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Abstract

Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype
associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any
advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study
population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley
(Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To
accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed
haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association
algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window
performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes.
Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent
to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content
of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers.
Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the
distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude
single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full
information content of the genotype data.
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Introduction

Recent advances in sequencing and genotyping technology

have allowed the collection of large amounts of genome-wide

single nucleotide polymorphism (SNP) data for many species,

primarily with the goal of finding associations between alleles and

phenotypes of interest. Numerous statistical methods for such

association studies have been proposed, many focused on the

mapping of variation underlying common diseases in humans

(e.g., Welcome Trust Case Control Consortium [1]), while others

have focused on organisms as diverse as Arabidopsis [2], dogs [3]

and cattle [4]. It has become apparent that the choice of

association mapping methodologies depends on the characteris-

tics of the study population. In contrast to biparental mapping

populations, in which the pattern of LD and the allele frequency

distribution are known and are independent of population genetic

parameters, every association mapping population has a unique

population history (both recent and ancient) that shapes its

patterns of genetic variation and may determine which mapping

method works best.

Patterns of variation can be described by the extent to which

variation at linked SNPs is ‘‘block-like’’, i.e., most haplotypes fall

into a few classes with little evidence of recombination. This

quality was first observed in dense SNP data from The SNP

Consortium Allele Frequency Project [5], and has led to a great

interest in determining whether the power and accuracy of

association mapping can be improved by grouping SNPs into

haplotype blocks (see Zhao et al. [6] for a review). Various

rationales for testing for associations between phenotypes and

haplotypes, rather than single SNPs, have been proposed,

including that haplotypes: capture epistastic interactions between

SNPs at a locus [7,8]; provide more information to estimate

whether two alleles are IBD [9]; reduce the number of tests and

hence the type I error rate [2]; allow informed testing between

clades of haplotype alleles by capturing information from

evolutionary history [10]; provide more power than single SNPs

when an allelic series exists at a locus [11].

These rationales may be more or less relevant depending on the

marker density and LD structure of the data. For example, the

possibility of epistasis among SNPs is much greater when SNP
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density is very high, and is particularly relevant to studies where

many common SNPs have been typed across a candidate gene [7].

Using genotype and gene expression data from HapMap

populations, Dimas et al. [12] have proposed that interactions

between protein-coding and regulatory SNPs may be common,

and there is some evidence for SNP-SNP interactions within genes

and gene clusters (e.g., Hamon et al. [13]). But there is no evidence

to suggest that epistasis occurs frequently between randomly

chosen SNPs hundreds of kilobases apart.

Long and Langley [14], in a simulation study using parameters

based on human data, concluded that ‘‘[o]ver the entire parameter

space examined in this work and under the simple population

genetic model considered, single-marker-based, permutation-

based tests are either of similar or greater power than haplotype-

based tests.’’ Since then, however, simulations based on the LD

and population history of livestock have shown that haplotypes can

provide greater QTL detection power and mapping accuracy than

single markers can [15–17]. Zhao et al. [18], conducting

simulations designed to resemble the demography and population

history of livestock, found no apparent advantage to using

haplotypes over single SNPs. These conflicting results suggest, as

Long and Langley [14] noted, that ‘‘under different models

relating genotype to phenotype or under different demographic

scenarios, [their] conclusion may not be valid,’’ and that the power

of QTL mapping with haplotypes must be evaluated on a case-by-

case basis.

A GWAS report [19] as well as LD fine mapping studies [20,21]

using empirical data have found significant associations between

haplotypes and phenotypes that were not detectable by a single

SNP analysis. These results underscore a key difficulty in

simulation studies: unless simulations accurately model the genetic

architecture and population history of QTL alleles, they will have

limited relevance to empirical datasets. Furthermore, it is likely

that the nature of the QTL-marker associations is sufficiently

variable that no one simulation approach can capture them.

Genome-wide association studies (GWAS) are now being used

to identify genes underlying agronomically important traits in

crops, many of which have self-pollinating mating systems. The

objective of this study was to explore the utility of haplotypes for

GWAS in barley, as a representative of such crops. To accomplish

this, we used genotype and phenotype data from the Barley

Coordinated Agricultural Project (Barley CAP; www.barleyCAP.

org) for both simulations and analysis of empirical data. As for

many plant studies, the current Barley CAP marker dataset is fairly

sparse, with an average SNP spacing of about 2.4 Mb (2198

SNPs/5350 Mb genome), in a population of 1807 individuals.

While this number of markers may seem too small to be of any

value, linkage disequilibrium in this population is quite extensive

in comparison to humans [22] or cattle [23], and there is

substantial clustering of SNPs [24], so many adjacent SNPs are

correlated. There are various criteria for defining haplotype

blocks, with the most appropriate for a given case dependant on

how the haplotypes will be used [6]. We used three different

approaches to group sets of SNPs into haplotype blocks: the four

gamete method as implemented in Haploview [25], based on

recombination; the HapBlock method [26], based on diversity;

and a simple sliding window. For each one of these approaches, we

tested the power to detect associations between haplotype alleles

and simulated QTL. In addition, we used the blocks defined in the

four gamete method to construct parsimony trees, and tested the

power to detect associations between the simulated QTL and

edges in the trees, as proposed by Templeton et al. [10] and

implemented in the TreeScan software [27]. Finally, association

analysis using the haplotypes, parsimony tree edges, and single

SNPs was conducted on heading date data collected on a large set

of barley germplasm from the Barley CAP.

Results

SNP data
The mean genetic map distance between adjacent markers was

,0.5 cM, though 60% of adjacent SNP pairs had the same map

position. When markers mapped to the same position, it was most

likely because of insufficient resolution of bi-parental maps rather

than because of actual identical positions [28]. The distributions of

minor allele frequency (MAF), mean r2 between adjacent SNPs,

and the highest r2 within 10 cM, are shown in Table 1. Because

the complete sequence of the barley genome is not available, the

physical distance between markers is not known.

