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Introduction

Schizophrenia is associated with impairments in executive 
functioning — particularly cognitive control. These deficits 
are present before illness onset1 and are stable over the course 
of the illness,2,3 showing marginal improvement with atypical 
antipsychotic medication.4,5 Cognitive control deficits have 
been associated with abnormal activity in the frontal, parietal 
and subcortical brain regions.6 A core region of the cognitive 
control network is the anterior cingulate cortex (ACC),7 
which has consistently demonstrated altered functional acti-
vation during cognitive control tasks in schizophrenia.6,8–12

Functional connectivity measures the temporal coherence 
of spontaneous neural activity between distinct brain re-
gions.13 Resting-state functional MRI (fMRI) is a reliable 
method of assessing functional connectivity,13 and because it 
does not require participants to perform a task, it is especially 
useful in patients with schizophrenia, who typically differ in 
task performance from healthy controls.14–16 Functional con-

nectivity has consistently been used to identify large-scale 
cognitive networks that interact in a well-characterized man-
ner, including the executive control, salience and default 
mode networks.17,18 A balance between the activation of task-
positive networks (salience, executive control) and deactiva-
tion of the default mode network appears to be necessary for 
cognitive functioning.19 Alterations in large-scale networks 
and alterations in the relationships between networks have 
consistently been reported in schizophrenia.20–24

Abnormalities in the excitation/inhibition balance as a re-
sult of N-methyl-D-aspartate receptor hypofunction on 
γ-aminobutyric acidergic (GABA) interneurons are impli-
cated in the pathophysiology of schizophrenia.25–31 Because of 
their role in neuroenergetics, brain measurements of gluta-
mate and GABA have been related to the fMRI signal.32,33 In 
healthy participants, GABA concentrations have been correl
ated with stimulus-induced activity in the measured brain 
region, and glutamate has been correlated with brain activity 
at rest and during tasks.34,35 
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Background: The major excitatory and inhibitory neurometabolites in the brain, glutamate and γ-aminobutyric acid (GABA), respectively, are 
related to the functional MRI signal. Disruption of resting-state functional MRI signals has been reported in psychosis spectrum disorders, but 
few studies have investigated the role of these metabolites in this context. Methods: We included 19 patients with first-episode psychosis 
and 21 healthy controls in this combined magnetic resonance spectroscopy (MRS) and resting-state functional connectivity study. All imaging 
was performed on a Siemens Magnetom 7 T MRI scanner. Both the MRS voxel and the seed for functional connectivity analysis were located 
in the dorsal anterior cingulate cortex (ACC). We used multiple regressions to test for an interaction between ACC brain connectivity, diagno-
sis and neurometabolites. Results: ACC brain connectivity was altered in first-episode psychosis. The relationship between ACC glutamate 
and ACC functional connectivity differed between patients with first-episode psychosis and healthy controls in the precuneus, retrosplenial 
cortex, supramarginal gyrus and angular gyrus. As well, the relationship between ACC GABA and ACC functional connectivity differed be-
tween groups in the caudate, putamen and supramarginal gyrus. Limitations: We used a small sample size. As well, although they were not 
chronically medicated, all participants were medicated during the study. Conclusion: We demonstrated a link between the major excitatory 
and inhibitory brain metabolites and resting-state functional connectivity in healthy participants, as well as an alteration in this relationship in 
patients with first-episode psychosis. Combining data from different imaging modalities may help our mechanistic understanding of the rela-
tionship between major neurometabolites and brain network dynamics, and shed light on the pathophysiology of first-episode psychosis.
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A recent systematic review found converging evidence of 
negative associations between GABA levels and local brain ac-
tivity; positive associations between glutamate levels and distal 
brain activity (brain activity outside the spectroscopy voxel); 
and less consistent relationships between GABA levels and dis-
tal brain activity, as well as between glutamate levels and local 
brain activity.36 Only a few studies have evaluated the rela-
tionships between glutamate11,37,38 or GABA17 and the blood-
oxygen-level-dependent (BOLD) response in schizophrenia.39 
In patients with first-episode psychosis11 and unmedicated pa-
tients with chronic schizophrenia37 compared to healthy con-
trols, we reported an abnormal relationship between ACC glu-
tamate and the BOLD signal in regions of the posterior default 
mode network during a cognitive inhibitory task. Similar find-
ings have been reported by Falkenberg and colleagues,38 also 
during an inhibitory task and measurement of glutamate in the 
ACC. As well, in patients with first-episode psychosis com-
pared to healthy controls, we reported an abnormal relation-
ship between ACC GABA and the BOLD signal in the ACC 
and the caudate during an inhibitory task.11 Similarly, Limongi 
and colleagues40,41 reported aberrant resting-state effective con-
nectivity in core nodes of the salience network associated with 
ACC glutamate in patients with first-episode psychosis and 
found that inhibitory activity in the ACC decreased with higher 
glutamate levels in this population. Combining magnetic res
onance spectroscopy (MRS) with fMRI to evaluate the extent to 
which glutamate and GABA measurements predict resting-
state functional connectivity might mechanistically shed light 
onto how cognitive processes are altered in schizophrenia.

