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COVID-19 has created a pandemic situation all over the world. It has spread in nearly
every continent. Researchers all over the world are trying to produce an effective vaccine
against this virus, however; no specific treatment for COVID-19 has been discovered
-so far. The current work describes the inhibition study of the SARS-CoV-2 main
proteinase or 3CL Mpro by natural and synthetic inhibitors, which include 2S albumin
and flocculating protein from Moringa oleifera (M. oleifera) and Suramin. Molecular
Docking study was carried out using the programs like AutoDock 4.0, HADDOCK2.4,
patchdock, pardock, and firedock. The global binding energy of Suramin, 2S albumin,
and flocculating proteins were −41.96, −9.12, and −14.78 kJ/mol, respectively. The
docking analysis indicates that all three inhibitors bind at the junction of domains II
and III. The catalytic function of 3CL Mpro is dependent on its dimeric form, and the
flexibility of domain III is considered important for this dimerization. Our study showed
that all three inhibitors reduce this flexibility and restrict their motion. The decrease in
flexibility of domain III was further confirmed by analysis coming from Molecular dynamic
simulation. The analysis results indicate that the temperature B-factor of the enzyme
decreases tremendously when the inhibitors bind to it. This study will further explore the
possibility of producing an effective treatment against COVID-19.

Keywords: COVID-19, SARS-CoV-2, main proteinase or 3CL Mpro, inhibition, Suramin, 2S albumin, flocculating
proteins

INTRODUCTION

A new virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified
in patients in China in December 2019 (Kotta et al., 2020). It spread throughout the country and
world quickly and infected millions of people all over the world (Kneller et al., 2020). Till now
(November 2020), 55.6 million people have been detected with this virus of which 35.86 million
have been recovered and 1.34 million have died (Johns Hopkins University). The disease produced
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by SARS-CoV-2 is termed COVID-19 (Hussin et al., 2020;
Rothan et al., 2020), which is a short name given to this disease
by the World Health Organization (WHO, 2020).

The coronavirus spread through the air and physical contact
among people (Graham Carlos et al., 2020; Helmy et al., 2020;
Rothan and Byrareddy, 2020; Zhao et al., 2020). The usual
symptoms of COVID-19 include mild fever, cough, lethargy,
dyspnea (difficulties in breathing), and anosmia (loss of smell)
and taste (ageusia) (Kotta et al., 2020). These symptoms usually
appear after 5 days of infection by the virus (Li et al., 2020).
Interestingly some of these symptoms like mild fever, cough,
lethargy, and dyspnea are common among both betacoronavirus
and COVID-19 (Huang C. et al., 2020); however, COVID-19
displays some distinctive clinical symptoms like sore throat, a
runny nose (rhinorrhea), and sneezing (sternutation) (Lee et al.,
2003; Assiri et al., 2013).

One way to prevent the COVID-19 from spreading among
people is to keep a suitable distance of 1.5–2 meter as
recommended by WHO (Carlos et al., 2020; Kotta et al., 2020),
although a recent study has suggested that the virus can travel
more than 2 m in the air (Setti et al., 2020; van Doremalen et al.,
2020). The lockdown option is used in all countries of the world
to achieve this social distancing and it has worked tremendously
like in China (Carlos et al., 2020; Wu et al., 2020).

Currently, there is no specific treatment for COVID-19
(Barati et al., 2020), though some antiviral drugs like redeliver,
oseltamivir, lopinavir/ritonavir, ganciclovir chloroquine, and
hydroxychloroquine are used that can produce some relief to the
patients (Costanzo et al., 2020; Kumar et al., 2020; Ledford, 2020).

The genomics and proteomics of SARS-COV2 have been
described in the literature (Vandelli et al., 2020). The structure
of this new virus is composed of single-stranded ribonucleic
acid (RNA) and displays high sequence identity to other beta-
coronavirus such as SARS-CoV and MERS-CoV (Middle East
respiratory syndrome coronavirus) (Cascella et al., 2020). These
viruses use a specific protein named spike (S) protein to adhere
specifically to the angiotensin-converting enzyme (ACE2) on the
host cell (Park et al., 2019; Turoòová et al., 2020). Besides spike
glycol protein, the SARS-COV2 contains proteins like 3CL Mpro

[also called the main proteinase (Mpro)] and RNA-dependent
RNA polymerase (RdRp) (Jeong et al., 2020).