Haplotype Blocks
We identified haplotype blocks using three methods based on

different properties of the data. Properties of the blocks are shown

in Table 2. Both the 4gamete and HapBlock methods produce

blocks that vary greatly in size, depending on regional properties of

the data (i.e., linkage disequilibrium and marker density). About

26% of the block boundaries are shared between the 4gamete and

HapBlock methods; across the genome, 38 of the blocks are

identical. To contrast with these methods, we also grouped SNPs

by a simple sliding window approach. Because the median block

size of the other two methods was three SNPs, we used a block size

of three SNPs (SlideWin3).

The 4gamete method resulted in the fewest SNPs being

included in blocks (85%), and less than half of the genetic map

was covered by blocks. In contrast, the SlideWin3 method covered

the entire genetic map, because the blocks were overlapping. The

HapBlock method produced the largest average number of alleles

per locus (4.7), consistent with its higher average block size in cM.

The lower average alleles per locus for the 4gamete method was

mainly due to the large number of singleton (i.e., unblocked) SNPs.

Power to detect single SNP-based QTL
Power to detect single causal SNPs (QTL) removed from the

marker dataset for each QTL size (p) and h2 is presented in Table 3.

Substantial power to detect QTL at reasonable false discovery

rates (FDRs) was observed only when p was set to 0.12 (Table 3;

Figure 1). At an FDR of 0.1, power to detect p = 0.03 QTL was

0.01 or less in all cases, while power to detect p = 0.06 QTL was

0.09 and 0.18 at h2 levels 0.25 and 0.75, respectively. Increasing

the proportion of phenotypic variation caused by the polygenic

effect (i.e., h2) increased power at constant QTL size because the K

matrix, which describes the genome-wide genetic covariance

between individuals, can account for more of the phenotypic

variation. This produces a clearer QTL signal. The relationship

between power and FDR for each QTL size is presented in

Figure 1.

Table 1. Properties of SNPs scored for the Barley Coordinated
Agricultural Project with minor allele frequency $0.028.

Min Median Mean Max

Minor allele frequency 0.028 0.308 0.290 0.50

r2 between adjacent SNPs 0 0.378 0.453 1.00

Max r2 within 20 cM window 0.009 0.684 0.640 1.00

doi:10.1371/journal.pone.0014079.t001

Haplotypes versus SNPs in GWAS
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Table 2. Comparison of single SNPs and haplotype blocks inferred by the three blocking methods.

BOPA1&2a 4Gamete HapBlock SlideWin3

Number of locib 2098 791 585 2084

Single SNPs remaining 2098 323 37 0

Total alleles 4196 2584 2762 8320

Alleles (MAFc$.028) 4196 2301 2484 6002

Effective test number 1164 744 521 791

Mean He
d 0.372 0.501 0.593 0.584

Mean major allele freq. 0.71 0.54 0.52 0.54

Proportion of genetic map in blocks na 47% 63% 100%

Block size in cM

Mean na 1.09 1.25 1.04

Median na 0.72 0.76 0.70

Variance na 1.97 2.14 1.83

Maximum na 10.19 11.06 10.35

Block size in SNPs

Mean na 3.80 3.82 3

Median na 3 3 3

Variance na 6.28 5.99 0

Maximum na 20 30 3

aSNPs scored using two Barley oligonucleotide pool assays (Close et al. 2009).
bIncludes unblocked SNPs.
cMAF, minor allele frequency.
dHe, expected heterozygosity.
doi:10.1371/journal.pone.0014079.t002

Table 3. Power of detecting single QTL removed from marker dataset for different heritability and QTL size levels and empirical
false-discovery rates.

False-discovery rate = 0.10

Single SNP 4gamete SlideWin3 HapBlock TreeScan

h2, p

0.25, 0.03 0.00 0.00 0.00 0.00 0.00

0.25, 0.06 0.09 0.05a 0.08a 0.04 0.07a

0.25, 0.12 0.43 0.44 0.57 0.46 0.43

0.75, 0.03 0.00 0.00 0.00 0.00 0.00

0.75, 0.06 0.18 0.10 0.17a 0.11 0.11a

0.75, 0.12 0.57 0.54 0.73 0.57 0.49

False-discovery rate = 0.20

Single SNP 4gamete SlideWin3 HapBlock TreeScan

h2, p

0.25, 0.03 0.00 0.00 0.00 0.00 0.00

0.25, 0.06 0.11 0.08a 0.11 0.07a 0.08a

0.25, 0.12 0.53 0.56 0.68 0.60 0.53

0.75, 0.03 0.00a 0.00a 0.01 0.00a 0.00a

0.75, 0.06 0.24a 0.16 0.27 0.16 0.17

0.75, 0.12 0.68 0.63 0.82 0.67 0.58

aPowers not significantly different than highest power within row at 0.01 probability level.
Numerically greatest values within a row are underlined.
doi:10.1371/journal.pone.0014079.t003

Haplotypes versus SNPs in GWAS
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Power was largely equivalent between the different analysis

methods when p = 0.06 and 0.03 and h2 = 0.25. When h2 = 0.75

and p = 0.06, the single SNP and SlideWin3 analyses provided

more power at both FDRs. SlideWin3 displayed a substantial

advantage over all other methods when p = 0.12. The advantage

ranged from 20% to 33% over the next best method.