In the present study, we combined MRS and fMRI to 
evaluate the relationship between neurometabolites and 
ACC functional connectivity in a group of patients with first-
episode psychosis and matched healthy controls. Our patient 
population allowed us to study the neural correlates of psy-
chosis without the confounds of illness chronicity and long-
term exposure to antipsychotic medication. Because magnets 
with higher field strength provide a better signal-to-noise 
ratio and spectral resolution, we used a 7 T magnet to meas
ure glutamate and GABA from a dorsal ACC voxel, as well 
as the functional connectivity from the same ACC region of 
interest to the rest of the brain. In the same participants, we 
previously reported that glutamate (but not GABA) was sig-
nificantly lower in patients with first-episode psychosis than 
healthy controls,42,43 and we have discussed alterations 
between these neurotransmitters and the BOLD signal dur-
ing an inhibitory task.11

Methods

Participants

Twenty-three patients with first-episode psychosis, deter-
mined by a clinician to be clinically stable, were recruited from 
the University of Alabama at Birmingham’s outpatient psychi-
atric clinics (for further clinical information on the sample, see 
Reid and colleagues42). Twenty-six healthy controls were re-
cruited using flyers. Exclusion criteria were major medical con-
ditions; substance abuse within 6 months of imaging; neuro-

logic disorders; a previous serious head injury with a loss of 
consciousness for more than 2 minutes; and pregnancy. Diag-
noses were established by a psychiatrist and confirmed with a 
review of patient medical records. We used the Brief Psychiat-
ric Rating Scale to assess symptom severity.44 We characterized 
cognitive function using the Repeatable Battery for the Assess-
ment of Neuropsychological Status.45 The institutional review 
boards of the University of Alabama at Birmingham and 
Auburn University approved this study. All participants gave 
written informed consent to participate.

We did not obtain both fMRI and MRS data for 4 patients 
with first-episode psychosis (claustrophobia, participant 
weight exceeded the maximum for the scanner, study with-
drawal, poor image quality) and 5 healthy controls (failed 
drug screen, magnetic resonance contraindication, loss to 
follow-up). Therefore, 19 first-episode psychosis and 21 healthy 
controls were included in the fMRI and MRS analyses.