The life cycle of SARS-COV2 begins when the virus infects the
host cell through the interaction of S protein with the angiotensin
I-converting enzyme-2 (ACE2) (V’kovski et al., 2020). The S
protein has two subunits called S1 and S2 (Huang Y. et al., 2020),
S1 it uses to attach to the N-terminal of ACE2, and the S2 subunit
assists in the binding of the protein to the host membrane.
This results in the binding of the virus to the membrane of
the host cell. Consequently, the disruption of the membrane
of the host cell occurs and endocytosis takes place (V’kovski
et al., 2020). The furin proteinase and transmembrane serine
proteinase 2 of the host cells cause the cleavage of S protein
at the S1/S2 boundary position (V’kovski et al., 2020), which
allow the entry of transmembrane serine proteinase 2-dependent
entrance to the host cells (Belouzard et al., 2009; Hoffmann et al.,
2020; Walls et al., 2020). The polycistronic RNA of the virus is
released into the cytoplasm. The ribosomal-1 frameshifts then

translates the replicase gene either into replicase polyprotein
pp1a or into pp1ab (∼750 kDa, nsp1-16). This process occurs
near the 3′-end of ORF 1a. This autoproteolytic cleavage results
into 16 non-structural proteins (NS) by two ORF1a encoded
proteinase domains (Brierley et al., 1989; Herold et al., 1993;
Thiel et al., 2001, 2003; Harcourt et al., 2004; Prentice et al.,
2004; Ziebuhr, 2004). The two other proteinases assisting in
these proteolytic cleavages include the main proteinase Mpro

(3CL Mpro) and papain-like proteinase (PLpro) (Hegyi and
Ziebuhr, 2002). The polyprotein pp1ab is cleaved by Mpro

(Ziebuhr et al., 2000; Hegyi and Ziebuhr, 2002). The replication
(production of the entire genome) or transcription (synthesis
of intermittent mRNAs) is intervened by cytoplasmic enzyme
complex termed replicase-transcriptase complex (Gorbalenya
et al., 2006; Pasternak et al., 2006; Sawicki et al., 2007). The
key proteins (structural and accessory) are translated from these
transcripts; consequently the viruses are released into the cell
(V’kovski et al., 2020).

The two important proteins in the life cycle of SARS-
CoV-2, are the S protein and 3CL Mpro (Kneller et al., 2020;
V’kovski et al., 2020). As discussed earlier, the S protein help
the virus to binds to the host cell and to facilitate its entry
to the host cell (Duan et al., 2020), while 3CL Mpro or the
main proteinase assists in the processing of the polyproteins
(Kneller et al., 2020). Owing to the main roles of these two
proteins, researchers from all over the world are targeting these
proteins to find out a new treatment for COVID-19 (Kotta et al.,
2020). Taking this into consideration, the current work has been
designed to test the efficacy of natural and synthetic inhibitors
(2S albumin and flocculating proteins of Moringa oleifera and
Suramin), against 3CL Mpro and discover a new treatment for this
pandemic disease.

MATERIALS AND METHODS

Atomic Structure of SARS-CoV-2 3CL
Mpro and Ligands
The atomic coordinates of SARS-CoV-2 3CL Mpro, Suramin, and
2S albumin were retrieved from the Protein Data Bank (PDB),
with PDB IDs: 6WQF (Kneller et al., 2020), 6CE2 (SVR) (Salvador
et al., 2018), and 5DOM (Ullah et al., 2015). The structure of
flocculating protein was obtained as a model using the Swiss
Model (Waterhouse et al., 2018). The three-dimensional atomic
structure of 2S albumin from M. oleifera was used as a template
(74% sequence identity).

Protein and Ligand Preparation for
Docking
The ligands and crystallographic water molecules were removed
from the protein and the H-atoms were added. The ionization
states of the atoms were kept in the ligand as mentioned in
the database. The optimization of the ligand geometry was done
using the AM1 method (Dewar et al., 1985). The partial charges
of the ligands were calculated by AM1-BCC method (Jakalian
et al., 2002). The atoms type, bond angle, dihedral, and van der
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Waals parameters for the ligands were assigned using the general
AMBER force field (GAFF) method (Wang et al., 2004).