Power to detect haplotype-based QTL
Simulating QTL by assigning a phenotypic value to a

genotyped SNP marker assumes that the frequency distribution

of QTL is similar to that of markers. To simulate a scenario in

which the causal variant is younger than the marker variants, pairs

of SNPs at the center of haplotype blocks were chosen and a

phenotypic effect was assigned to lines carrying a specific

combination of alleles at those loci (see Methods). Because we

found that p = 0.06 and h2 = 0.75 best separated the different

analyses when QTL were simulated as removed, single causal

SNPs, these parameter levels were used for this second round of

simulations. With few exceptions, each analysis provided the

highest power only when the corresponding block structure was

used for simulating the QTL (Table 4). For example, when QTL

simulations were based on pairs of SNPs at the center of HapBlock

haplotype blocks, QTL were detected most effectively by

performing the association analysis with HapBlock haplotypes.

An important observation to note is that SlideWin3 almost always

resulted in the second best power, and sometimes even

numerically better than the haplotype analysis method matching

the QTL simulation method, e.g. 4gamete QTL at FDR = 0.20 in

Table 4.

Heading date association mapping
We conducted genome-wide association mapping on heading

date in the Barley CAP germplasm using the same single SNP and

haplotype analyses performed on the simulated phenotypes.

Across all analyses, three associations were found between markers

and heading date (Figure 2), two of which were detected by

haplotype analyses only. The strongest association was for markers

on the long arm of chromosome 2H near the centromere (position

63.53 cM on the consensus map of Close et al. [28]). This region

has been referred to as Qrgz-2H-8 [29] and is typically associated

with QTL for heading date and Fusarium Head Blight resistance

[30]. Microsatellite marker GBM1023, used by Nduulu et al. [30]

for genetically dissecting this region, is linked to the SNP highly

associated with heading date in this study, POPA2_1399 [28].

Working across Figure 2, the next marker-heading date

association occurred on chromosome 3H, position 126.3.

Interestingly, this association was found by the TreeScan analysis

Table 4. Power of detecting single causal SNPs left in the marker dataset or QTL pairs chosen on the basis of the different block
methods (rows) for each analysis method (columns).

False-discovery rate = 0.10

Single SNP 4gamete SlideWin3 HapBlock TreeScan

QTL type

Single SNP 0.51 0.34 0.39 0.29 0.41

4gamete 0.23a 0.30 0.24a 0.18 0.21

SlideWin3 0.10 0.12 0.27 0.14 0.08

HapBlock 0.19 0.14 0.23a 0.31 0.14

False-discovery rate = 0.20

Single SNP 4gamete SlideWin3 HapBlock TreeScan

QTL type

Single SNP 0.59 0.41 0.48 0.37 0.48

4gamete 0.31 0.42a 0.44 0.29 0.28

SlideWin3 0.15 0.20 0.44 0.24 0.11

HapBlock 0.25 0.23 0.41 0.41 0.19

aPowers not significantly different than highest power within row at 0.01 probability level.
Numerically greatest values within a row are underlined.
doi:10.1371/journal.pone.0014079.t004

Figure 1. Power plotted against false discovery rate for the
single SNP analysis and each level of QTL size (p). Triangles
represent p = 0.12, squares represent p = 0.06, and circles represent
p = 0.03. For all QTL sizes h2 = 0.75.
doi:10.1371/journal.pone.0014079.g001

Haplotypes versus SNPs in GWAS

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e14079



only. Figure 3 shows the configuration of the parsimony tree

constructed with the alleles of this 4gamete haplotype block. There

was a significant difference between allele 011 and the average of

alleles 000, 010, and 110. The SNP at position 3 in this block

separates 011 from the other alleles in this tree, but this SNP also

groups 011 with 001 and 111, which are recombinant alleles that

do not fit in the parsimony tree displayed in Figure 3. The allelic

effects of these two recombinant alleles are quite different than

011. Despite a small number of individuals carrying the

recombinant alleles, they influenced the effect of the SNP at

position three by enough to increase the p-value to above the

significance threshold. The p-value for the SNP at position 3 was

3.761024, while that of the TreeScan edge was 8.561026. The p-

value for the 4gamete analysis was 5.561024, illustrating that

grouping lines with alleles 000, 010, and 110 together and

performing a single degree of freedom test provided more power

than the 4gamete multi-degree of freedom test. The SNP at

position three in this block (POPA2_0650) maps very near to

markers found to be associated with heading date in barley in at

least three prior mapping studies. These include RFLP ABG377,

reported to be associated with heading date by Hayes et al. [31]

and Thomas et al. [32], and microsatellite Hvm33 by Pillen et al.

[33].

An association was found on chromosome 7H solely by the

4gamete and SlideWin3 analyses. The three alleles at this locus

and best linear unbiased estimates of their allelic effects (in

parentheses) were: 101 (0.735), 010 (0.728), and 011 (0). Grouping

lines by any of the individuals SNPs in this haplotype block groups

lines with different phenotypes, nearly eliminating any power to

detect this association. Accordingly, p-values for the single SNP

analysis in this region were much higher than the haplotype

analyses (Figure 2). The number of individuals carrying allele 011

was 145. These lines were distributed across four breeding

programs as follows: Aberdeen, 30 lines; NDSU 2-row, 73 lines;

Washington State, 42 lines. The three SNPs that composed this

haplotype block (POPA3_0893, POPA3_0894, POPA3_0895)

were included on the Barley CAP genotyping platform because

Figure 2. Manhattan plot showing significance of each marker. Markers are plotted on the x-axis according to their genetic position on each
chromosome. Horizontal solid, dashed, and dotted lines correspond to an experiment-wise error rate of 0.05 for the single SNP, 4gamete, SlideWin3
(SW3), HapBlock, and TreeScan (TS) analyses as indicated in the legend.
doi:10.1371/journal.pone.0014079.g002

Figure 3. Parsimony tree of alleles present at 4gamete block
325 (chromosome 3, position 126.3). Values in boxes represent,
from top to bottom, SNP scores each allele, best linear unbiased
estimate of allelic effect, and number of lines carrying that allele. The
edge separating alleles 010 (III) and 011 (I) was associated with heading
date in the TreeScan analysis. Alleles VI and V were recombinant alleles
not included in the parsimony tree and therefore the dotted edges
were not included in the TreeScan analysis.
doi:10.1371/journal.pone.0014079.g003
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they are located within VRN-H3, a cloned gene controlling

vernalization response that is orthologous to Arabidopsis Flower-

ing Locus T [34]. Yan et al. [34] showed that variation exists in

the promoter region of this gene independent of growth habit and

could not rule out the possibility that this locus contributes to

variation in flowering time within barley growth habit.