Image acquisition and preprocessing

Imaging was performed on a whole-body Magnetom 7 T 
magnetic resonance scanner (Siemens Healthineers) 
equipped with a 32-channel head coil (Nova Medical) at the 
Auburn University MRI Research Center. We acquired a 
high-resolution structural scan for anatomic reference using a 
3-dimensional, T1-weighted, magnetization-prepared rapid 
gradient echo sequence (repetition time 2200 ms, echo time 
2.96 ms, inversion time 1050 ms, flip angle 7°, generalized au-
tocalibrating partial parallel acquisition (GRAPPA) accelera-
tion factor 2, field of view 224 × 224 mm, 0.7 mm isotropic 
voxels; sagittal acquisition). We used the anatomic scan to 
guide placement of the spectroscopy voxel in the bilateral 
dorsal ACC (dACC; voxel size 2.7 × 2 × 1 cm3). After shim-
ming with the fast, automatic shim technique using echo-
planar signal readout for mapping along projections (FAST-
ESTMAP) and optimization of the radiofrequency power, we 
acquired spectra using a stimulated echo acquisition mode 
(STEAM) sequence with an ultra-short echo time (repetition 
time 10 000 ms, echo time 5 ms, mixing time 45 ms, 32 aver-
ages, 4 kHz spectral bandwidth, 2048 points), outer volume 
suppression and variable power radiofrequency pulses and 
optimized relaxation delays (VAPOUR) water suppression.46 
During the MRS scan, participants watched a movie or lis-
tened to music. We processed MRS data in LCModel (version 
6.3–1)47 using a simulated basis set and default processing 
parameters (for additional details on methods and MRS 
metabolite findings, see Reid and colleagues42).

We acquired resting-state fMRI data using a gradient-recalled 
echo-planar imaging sequence (repetition time 3000 ms, echo 
time 28 ms, flip angle 70°, field of view 200 × 200 mm, matrix 
234 × 234, 1.8 mm slice thickness, voxel size 0.85 × 0.85 × 1.8 mm, 
1 mm gap, 37 axial slices, 120 acquisitions per session). We ac-
quired a second anatomic scan before fMRI for coregistration of 
the functional images (repetition time 2000 ms, echo time 
2.89 ms, inversion time 1050 ms, flip angle 7°, GRAPPA accelera-
tion factor 2, field of view 190 × 190 mm, 0.7 mm isotropic voxels). 

We performed preprocessing and data analyses in the 
CONN Toolbox.48 Data preprocessing included realignment, 
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unwarping, slice time correction, coregistration, normalization 
to Montreal Neurological Institute space, artifact detection, 
Gaussian smoothing (5 mm full width at half-maximum), de-
noising, scrubbing and motion regression. Volumes were 
scrubbed if frame-wise displacement exceeded 0.5 mm or we 
found a z-score change greater than 3. We did not perform 
global signal regression.

Statistical analyses

We created a standardized dACC region of interest that corre-
sponded to the MRS voxel location in SPM12 (www.fil.ion.ucl.
ac.uk/spm/software/spm12). We calculated the percentage of 
each participant’s normalized MRS mask that was within the 
region of interest (mean ± standard deviation = 88.5 ± 10.5%). 
Using our MRS dACC region of interest and CONN, we per-
formed positive and negative whole-brain dACC connectivity 
analyses for each group, and between-group analyses in each 
direction (first-episode psychosis > healthy controls; healthy 
controls > first-episode psychosis). We used multiple regres-
sion analyses to test for voxels with a significant relationship 
between dACC brain functional connectivity and glutamate 
and GABA (similar to the BOLD Stroop effect analyses in 
Overbeek and colleagues11). We conducted whole-brain tests 
for positive and negative relationships between each neuro
metabolite and dACC brain connectivity for each group. We 
used additional multiple regressions to test for an interaction 
between dACC brain connectivity, diagnosis and each of the 
neurometabolites. We conducted tests for differences in both 
directions (first-episode psychosis > healthy controls; healthy 
controls > first-episode psychosis). We included white matter 
fraction within the MRS voxel as a covariate of no interest.

We used a cluster-defining voxel-level t threshold of p < 
0.01 for within-group dACC brain connectivity analyses. We 
made cluster-level corrections for multiple comparisons 
using a false discovery rate (FDR) threshold of pFDR < 0.01. For 

all other analyses (between-group connectivity analyses; con-
nectivity and neurochemical analyses), both the cluster-
defining and FDR thresholds were raised to 0.05.

Results

Demographic information for the participant sample can be 
found in Table 1. 