Molecular Docking
The programs used for molecular docking include AutoDock
4.0 (Morris et al., 2009), pardock (Gupta et al., 2007),
patchdock (Schneidman-Duhovny et al., 2005), HADDOCK2.4
(van Zundert et al., 2016), and the refinement of the
docked ligands with protein was carried out using firedock
(Mashiach et al., 2008). The binding affinity of the docked ligands
were find out using Kdeep web server (Jiménez et al., 2018).

Protein and Ligands Binding Interactions
The interactions (hydrogen bonds and hydrophobic contacts)
between 3CL Mpro was determined using LigPlot (Wallace et al.,
1995) from PDBsum web server (Laskowski et al., 2018).

Molecular Dynamic Simulation
The MDMoby and MDweb programs (Hospital et al., 2012),
GROMACS (Berendsen et al., 1995), AMBER16 (Case et al., 2005;
Maier et al., 2015) were used for Molecular Dynamic Simulation
as described previously (Ullah et al., 2019; Ullah and Masood,
2020). The all–atom–protein interaction was found out using
FF14SB force field (Darden et al., 1993). The online server H++
(Anandakrishnan et al., 2012) was used for the determination of
the protonation states of the amino acid side chain at pH 7.0.
The neutralization of the system was carried out using Cl-. The
minimization of the simulation system was carried out in order
to remove the clashes in the atomic position, structural errors
(bond length and bond angle). This minimization was done by
executing a 500-step descent (SD) minimization, accompanied
by a 2 ns position restricted MD simulation with NVT and
NPT ensemble separately (Zhang et al., 2013). Subsequently, it
was put in a rectangular box of TIP3P water, and extended to
a minimum of 20 Å from any protein atom. The system was
heated gradually from 0 to 350 K for 250 ps with a constant
atom number and volume. The protein was kept with a constant
force of 10 kcal/mol.Å2. A constant atom number, pressure, and
temperature (NPT) ensemble was conducted for 500 ps to attain
the equilibration step. The simulation was executed for 100 ns
with a 4-fs time step. The pressure was kept at 1 atm using
Nose ì-Hoover Langevin Piston algorithm (Tu et al., 1995) and
the temperature was kept at 300 K, using Langevin coupling
(Washio et al., 2018). The long-range electrostatic interactions
were calculated using the particle-mesh Ewald (PME) method
(Darden et al., 1993), by retaining the cutoff distance of Van der
Waals interactions at 10 Å.

Surface Charge Determination and
Visualization
The protein and ligands were prepared for surface charge
distribution using PDB2PQR (Dolinsky et al., 2007)
and the charges were visualized using ABS Tools from
PyMOL (DeLano, 2000).

RESULTS AND DISCUSSION

The Overall Structure of SARS-CoV-2
3CL Mpro

The three-dimensional structure of SARS-CoV-2 3CL Mpro has
been described by Kneller et al. (2020) with PDB ID: 6M03.
The structure is composed of 306 amino acid residues and these
amino acid residues fold into distinct three domains, named
domains I, II, and III (Figure 1A). Domain I is composed of
amino acid residues, from, Phy8-Tyr101, and has four α-helices
and seven beta-strands. Domain II (amino acid residues, Lys102-
Pro184) comprises seven beta strands only, whereas domain III
(amino acid residues Thr201-Val303) contains five alpha-helices
only. The enzyme active site is situated at the junction of domains
I and II and comprises the amino acid residues His41 and Cys145
(Figure 1B), which make a dyad (Cys145-His41) instead of the
triad (His47-Asp102-Ser195) as in the case of classical serine
proteinases (Ullah et al., 2018). A catalytic water molecule is
also bound to His41 and helps in the catalytic process of this
enzyme (Figure 1B). The enzyme is active in the dimeric state
and the flexibility of domain III is required for its dimerization
(Kneller et al., 2020).

Interaction Between SARS-CoV-2 3CL
Mpro and Suramin
The binding energy calculated for interaction between SARS-
CoV-2 3CL Mpro and Suramin was ∼ −42 kcal/mol (Table 1).
All the other form of bond energies are listed in Tables 1, 2.