As mentioned in the introduction, one advantage of grouping

SNPs into haplotype blocks is reducing the number of tests and

making it easier to reject the null hypothesis. Because tests

involving markers within linkage groups are not independent of

one another, and the distribution of markers across the genetic

map is not uniform, the effective number of independent tests is

not necessarily linearly related to the number of markers (i.e., the

number of loci as reported in Table 2). Using permutations, we

determined the significance threshold required for an experiment-

wise error rate (EER) of 0.05. The p-value thresholds were related

to marker number, with the single SNP and TreeScan thresholds

being the most stringent and the HapBlock threshold, with the

fewest markers (Table 2), being the least stringent (Figure 2). The

Bonferroni correction for multiple tests calculates the p-value that

should be used for individual tests in order to maintain a desired

EER assuming independent tests. Since our tests are not

independent, it would be useful to calculate the effective number

of independent tests to illuminate the degree to which grouping

linked SNPs into haplotypes reduces the problem of multiple

testing. We solved the Bonferroni function for test number and

found the following effective independent test number for the

various analyses: single SNP, 1164 tests; 4gamete, 744 tests;

SlideWin3, 791 tests; HapBlock, 521 tests; TreeScan, 1306 tests.

The concept discussed above is illustrated by the difference in

effective test number between SlideWin3 and single SNP. These

two methods have nearly the same number of loci because each

SNP, with the exception of those on chromosome ends, gives rise

to a new haplotype block in SlideWin3. Adjacent SlideWin3

blocks, however, share two SNPs and are therefore correlated

more strongly with one another compared to adjacent single SNPs.

This shows that although overlapping sliding windows generate

nearly as many loci as single SNPs, it is still useful for reducing the

problem of multiple testing.

Discussion

The dramatically increasing availability of DNA markers will

produce a landslide of genome-wide association mapping studies

in crop species in the coming years. Our goal was to identify which

analytical methods perform best in discovering genes controlling

complex traits in crop germplasm collections so that allelic

diversity can be mined most efficiently. Studies in other organisms

have shown that, under certain conditions, multimarker SNP

haplotypes may provide increased power to detect QTL.

However, those conditions are not well understood, and the

population genetic characteristics of plant species may differ in

important ways from human and animal species, e.g., many plants

are self-pollinating.

Properties of blocks
The first issue we faced was the choice of blocking methods, of

which a large number have been proposed in the literature. The

vast majority of those methods were designed for application to

human data sets with high densities of markers; the density of SNP

markers in the BarleyCAP data set is much lower. However, in

spite of this low density, there is significant LD between adjacent

markers, due both to the substantial clustering of SNPs on the

genetic map and to LD that extends over at least 10 cM [24]. We

explored the use of two methods, based on LD (4gamete) or

diversity (HapBlock), to assign SNPs to blocks; using the settings

we implemented, 85% or 98% of SNPs were incorporated into

blocks, respectively. Although these two methods grouped a large

fraction of SNPs in blocks, when the genetic map distance between

blocks was tallied, 37% and 53% of the genetic map fell between

block boundaries (Table 2). A similar proportion of our simulated

QTL also fell between block boundaries: 63% of the QTL fell

between 4gamete blocks and fell 39% between HapBlock blocks.

On the other hand, the sliding window method grouped all SNPs

into blocks. Because the sliding windows were overlapping, there

was no map distance left between blocks as well as no simulated

QTL between blocks.

Simulations with single SNPs as QTL
To compare the power of haplotypes and single SNPs in finding

QTL, we simulated QTL at known genetic locations using 100

evenly distributed SNPs removed from the marker data set. We

found that haplotypes did not provide an advantage at smaller

QTL sizes, but at the largest QTL size investigated, SlideWin3

provided substantially more power than the single SNP analysis

(Table 3). TreeScan analysis performed significantly worse than

the single SNP analysis when heritability and QTL effect size were

high. We considered several technical factors that could contribute

to the small differences in power observed in some situations:

1) Window size for declaring a true positive (favors haplotypes).

For the single SNP analysis, we required a significant marker

to be within 10 cM of the causal SNP in order for it to be

declared a true positive. For the haplotype analyses, we

required a block boundary to be within 10 cM of the causal

SNP; since the blocks covered a genetic distance up to

11 cM (Table 2), a haplotype could be farther away from the

QTL and still be declared a true positive.

2) Test number (favors haplotypes). By grouping SNPs into

haplotype blocks, the number of tests was reduced, reducing

the probability of spurious associations. According to our

permutations of the heading date data, an EER of 0.05 can

be maintained at a slightly lower significance threshold for

the 4gamete, SlideWin3, and HapBlock analyses. The less

stringent significance threshold should provide greater

power.

3) Test degrees of freedom (favors single SNPs). Because

haplotypes are multi-allelic, the likelihood ratios calculated

for them follow chi-squared distributions with more than 1

degree of freedom. For the same p-value, haplotype

likelihood ratios must therefore be higher than single SNP

likelihood ratios.