ACC brain connectivity

Brain connectivity in the dACC was similar for patients and 
controls. Positive dACC brain connectivity tracked the sa-
lience network (pFDR < 0.01): the dorsolateral prefrontal cortex 
(dlPFC), supplementary motor area, supramarginal gyrus 
and insula (Figure 1A and B). Robust positive connectivity 
with the Rolandic operculum was also evident. Negative con-
nectivity tracked the default mode network (pFDR < 0.01): the 
medial prefrontal cortex, orbitofrontal cortex, retrosplenial 
cortex, inferior temporal lobe and angular gyrus. Negative 
(as opposed to positive) connectivity tracked the central 
executive network. This was apparent in the dlPFC and 
superior parietal lobe. In the dlPFC, the rostral portion 
aligned with the salience network and positively connected 
to the dACC; the caudal portion aligned with the central 
executive network and was negatively connected to the 
dACC. Negative connectivity tracked the default mode net-
work in the inferior parietal lobe (angular gyrus) but ex-
tended superiorly into regions associated with the central 
executive network. We also found disparate connectivity in 
the precuneus. Superior regions showed positive connectiv-
ity, and the retrosplenial cortex showed negative connectiv-
ity. We also found significant dACC positive connectivity 
with the thalamus and putamen. Finally, in patients with 
first-episode psychosis (but not healthy controls) we found 
negative connectivity with the ventral caudate.

Table 1: Participant demographic characteristics

Measure*
Healthy controls 

n = 21

Patients with first-
episode psychosis  

n = 19 Statistic p value

Age, yr 23.4 ± 4.4 22.9 ± 4.4 t38 = 0.38 0.71

Female/male 5/16 4/15 χ2
1 = 0.04 0.83

Smoker, yes/no 0/21 4/15 χ2
1  = 4.91 0.027¶

Parental socioeconomic status† 3.4 ± 3.3 4.6 ± 4.5 t37 = 0.99 0.33

RBANS score‡ 95.1 ± 8.5 75.0 ± 15.6 t33 = 4.84  < 0.001¶

Treatment duration, d — 358 ± 470 — —

BPRS rating§

Total 20.8 ± 1.1 30.4 ± 8.4 t33 = 4.79  < 0.001¶

Positive 3.0 ± 0.2 4.8 ± 2.7 t33 = 2.65 0.012¶

Negative 3.0 ± 2.4 5.6 ± 2.3 t33 = 4.72  < 0.001¶

BPRS = Brief Psychiatric Rating Scale; RBANS = Repeatable Battery for Assessment of Neuropsychological Status. 
*Values are presented as mean ± standard deviation or n. 
†Not available for 1 patient with first-episode psychosis. Ranks determined from the Diagnostic Interview for Genetic Studies 
(scale of 1–18); higher rank (lower numerical value) corresponds with higher socioeconomic status.
‡Not available for 1 healthy control and 3 patients with first-episode psychosis.
§Not available for 2 healthy controls and 2 patients with first-episode psychosis. Positive subscale: conceptual disorganization, 
hallucinatory behaviour and unusual thought content. Negative subscale: emotional withdrawal, motor retardation and blunted affect.
¶Significant at p < 0.05. 
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Figure 1: Connectivity of the dorsal anterior cingulate cortex. (A) Connectivity patterns in healthy controls. Positive connectivity is depicted 
with a red colour scale, and negative connectivity is depicted with a blue colour scale. (B) Connectivity patterns in patients with first-episode 
psychosis. Positive connectivity is depicted with a red colour scale, and negative connectivity is depicted with a blue colour scale. (C) Signifi-
cant group differences in brain connectivity patterns in the anterior cingulate cortex. Greater connectivity in patients versus controls is depicted 
with a red colour scale, and greater connectivity in controls versus patients is depicted with a blue colour scale. dlPFC = dorsolateral prefrontal 
cortex; PFC = prefrontal cortex.  
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Between-group analysis revealed a pattern of hypercon-
nectivity in patients with first-episode psychosis (pFDR < 0.05, 
Figure 1C). Significant regions extended to areas of both posi-
tive and negative dACC brain connectivity: the rostral and 
caudal dlPFC, supplementary motor area, angular gyrus, in-
sula and superior precuneus. However, in the dlPFC, precu-
neus and inferior parietal lobe, significant regions tended to 
show a preference for areas between regions of positive and 
negative dACC brain connectivity. In the analysis of healthy 
controls > first-episode psychosis, 1 small cluster in the occip-
ital lobe was significant (pFDR < 0.05).