FIGURE 1 | (A) Overall three-dimensional structure of SARS-CoV-2 3CL Mpro.
The domains I, II, and III are colored in blue, green, and red, respectively.
(B) Active site amino acid residues of SARS-CoV-2 3CL Mpro. The amino acid
residues are shown as balls and sticks, while the catalytic water as red sphere.
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TABLE 1 | Output data from FireDock server.

Ligands/
inhibitor

Global binding energy
(kj/mol)

Attractive
VdW

Repulsive
VdW

ACE HB

Suramin −41.96 −26.83 15.40 −12.34 0.00

2S albumin −9.12 −29.45 17.09 0.83 −0.63

Flocculating
protein

−14.78 −25.14 15.39 0.30 −1.08

Global binding energy, attractive VdW (van der Walls forces), Repulsive VdW, ACE
(atomic contact energy) and HB (contribution of the hydrogen bonds to global
energy) for the interaction between SARS-CoV-2 3CL Mpro, Suramin, 2S albumin
and flocculating protein).

TABLE 2 | HADDOCK score and various form of bond energies for docking
among SARS-CoV-2 3CL Mpro, Suramin, 2S albumin and flocculating protein.

Protin and ligand
complex

Suramin 2S albumin Flocculating protein

HADDOCK score −49.0 ± 3.1 −72.8 ± 5.9 −71.2 ± 8.9

Cluster size 81 6 10

RMSD from the overall
lowest-energy structure

1.4 ± 0.4 0.9 ± 0.1 0.7 ± 0.4

Van der Waals energy −24.0 ± 5.2 −30.6 ± 3.0 −27.7 ± 4.0

Electrostatic energy −190.3 ± 43.8 −168.8 ± 10.8 −118.8 ± 10.0

Desolvation energy 4.9 ± 2.3 −7.3 ± 4.3 −7.5 ± 5.7

Restraints violation
energy

0.7 ± 1.13 39.0 ± 2.89 37.3 ± 25.74

Buried Surface Area 0.7 ± 1.13 1199.9 ± 38.6 1166.5 ± 43.2

Z-Score −1.8 −1.7 −2.1

Suramin binding site is between the two domains (Domains
II and III) of SARS-CoV-2 3CL Mpro (Figures 2A–C). The
amino acid residues of SARS-CoV-2 3CL Mpro that interact with
Suramin include Lys102, Pro108, Gln110, Asp155, Glu240, and
His246 (Figures 1D,E). The Kdeep results indicate that both
equilibrium dissociation constant (pKd) and Gibb’s free energy
(1G) are large (Table 3), which further confirmed the binding
between SARS-CoV-2 3CL Mpro and the three ligands (Suramin,

TABLE 3 | Binding affinity results from KDEEP: M.wt., Molecular weight; pKd,
equilibrium dissociation constant (pKd, -log (Kd); 1G, Gibbs free energy.

Ligands M.wt (g/mol) pKd (std.) 1G (Kcal/mol
(std.)

Lig. Efficiency
(Kcal/mol)

Suramin 1427.94 12.75 (2.03) −17.21 (−2.75) −0.19

2S albumin 14271.17 98.04 (96.61) −93.31 (−92.11) −0.27

Flocculating
proteins

6282.17 56.05 (55.72) −75.67 (−75.54) −0.17

2S albumin and Flocculating protein). The LigPlot analysis
indicates a total of seven hydrogen bonds and 263 non-bonded
or hydrophobic interactions between SARS-CoV-2 3CL Mpro and
Suramin (Supplementary Figure 3 and Supplementary Table 1).

Suramin is a drug that is used to treat African sleeping
sickness and river blindness (Lima et al., 2009). Suramin has
been shown to inhibit Human α-thrombin (Lima et al., 2009),
snake venom phospholipases A2 (Salvador et al., 2018), snake
venom serine proteinases (Ullah et al., 2018), severe Fever with
thrombocytopenia syndrome virus nucleocapsid protein (Jiao
et al., 2013), murine Norovirus RNA-dependent RNA polymerase
(Mastrangelo et al., 2012), and Leishmania mexicana pyruvate
kinase (Morgan et al., 2011). In most of these cases, the Suramin
binds toward the C-terminal of the proteins and restrict the
motion of the C-terminal (Lima et al., 2009; Ullah et al., 2018).
In the current study, Suramin binds toward the N-terminal of
SARS-CoV-2 3CL Mpro (Figures 2A–E).