4) Allele frequency spectrum (favors single SNPs). All the 2098

single SNPs had MAF$0.028. When these SNP loci were

combined into haplotypes, they generated alleles that were

of lower frequency. This was especially true of the

SlideWin3 method, for which ,28% of the alleles had

MAF below 0.028. Elimination of these low MAF alleles

resulted in smaller sample size and loss of information.

Because of the generation of lower frequency alleles, larger

sample sizes are needed to take advantage of the additional

information present in haplotypes.

5) Amplification of missing data (favors single SNPs). When

any SNP allele in a block is missing, the allelic state of the

block is unknown for that individual, so there is inevitably

more missing data in a haplotype data set than there was in

the original SNP data set. In our case, we imputed the 0.7%

Haplotypes versus SNPs in GWAS
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of missing data for the SNPs, which resulted in 1.65%,

2.8%, 3.4%, and 2% imputed haplotypes for the 4gamete,

TreeScan, HapBlock, and SlideWin3 methods, respectively.

6) Possible map order errors. Because the barley genetic map

has clusters of markers with the same genetic map position,

the order of some markers is unknown. As described in

Methods, we used an approach that maximizes LD between

adjacent markers to order these clusters. Errors in map

order would have no effect on the single SNP analysis, but

may lead to inference of haplotype alleles that do not

actually exist. It is not clear what effect this would have on

QTL detection power.

The differences in power that we observed between the methods

are the net, combined effect of these technical factors as well as

any differences in information content (i.e., marker-QTL LD) of

the various marker types. As evaluated by the power/FDR

relationships summarized in Table 3, this net effect is apparently

close to zero for some of the methods and situations, but comes out

in favor of SlideWin3 for large QTL size. To better understand the

relative importance of technical factors versus information content

for detection power, we compared the information content of the

various marker types. We calculated r2 (or its multiallelic

equivalent, x29 [35]) between each of the 100 QTL and the

markers within 10 cM, for each method. This maximal r2 should

strongly affect detection power of a method. Comparisons among

the methods are shown in Table 5. While the LD between single

SNPs and QTL is highly correlated with the LD between

haplotype blocks and QTL (the correlations range from 0.84 to

0.90), for 63 of the QTL, at least one haplotype method generates

a block with x29 at least 0.1 units higher than r2 between that QTL

and the best single SNP. At 15 QTL, all three haplotype methods

produce markers with x29 at least 0.1 units higher than r2 for any

single SNP. For only 13 QTL is the r2 for the best single SNP 0.1

higher than the maximum x29 of any of the blocking methods. In

no case was a QTL more strongly associated to a single SNP than

to a block from more than one haplotype method. That haplotype

alleles were in higher LD with QTL than were the single SNP but

often did not provide greater detection power indicated that,

overall, the technical factors worked against the haplotype

methods.

Examination of Table 5 also provided a hypothesis for the

greater increase in power of the SlideWin3 method for QTL of

large effect. First we note that, with the exception of the TreeScan

method, all haplotype methods increased in power more than the

single SNPs as QTL size went from 0.06 to 0.12. Likewise, the

variance across all QTL in their maximal LD with a marker was

lower for haplotype methods (with the exception of TreeScan)

than for the single SNPs (Table 5). For QTL of size 0.06, the

median likelihood ratio was below the detection threshold (i.e.,

power was below 50%). In that case, having a higher variance in

LD was beneficial because it caused a higher variance in the

likelihood ratio such that in more cases the ratio exceeded the

threshold. In contrast, for QTL of size 0.12, the median likelihood

ratio was above the threshold. Higher variance was then

detrimental because it caused more cases to fall below the

threshold.

Haplotype-based QTL and empirical phenotype data
Our analyses using phenotypes simulated on the basis of single

SNP genotypes suggested that there can be an advantage to using

haplotypes instead of single SNP markers in GWAS. Moreover, it

is likely that the method of simulating the QTL biased the results

in favor of the single SNP analysis. There is no reason to assume

that the QTL alleles found in nature – the only relevant QTL –

are distributed in populations and across the genome the same as

SNPs placed on an Illumina GoldenGate SNP chip. To determine

the effect of QTL simulation on our results, we performed three

additional sets of simulations in which no SNPs were removed,

and QTLs were assigned to a pair of adjacent SNP alleles (see

Methods). This approach confirmed that, when the causal SNP is

one of the genotyped markers, the power of single SNP analysis is

superior to that of haplotypes (Table 4). However, when the QTL

effect was simulated by a combination of SNPs, the blocking

method that combined that pair had the greatest power to detect it

in most cases. A QTL such as this may occur in nature when the

age of causal polymorphism is younger than the surrounding

marker polymorphisms [36]. If the haplotype containing the

causal mutation subsequently increases in frequency through drift

or selection, the QTL allele would be in higher LD with the

surrounding haplotype as a whole than with any of the single SNPs

within the haplotype. In this scenario, the increased information

content of the haplotype alleles clearly offset any loss of power

associated with technical issues.

The results of the heading date analysis are consistent with those

from the QTL simulations: different marker-trait associations were

found across different analyses, reflecting the heterogeneous

history of mutation, recombination, and drift across the barley

genome. The power to detect a QTL is highest when the

associated marker allele has a similar frequency to that of the QTL

allele; when a QTL allele is in lower frequency than the nearby

markers, a combination of alleles at two or more markers may

generate a haplotype that is closer in frequency. This appears to be

the case for the QTL on chromosome 7H, which was in higher in

LD with a 4gamete haplotype at VRN-H3 than with any single

SNP within this block. In an equilibrium population, this situation

Table 5. Linkage disequilibrium between QTL and its highest LD marker for single SNPs and each of the different blocking
methods.