ACC brain connectivity and glutamate

In general, glutamate correlated with ACC brain connectivity 
strength regardless of whether the connectivity was positive 
or negative. In healthy controls, significant positive regions 
included the bilateral supramarginal gyrus (pFDR < 0.05, 
Appendix 1, Figure S1, available at jpn.ca). Significant nega-
tive regions included the left angular gyrus and the left 
inferior temporal lobe (pFDR < 0.05). In patients with first-
episode psychosis, positive regions included the superior 
precuneus, the bilateral supramarginal gyrus and the bilat-
eral insula (pFDR < 0.05, Appendix 1, Figure S2). Negative re-
gions included the medial prefrontal cortex, the left orbito-
frontal cortex, the retrosplenial cortex, the left temporal lobe 
and the right angular gyrus (pFDR < 0.05).

We observed interaction effects in several areas. In the bi-
lateral supramarginal gyrus, superior precuneus and left an-
gular gyrus, the relationship was significantly more positive 
in patients with first-episode psychosis (pFDR < 0.05, Figure 2). 
In the supplemental motor area, medial prefrontal cortex, 
right orbitofrontal cortex, retrosplenial cortex and temporal 
cortex, the relationship was more positive in healthy controls 
(pFDR < 0.05, Figure 2).

ACC brain connectivity and GABA

The relationship between GABA and ACC brain connectivity 
was less consistent between groups than the relationship of 
glutamate and dACC brain connectivity. In healthy controls, 
we found a significant positive relationship between local 
GABA and dACC brain connectivity in the medial and or-
bital prefrontal cortex and the caudate (pFDR < 0.05, Appendix 
1, Figure S3). We found a negative relationship in the left 
temporal cortex and occipital regions. In patients with first-
episode psychosis, we found a significant positive relation-
ship with the retrosplenial cortex and a bilateral negative re-
lationship with the caudate, insula, Rolandic operculum, 
supramarginal gyrus and calcarine (pFDR < 0.05, Appendix 1, 
Figure S4). We also found a positive relationship with the 
right orbital frontal cortex extending into the inferior frontal 
lobe, a region that was not significant in the dACC brain con-
nectivity analysis of healthy controls but did have significant 
negative connectivity with the dACC in patients with first-
episode psychosis.

Interaction effects revealed that dACC brain connectivity 
with the caudate, putamen and right supramarginal gyrus 

was more negative in patients than healthy controls (pFDR < 
0.05, Figure 3). We found no significant regions that had a 
significantly more negative relationship in healthy controls 
than in patients with first-episode psychosis.

Discussion

In first-episode psychosis, we found increased resting-state 
ACC functional connectivity to several brain regions, includ-
ing the insula, dlPFC, angular gyrus and precuneus. The ad-
ditional MRS data helped us to mechanistically understand 
the relationship between excitation/inhibition in the ACC 
and brain network dynamics. ACC glutamate predicted 
ACC functional connectivity differently in patients with 
first-episode psychosis than in healthy controls in the precu-
neus, retrosplenial cortex, supramarginal gyrus and angular 
gyrus. In addition, ACC GABA predicted ACC functional 
connectivity differently in patients with first-episode psy-
chosis compared to healthy controls in the caudate, putamen 
and supramarginal gyrus.