Interaction Between SARS-CoV-2 3CL
Mpro, 2S Albumin and Flocculating
Protein
The binding energies for SARS-CoV-2 3CL Mpro, 2S albumin
and flocculating protein were ∼ −9.12 and ∼ −15 kJ/mol,

FIGURE 2 | Interaction between SARS-CoV-2 3CL Mpro and Suramin: (A) Structure of SARS-CoV-2 3CL Mpro and Suramin (B) SARS-CoV-2 3CL Mpro and Suramin
approaching each other (C) SARS-CoV-2 3CL Mpro, Suramin complex (D) Suramin (shown as yellow sticks) residing in the cleft of SARS-CoV-2 3CL Mpro between
domains II and III (E) Amino acid residues (shown as green sticks) of SARS-CoV-2 3CL Mpro interacting with Suramin (yellow sticks).
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respectively (Table 1). The other form of bond energies come
from docking as indicated in Tables 1, 2. The amino acid
residues involved in these interactions, include S139, T139, G302,

Q299 (SARS-CoV-2 3CL Mpro), R143, Q97 (2S albumin) and
Q15, and Q38 (Flocculating protein). The interactions between
SARS-CoV-2 3CL Mpro, 2S albumin, and flocculating protein are

FIGURE 3 | Interaction between SARS-CoV-2 3CL Mpro and 2S albumin: (A) Surface charge representation of SARS-CoV-2 3CL Mpro and 2S albumin
(B) SARS-CoV-2 3CL Mpro and 2S albumin approaching each other (C) SARS-CoV-2 3CL Mpro, 2S albumin complex (D) 2S albumin (shown as blue surface)
residing in the cleft of SARS-CoV-2 3CL Mpro between domains II and III (red colored) (E) 2S albumin (shown as green cartoon) interacting with SARS-CoV-2 3CL
Mpro (shown as white surface).

FIGURE 4 | Interaction between SARS-CoV-2 3CL Mpro and flocculating protein: (A) Surface charge representation of SARS-CoV-2 3CL Mpro and flocculating
protein (B) SARS-CoV-2 3CL Mpro and flocculating protein approaching each other (C) SARS-CoV-2 3CL Mpro, flocculating protein complex (D) flocculating protein
(shown as blue surface) residing in the cleft of SARS-CoV-2 3CL Mpro between domains II and III (red colored) (E) flocculating protein (shown as green cartoon)
interacting with SARS-CoV-2 3CL Mpro (shown as white surface).
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largely electrostatic (Figures 3A–E and 4A–E). In both cases, the
ligands binding site is between the two domains (Domains II and
III) of SARS-CoV-2 3CL Mpro. The LigPlot analysis shows a total
of three hydrogen bonds between SARS-CoV-2 3CL Mpro and
both 2S albumin and flocculation protein, while the number of
hydrophobic interactions were 130 and 152 for 2S albumin and
flocculating protein, respectively (Supplementary Figures 4, 5).

Molecular Dynamic Simulation Analysis
for SARS-CoV-2 3CL Mpro Alone and
With the Ligands
The MD simulation analysis indicates that the flexibility of SARS-
CoV-2 3CL Mpro decreases tremendously when the ligands bind
to it (Supplementary Figure 1). For Suramin as an inhibitor, the
fluctuation increases a little bit (temperature B-factor increases
from 14 to 16) (Supplementary Figure 1 and Figures 2A–D),
while in the case of 2S albumin and flocculating proteins the
fluctuation decreases (temperature B-factor decreases from 12
to 10, respectively (Supplementary Figure 1, Figures 3A–D
and 4A–D). The RMSD vs. time graph indicates that the
interaction between SARS-CoV-2 3CL Mpro and the three ligands
was stable throughout the simulation process (Supplementary
Figure 6). Suramin can make 1–5 hydrogen bonds, while
both 2S albumin and flocculating protein can make 2–5
hydrogen bonds according to 100 ns MD simulation analysis
(Supplementary Figure 7).