Single SNP 4Gamete HapBlock SlideWin3 TreeScan Mean LD Std. Dev. of LD

Single SNP - 13 0 0 22 0.50 0.24

4Gamete 20 - 3 1 36 0.53 0.23

HapBlock 49 47 - 8 60 0.62 0.21

SlideWin3 55 47 6 - 65 0.63 0.21

TreeScan 1 9 0 0 - 0.43 0.27

Each cell shows the number of times the method in the row produced a marker with marker-QTL LD (i.e., x29 or r2) at least 0.1 units higher than the marker-QTL LD
produced by the method in the column. Mean and standard deviation of LD are given in the last two columns.
doi:10.1371/journal.pone.0014079.t005
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is most likely when the mutation giving rise to the QTL is younger

than the mutations giving rise to the markers. In a domesticated

species that has experienced at least one bottleneck and strong

selection, allele frequency is not necessarily a reflection of allele

age, and such a configuration can also be due to genetic drift.

The basis of the association between heading date and a

TreeScan edge on chromosome 3H is somewhat more compli-

cated. The increased power of the TreeScan method at this locus

was due to 1) the higher power of a test with one degree of

freedom and 2) the elimination of the phenotypically discordant

recombinant alleles from the set of individuals that carry allele 1 at

the most strongly associated SNP (Figure 3). Had we included

these recombinant alleles in the parsimony tree, this would not

have changed the result, namely, the significance of the edge

between haplotype I and haplotypes II, III, and IV. However, the

results in Table 5 suggest that this type of scenario favoring

TreeScan does not happen frequently. Given the considerable

effort involved in implementing the TreeScan method, which was

originally developed for candidate gene analysis and cannot easily

be automated, we do not recommend its routine use in GWAS.

It is worth mentioning that all the QTL detected for heading

date were found by at least one of the haplotype analyses; even the

peak on chromosome 2 (Figure 2) was topped off by an association

with a 4gamete haplotype. However, the reasons for potential

greater power of the single SNP analysis listed above, combined

with the fact that no extra effort is required for performing the

single SNP analysis, warrant its continued importance in GWAS.

Conclusions
Because both genetic architecture and population history are

likely to differ across genes and traits, it is not reasonable to expect

one method to be superior at detection of all QTL. The

examination of LD around individual simulated QTL shows that,

in some cases, multi-SNP haplotypes can be in much stronger LD

with a QTL-SNP than are any of the constituent SNPs. Both our

simulation and barley heading date results provide good support

for the use of simple, overlapping sliding windows for GWAS to

complement a single SNP analysis. Fortunately, the sliding

window haplotype method is also the easiest to implement, as it

is implemented in the available software programs PLINK [37]

and TASSEL [38]. Whether haplotypes would provide any

advantage when marker density is much higher remains to be

determined.

Materials and Methods

Genotyping
SNP data consisted of 3072 SNPs scored on 1824 barley lines

using two Illumina GoldenGate oligonucleotide pool assays

(BOPA1 and BOPA2 in Close et al. [28]). Barley lines were from

CAP years 2006 and 2007 only. Unmapped SNPs and those with

MAFs,0.028 were removed from the data set (a minimum of 50

individuals carried the minor allele). Since barley is highly inbred,

the genotypic data were treated as effectively haploid. Heterozy-

gous loci were rare and were scored as missing data. After

removing duplicate lines and lines with large amounts of missing

data, the final data set consisted of 2198 mapped SNPs scored

in1807 lines.

There were many sets of SNPs, ranging in size from two to 34

SNPs, with identical genetic map position; these sets were ordered

so as to generate maximal LD among adjacent markers. For

example, if markers a, b, c, d, e, f were at 8, 10, 12, 12, 12, 15 cM,

the best order would be chosen from a-b–[c, d, or e]- [c, d, or e]-

[c, d, or e]-f by maximizing LD between b - [c, d, or e] and f - [c,

d, or e] as well as LD among c, d, and e.

Haplotype Block Identification
Three methods were used to identify haplotype blocks among

the SNPs:

1) The four gamete method (4gamete), implemented in the

software Haploview [25], creates block boundaries where

there is evidence of recombination between adjacent SNPs,

based on the presence of all four gametic types. We used a

cutoff of 2%, meaning that if addition of a SNP to a block

resulted in recombinant alleles at a frequency exceeding 2%,

the SNP was not included in the block.

2) The HapBlock method [26] groups SNPs into blocks on the

basis of diversity rather than LD: SNPs are grouped so as to

capture most of the diversity across the sample in a set of

common haplotypes, where ‘‘common’’ is defined by the

user. We chose to identify blocks for which at least 97% of

individuals have a haplotype allele that is present at a

frequency of at least 2.8%.

3) Overlapping sliding windows of three SNPs were blocked

together (SlideWin3).

Haplotype block identification was conducted on the original

genotype data, which included 0.7% missing data. Because some

of our analysis methods would not tolerate missing data, we used

FastPHASE [39] to impute all missing SNP alleles. This program

uses haplotype clustering that changes with genetic map position

and allele frequencies to calculate a probability that an individual

carries the reference allele at a locus. For each blocking method,

we extracted the SNP boundaries and common alleles (frequency

$0.02) identified using the original data and applied this

information to the dataset with the imputed data, creating a

haplotype allele incidence matrix that contained the probabilities

each individual carried allele i at haplotype block j. The haplotype

allele incidence matrix used for the association analysis was

created as follows:

k columns were created for each haplotype block, where k is the

number of alleles with frequency $0.02, and allele 1 is the most

frequent. In addition, each unblocked SNP was represented by

one column, as in the single SNP analysis. For each block, columns

1 to (k21) store the probabilities that an individual carries alleles 2

through k, respectively. Column k stores the probability that an

individual carries a minor allele. In the case that an individual

carries allele 1, the row values for that block will be all 0s. If an

individual is missing data for at least one SNP within a haplotype

block, at least one column among the set of columns representing

that block will have a value between 0 and 1, since the

probabilities of various haplotype alleles are the products of the

probabilities of the component SNPs as determined by the

imputation procedure.