In both healthy controls and patients with first-episode 
psychosis, we found patterns of positive functional connec-
tivity with regions belonging to the task-positive networks 
(such as the insula and dlPFC), as well as patterns of negative 
functional connectivity with regions belonging to the default 
mode network (such as the medial PFC, angular gyrus and 
retrosplenial cortex). These ACC functional connectivity pat-
terns seen in the resting state mapped to well-characterized 
anticorrelation patterns between the task-positive and default 
mode networks.49 The results of between-group analysis 
showed a mix of increased functional connectivity to the 
task-positive network and decreased negative functional con-
nectivity (appearing as a positive association in the analysis) 
with regions of the default mode network in patients with 
first-episode psychosis compared to healthy controls. In the 
same participants during performance of the Stroop task, we 
demonstrated increased BOLD signal in patients with first-
episode psychosis compared to healthy controls, including in 
the dlPFC, posterior cingulate cortex and parietal regions, 
and a lack of deactivation of regions of the default mode net-
work.11 Together, these results demonstrate that between-
group differences in functional connectivity map to known 
positive and default mode networks and point to an altered 
balance in network dynamics.

We found that ACC glutamate differentially predicted 
ACC functional connectivity to regions of the task-positive 
(bilateral supramarginal gyrus, angular gyrus, supplemental 
motor area and temporal cortex) and default mode network 
(precuneus, medial prefrontal, orbitofrontal and retrosplenial 
cortex) in patients with first-episode psychosis versus healthy 
controls. Likewise, in the same participants and in replication 
of results from Falkenberg and colleagues,50 we found that 
the relationship between ACC glutamate and the BOLD re-
sponse during the Stroop task in regions of the posterior de-
fault mode network was opposite in patients with first-episode 
psychosis and healthy controls.11 Thus, ACC glutamate ap-
pears to modulate both task-positive and default mode net-
works, but does so in opposite directions in patients with 
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first-episode psychosis and healthy controls. This study adds 
to our understanding of altered balance between task-positive 
and default mode networks in schizophrenia by demonstrat-
ing that ACC glutamate, presumably through an excitatory 
mechanism, is affecting the modulation of large neural net-
works. These alterations were obtained in the context of de-
creased glutamate levels in patients with first-episode psy-
chosis compared to healthy controls.42

We found that ACC GABA differentially predicted ACC 
functional connectivity to the caudate, putamen and supra-
marginal gyrus in patients with first-episode psychosis 

compared to healthy controls. Likewise, we reported that in 
the same participants, ACC GABA differentially predicted 
the BOLD signal in the caudate during the Stroop task; 
higher GABA was associated with higher caudate activation 
in patients with first-episode psychosis, but not in healthy 
controls.11 In the present study, GABA was not significantly 
different in patients with first-episode psychosis and 
healthy controls.42 However, at the behavioural level, we 
found that in patients with first-episode psychosis, higher 
GABA levels were associated with slower reaction time on 
the Stroop task11 and worse scores on the Repeatable Battery 

Figure 2: Group differences in the relationship between glutamate levels and dorsal ACC connectivity. (A) Significant group differences in 
brain connectivity patterns in the ACC. Greater connectivity in patients versus controls is depicted with a red colour scale, and greater connec-
tivity in controls versus patients is depicted with a blue colour scale. (B) Scatterplot of ACC–orbital PFC functional connectivity versus ACC 
glutamate for individual healthy controls (white circles) and patients with first-episode psychosis (black circles). (C) Scatterplot of 
ACC–supramarginal gyrus functional connectivity versus ACC glutamate for individual healthy controls (white circles) and patients with first-
episode psychosis (black circles). ACC = anterior cingulate cortex; PFC = prefrontal cortex.
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for the Assessment of Neuropsychological Status,42 suggest-
ing a relationship between GABA and cognition, in agree-
ment with the findings of Marsman and colleagues,51 who 
identified a negative correlation between medial prefrontal 
GABA and total IQ in patients with schizophrenia. Dys-
function of frontostriatal networks has been widely re-
ported in schizophrenia and has been linked to cognitive, 
motor and reward dysfunction.52–54 This study adds to our 
understanding of frontostriatal dysfunction in schizophre-
nia by demonstrating that GABA in the ACC, presumably 
through an inhibitory mechanism, alters the functional rela-
tionship between the ACC and the striatum.