The flexibility analysis from PyMOL also indicates that all the
ligands decrease the flexibility of SARS-CoV-2 3CL Mpro upon
binding (Supplementary Figures 2A–D).

Inhibition Study of SARS-COV-2 3CL
Mpro by Other Researchers
Teli et al. (2021), have screened ten compounds namely,
Procyanidin A3, Rutin, Solanine, Procyanidin A4, Procyanidin
B4, Hypericin, Quercetagetin, Procyanidin, and Astragalin
for inhibition of SARS-COV-2 3CL Mpro. In that study they
have shown that most of these compounds binds in the
active site cavity of SARS-COV-2 3CL Mpro (Teli et al., 2021).
Chourasia et al. (2020) have used a potential peptide (with
amino acid sequence, KFVPKQPNMIL) from soy cheese for
effective Inhibition of SARS-CoV-2 Main Protease and S1
Glycoprotein (Chourasia et al., 2020). This peptide binds
specifically to the amino acid residues that are important
for the host cell entry and multiplication (3CLpro) of SARS-
CoV-2. Abdusalam and Murugaiyah (2020) have used ZINC
database to identify zinc containing compounds as inhibitors
of SARS-COV-2 3CL Mpro, and have encountered four
active zinc compounds (ZINC32960814, ZINC12006217,
ZINC03231196, and ZINC33173588) which shows high binding
affinity for 3CLpro pocket (Abdusalam and Murugaiyah,
2020). Vincent et al. (2020) have used Compounds From
Kabasura Kudineer on SARS-CoV-2 3CLpro and have shown
that Acetoside, Luteolin 7, rutinoside, rutin, Chebulagic acid,
Syrigaresinol, Acanthoside, Violanthin, Andrographidine
C, myricetin, Gingerenone -A, Tinosporinone, Geraniol,
Nootkatone, Asarianin, and Gamma sitosterol are the

natural compounds in Kabasura Kudineer extracts, which
can used as effective inhibitors against SARS-CoV-2 3CLpro

(Vincent et al., 2020).

CONCLUSION

• The inhibition of 3CL Mpro by natural (2S albumin
and flocculating protein from M. oleifera) and synthetic
inhibitor (Suramin) was demonstrated in this study.
• The interaction between 3CL Mpro and the inhibitors are

largely through electrostatic force of attraction and with the
interactions of amino acid residues from both sides.
• All the three inhibitors bind between domain II and III

(3CL Mpro amino acid residues, Lys102, Pro108, Gln110,
Asp155, Glu240, and His246, with Suramin and S139, T139,
G302, Q299 with 2S albumin and flocculating protein.
These interactions restrict the moment in domain III, which
is important for dimerization and further for the function of
SARS-COV2 3CL Mpro.
• Here we proposed that these inhibitors will inhibit 3CL

Mpro by preventing this enzyme from dimerization.
• The current study will lead to the production of a new

vaccine against COVID-19.
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Supplementary Figure 1 | Molecular dynamic simulation of SARS-CoV-2 3CL
Mpro and bound ligands. SARS-CoV-2 3CL Mpro, (A) RMSD values per residue
(B) Trajectory RMSD (C) Radius of Gyration (D) B-factor per residue. SARS-CoV-2
3CL Mpro in the presence of Suramin, (A) RMSD values per residue (B) Trajectory
RMSD (C) Radius of Gyration (D) B-factor per residue. SARS-CoV-2 3CL Mpro in
the presence of 2S albumin, (A) RMSD values per residue (B) Trajectory RMSD
(C) Radius of Gyration (D) B-factor per residue. SARS-CoV-2 3CL Mpro in the
presence of flocculating, (A) RMSD values per residue (B) Trajectory RMSD (C)
Radius of Gyration (D) B-factor per residue.

Supplementary Figure 2 | Temperature B-factor of SARS-CoV-2 3CL Mpro and
bound ligands.(A) SARS-CoV-2 3CL Mpro alone (B) SARS-CoV-2 3CL Mpro with
Suramin (C) SARS-CoV-2 3CL Mpro with 2S albumin (D) SARS-CoV-2 3CL Mpro
with flocculating protein.

Supplementary Video 1 | Moments in the domains of SARS-CoV-2 3CL Mpro.
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