TreeScan
Parsimony trees for the 4gamete haplotypes were estimated

using the pars function in Phylip [40]. Blocks produced by the

HapBlock and SlideWin3 methods were unsuitable because they

could include significant amounts of recombination that would

result in failure to find a single best tree. The parsimony tree file

for each 4gamete block was analyzed by the program TreeScan

[27], which identifies the edges in the tree and, for each edge, the

alleles that belong to the two clades defined by the edge. For

example, if a block has four alleles (101,111,001,110), the tree

topology is (3:1.00,(4:1.00,2:0.00):1.00,1:0.00) and there are three
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edges in the tree: 3 / 4 2 1; 4 2 / 3 1; 4 / 3 2 1. This is illustrated in

Figure 4.

Using the TreeScan output, a clade membership probability file

was created as follows: 2 columns were created for each of the k

edges at each 4gamete block. The first column for each edge stores

the probability that the individual belongs to the first clade at that

edge. The second column stores the probability that the individual

belongs to neither clade; this occurs when an individual carries a

rare haplotype that wasn’t included in the tree. As for the other

haplotype methods, unblocked SNPs were represented by one

column each.

Phenotype simulation
Simulated phenotypes were composed of one QTL, a polygenic

effect, and error. Different QTL sizes (p = 0.03, 0.06, and 0.12 of

phenotypic variation) and heritability (h2 = 0.25 and 0.75) were

simulated. One hundred SNPs, chosen to minimize pairwise LD

and to maximize genetic map coverage, were designated as

quantitative trait nucleotides (QTLs) and removed from the marker

dataset, leaving 2098 markers for the association mapping analysis.

Minor allele frequency among the 100 QTL was at least 0.10;

median MAF was 0.34. Simulated QTL were assigned an additive

effect inversely proportional to the standard deviation of the allelic

state in order to standardize the amount of genetic variance

attributed to QTL with different MAF. SNPs composing the

polygenic effect were selected by forming 400 k-means [41] clusters

of SNP markers from Barley CAP genotype data and selecting the

SNP nearest the centroid of each cluster. This step ensured that

more than one SNP per haplotype block was not used for the

polygenic effect. Marker scores at these loci were simply summed for

each line to create the polygenic component of the phenotype.

Variation due to the QTL and polygenic component together

compose the total genetic variance. Error effects were randomly

sampled from a standard normal distribution and added to the

genetic values to obtain phenotypes with h2 = 0.75 or 0.25. Each of

the 100 SNPs designated as QTL was used to simulate 10

phenotypes, producing 1000 phenotypes. To summarize, a factorial

of QTL size (p = 3, 6, and 12% of phenotypic variation) and h2 (0.75

and 0.25) was used to form six sets of 1000 phenotypes.

Because we were concerned that simulating QTL using SNPs

from the Barley CAP genotyping platform favored the single SNP

analysis, we also simulated QTL alleles that deviated from the

single SNP model in terms of frequency and LD with surrounding

SNPs. This was accomplished by defining a QTL effect as a

particular combination of adjacent SNPs. The pairs of adjacent

SNPs (hereafter referred to as QTL pair) were chosen on the basis

of each haplotype block structure so that each haplotype block

method would be favored by one set of simulated QTL.

Designating QTL pairs based on the SlideWin3 block structure,

an effect was given to individuals with the allelic combination (0-0)

at the first two positions within each 3-SNP haplotype block. In

Figure 4, this would correspond to Edge 1, which separates alleles

001 from all other alleles. To simulate QTL based on the 4gamete

block structure, an effect was given to individuals with a specific

pair of alleles at the center of the blocks as defined by the 4gamete

method. Because there are only 791 4gamete haplotype blocks and

therefore only 791 QTL pairs, another allelic combination (0-1)

was used to designate additional QTL pair effects. QTL pair

designation on the basis of HapBlock haplotype blocks was carried

out like that for 4gamete. In all three cases, allele combinations

with frequency less than 2.8% were not considered. As before,

single SNPs were used to simulate QTL, but in this case the causal

SNPs were left in the marker dataset so a marker in complete LD

with the QTL always existed. The remainder of the phenotype

was simulated as described above.

Selection of lines included in simulation study
A population of 400 lines was selected from the 1807 original

lines by forming 400 k-means clusters based on the SNP data and

selecting the line nearest the centroid. If two or more lines were

equidistant from the centroid, one of these lines was randomly

selected. Population size was reduced from 1807 to 400 to reduce

computing time. Additionally, a population size of 400 is within

the range of population sizes typically used in association genetics

studies [42]. Creating 400 k-means clusters and sampling the line

nearest the centroid maximized allelic diversity and historical

recombination within the selected lines. Maximizing genetic

diversity is often a primary objective in designing association

mapping panels [43,44].

Association mapping analysis
For QTL detection, marker-trait associations were tested by the

mixed linear model

y~XbzZhze

where y is a vector of phenotypes, b is a vector of fixed marker

effects (i.e., single SNP, haplotype alleles, or parsimony tree edges),

h is a vector of polygenic effects caused by relatedness, e is vector of

residual effects, and X and Z are incidence matrices relating y to b

and y to h, respectively. It is assumed h,N(0, 2Ks2
G ) and e,N(0,

Is2
e ), where K is an allele-sharing matrix calculated from the SNP

data, s2
G is the genetic variance, I is an identity matrix, and s2

e is the

residual variance. Zhao et al. [2] found that modeling population

structure with an allele-sharing matrix controlled false positives as

well as using a mixed model including both a kinship matrix and

population substructure effect (Q matrix) used by Yu et al. [45].

