NSCLC tumors were more heterogeneous in CT
images in the response group than in the progression group. This
radiomic model with these imaging biomarkers could help to
stratify NSCLC patients and make better treatment decisions,
simply, non-invasively, and inexpensively.
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