Postmortem studies have found evidence of both glutama-
tergic55 and GABAergic alterations56 in the ACC in schizo-
phrenia. Roberts and colleagues55 found a significant de-
crease in the number of excitatory synaptic connections, as 
well as a decrease in the levels of the vesicular glutamate 
transporter vGLUT1. Because the amount of vGLUT1 is di-
rectly related to quantal release of glutamate, it represents a 
good measure of glutamate levels.57

It is increasingly clear that the functional connectivity of dif-
ferent brain regions is crucial for cognitive function. Presum-
ably, this functional connectivity must be created, maintained 
and adjusted by active cortical processes, and we should not 
be surprised that there is a link between the local neurochem-
istry of a cortical region as determined by MRS spectroscopy 
and its functional connectivity to other areas, although previ-
ous studies have not shown a clear, simple relationship.58

There is no current widely held consensus about the 
specific neuronal circuits in the cerebral cortex that create 
and adjust functional connectivity between regions. It 
should be noted that even something like excitotoxicity59 
could in principle create both hypo- and hyperconnectiv-
ity, depending on the specifics of the connections between 
any 2 specific regions. At the simplest level, hypoconnec-
tivity could be the result of generalized decline of activity 

in 1 region, and hyperconnectivity could be the result of a 
release phenomenon (i.e., reduction of effective inhibition). 
It has been proposed that an excitatory/inhibitory imbal-
ance is important for the dysregulation of functional con-
nectivity in schizophrenia,11,25–28 but a definitive answer to 
the question about what specifically alters patterns of 
functional connectivity in schizophrenia will require fur-
ther advances in our basic knowledge of the mechanistic 
basis of functional connectivity.

Limitations

In this study, we recruited patients with first-episode psy-
chosis to mitigate the confounds of illness chronicity and 
long-term exposure to antipsychotic medication. However, 
it needs to be noted that all patients were treated with anti-
psychotic medications, which may affect metabolite lev-
els60,61 (possibly even in a dose-related fashion62) and 
resting-state connectivity.20,23,63–65 It will be important for fu-
ture studies to quantify current and lifetime antipsychotic 
medication exposure to allow for additional analyses that 
assess potential antipsychotic confounds. For spectroscopy, 
we used a STEAM sequence not optimized for GABA meas
urements, although this sequence was used by Wijtenburg 
and colleagues66 at 7  T using a larger voxel. Both GABA 
measurements had a large range; further MRS studies 
aimed at ascertaining normative metabolite levels and 
ranges will be needed. As well, the metabolite peaks quanti-
fied here do not reflect synaptic glutamate alone but are a 
combination of neuronal, glial and synaptic glutamate and 
GABA in the voxel. It is therefore not possible to equate 
metabolite measurements with neurotransmission. Because 
of time constraints in the scanning protocol, and because 
there is no brain region that is unequivocally unaffected in 
schizophrenia, we did not include a control region MRS 
voxel. We did not perform global signal regression for 

Figure 3: Group differences in the relationship between GABA levels and dorsal ACC connectivity. (A) Significant group differences in ACC 
brain connectivity patterns. Greater connectivity in controls versus patients is depicted with a blue colour scale. (B) Scatterplot of ACC–caudate 
functional connectivity versus ACC GABA for individual healthy controls (white circles) and patients with first-episode psychosis (black circles). 
ACC = anterior cingulate cortex; GABA = γ-aminobutyric acid.
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resting-state data, because the global signal may not be un-
related to neural activity of interest67 and there is evidence 
that the global signal may carry diagnostic information.68 In 
addition, it needs to be noted that our sample size was 
modest, and replication of our findings in larger samples is 
warranted, because correlations may only stabilize at larger 
sample size.69 Further studies combining fMRI with func-
tional MRS might provide a more fine-grained understand-
ing of the link between metabolites and cognitive processes.

Conclusion

The finding here of a different pattern of correlation between 
local cortical neurochemistry and function connectivity to 
other regions in patients with first-episode psychosis and 
healthy controls suggests a fundamental alteration in the pro-
cess by which functional connectivity is regulated in patients 
with first-episode psychosis and is a new approach to study-
ing the physical basis of psychosis.
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