The above model was implemented using the efficient mixed-

model association algorithm (EMMA) of Kang et al. [46]. The

most important advantage of EMMA for our purposes is its speed,

being orders of magnitude faster than other mixed model

algorithms. An allele-sharing matrix was calculated using the

kinship.emma function. As it is currently set up, the EMMA R

package has strict formatting requirements and handles only bi-

allelic marker data. In order to use EMMA to analyze the

4gamete, HapBlock, and SlideWin3 data, we modified the EMMA

R package to perform likelihood-ratio tests of more than one

degree of freedom (df). The haplotype allele incidence matrix, as

described in Haplotype Block Identification section, is used in place of

the SNP matrix. A likelihood-ratio test was performed for each

haplotype block, and the test statistic was compared to a chi-

squared distribution with df equal to the number of haplotypes at

the locus in question minus one. To validate our modified EMMA

R script, one phenotype was analyzed using the above model and

4gamete haplotype data in PROC MIXED of SAS by performing

Figure 4. Illustration of tree topology example described in
text.
doi:10.1371/journal.pone.0014079.g004
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a likelihood-ratio test for each locus. The resulting p-value of each

4gamete haplotype block was the same across all markers as those

obtained from the modified EMMA script.

The format of the TreeScan edge score data is exactly that of

single SNP data, allowing use of the unmodified EMMA package.

While the format is the same, it is important to note that each

TreeScan test is for the effect of a tree edge on the phenotype. That

is, lines are grouped by their clade membership within the parsimony

tree created for each 4gamete block and clades connected by an edge

are tested for phenotype differences. This obviously can result in

several tests per haplotype block. The between-clade test resulting in

the lowest p-value is retained as the representative test of any given

haplotype block. This results in matrix of p-values with the same

dimensions as the 4gamete p-value matrix.

Power and false discovery rate
Comparing performance between the five different marker

types – single SNP, 4gamete, HapBlock, SlideWin3, TreeScan

edges – was done on the basis of power at empirical FDR of 0.10

and 0.20. A 20 cM window surrounding the QTL was used for

declaring a true discovery. For the haplotype markers, distance to

the QTL was calculated from the borders of the block. When the

QTL was simulated as a combination of two QTLs, the QTL

position was set to the midposition of the QTL pair. At any given

p-value, power is calculated as the number of times at least one

association is found within 10 cM of the true QTL position

divided by 1000 (because there were 1000 single-QTL simula-

tions). False discovery rate was calculated as 12(true associations)/

(total associations), where true associations is the total number of

marker-phenotype associations declared significant at a nominal p-

value where the marker in question was located within 10 cM of

the QTL and total associations is the total number of marker-

phenotype associations declared significant regardless of position

relative to the QTL. A superior marker type for association

mapping maximizes the power at the given FDR.

To estimate power and its standard error at an empirical FDR of

0.10 or 0.20, the following bootstrapping algorithm was performed:

1) p-values from the association analysis were arranged in a 1000 by

m matrix, where 1000 is equal to the number of phenotypes

analyzed and m is equal to the number of markers of the method

used (e.g., m = 2098 for single SNPs and m = 791 for 4gamete;

Table 2). 2) 1000 rows (i.e., simulated phenotypes) of this matrix

were randomly sampled with replacement. 3) Power and FDR were

calculated as described above. 4) Power at a specific FDR was

interpolated using a local simple linear regression model relating

power to FDR. 5) Steps 2–4 were repeated 1000 times to produce a

bootstrap sampling distribution of power at a designated FDR. 6) A

point estimate of power was taken as the mean of the bootstrap

sample distribution and the standard error was calculated as the

standard deviation of the bootstrap sampling distribution. Bootstrap

sample power estimates were normally distributed in all cases.

Heading date analysis
Each year of the Barley CAP, every participating breeding

program contributed 96 lines for genotyping and phenotyping.

Phenotypic evaluations were conducted at one or more locations

within the breeding program’s geographical region. Evaluations

were conducted during one year only, i.e. lines contributed in a

specific year are evaluated during that year’s field season weather

permitting. Hence, the phenotypic data of the Barley CAP is

highly unbalanced.

Heading date (days after planting when 50% of panicles

emerged from flag leaf) data sets of spring barley were obtained

from The Hordeum Toolbox (THT; www.hordeumtoolbox.org).

If a set of CAP lines (96) was evaluated at more than one location,

data was combined across locations and repeatability on an entry-

mean basis was calculated as R~s2
G=(s2

Gzs2
e=l) where l is the

number of locations. Data sets from individual breeding programs

were included if R§0:50 to ensure high data quality. If a breeding

program only used one location, data from that program was

included if the reported coefficient of variation on THT was less

than 10%. After selecting datasets according to the above criteria,

the remaining heading date data was from five programs:

Aberdeen, ID; University of Minnesota; North Dakota State

University (NDSU) 6-row; NDSU 2-row; Washington State

University. Data from both 2006 and 2007 (i.e., 192 lines from

each program) was used from each program.

Best linear unbiased predictions (BLUPs) of line performance

were calculated using mixed model involving trial as a fixed effect

and line as a random effect. The trial variable corresponds to the

individuals locations used by different breeding programs and was

modeled because trials within breeding programs were often

unbalanced. Check varieties common between locations within

breeding programs and across breeding programs provided the

overlap needed so that line BLUPs could be adjusted for

environmental effects. Outliers were identified as those with a

standardized value greater than three standard deviations and

removed from the dataset. The number of lines remaining was

944.

The statistical model used for association mapping of heading

date was the same as that used for simulated phenotypes except for

the inclusion of breeding program as a fixed effect. This model

effectively associated within-breeding program genetic variation

with markers, removing any unbalanced environmental effects

that could cause false phenotype-marker associations. A statistical

threshold corresponding to an experiment-wise type I error rate of

0.05 was established for each marker method by randomly

permuting the phenotypes 1000 times.
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