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Background. Lung cancer is one of leading causes of human health threatening with approximately 2.09 million initially diagnosed
cases and 1.76 million deaths worldwide annually. Pyroptosis is a programmed cell death mediated by Gasdermin family proteins.
Pyroptosis could suppress the tumor oncogenesis and progression; nevertheless, pyroptosis could promote tumor growth by
forming a suitable microenvironment. Methods. LASSO Cox regression analysis was performed to construct prognostic
pyroptosis-related gene (PRG) signature. A ceRNA was constructed to explore the potential lncRNA-miRNA-mRNA
regulatory axis in LUSC. Results. The expression of 26 PRGs were increased or decreased in LUSC. We also summarized
simple nucleotide variation and copy number variation landscape of PRGs in LUSC. Prognosis analysis suggested a poor
overall survival rate in LUSC patients with high expression of IL6, IL1B, ELANE, and CASP6. A pyroptosis-related prognostic
signature was developed based on four prognostic PRGs. High-risk score LUSC patients had a poor overall survival rate versus
low-risk score patients with an AUC of 0.565, 0.641, and 0.619 in 1-year, 3-year, and 5-year ROC curves, respectively.
Moreover, the risk score was correlated with immune infiltration in LUSC. Further analysis revealed that pyroptosis-related
prognostic signature was correlated with immune cell infiltration, tumor mutation burden, microsatellite instability, and drug
sensitivity. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for
LUSC. Conclusion. A bioinformatics method was performed to develop a pyroptosis-related prognostic signature containing
four genes (IL6, IL1B, ELANE, and CASP4) in LUSC. We also constructed a ceRNA network and identified a lncRNA
KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Further in vivo and in vitro studies should be conducted to verify
these results.

1. Introduction

Lung cancer is one of leading causes of human health threat-
ening with approximately 2.09 million initially diagnosed
cases and 1.76 million deaths worldwide annually [1]. Lung
squamous cell carcinoma (LUSC) is one of most frequent
pathological subtypes of lung cancer [2]. LUSC was charac-
terized by large blood vessels and proximal bronchus inva-
sion, leading to hemoptysis. Without the opportunity of
radical surgery, over 50% the initially diagnosed LUSC

patient would lose their lives within 12 months [3]. More-
over, molecular mechanism for LUSC had not been eluci-
dated and the therapies were limited, resulting in a poor
prognosis of LUSC and the average 5-year overall survival
(OS) rate of 10-20% [4]. These data demonstrated the urgent
need to clarify potential mechanism of LUSC, thus identify-
ing the prognostic biomarkers and therapy targets for LUSC.

Pyroptosis is a programmed cell death mediated by Gas-
dermin family proteins [5]. Different from autophagy and
apoptosis, pyroptosis was characterized by unique
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morphology and mechanism [6]. Releasing inflammatory
cytokines IL-1β and IL-18, pyroptosis played a crucial func-
tion in the pathogenesis of many diseases, including athero-
sclerosis, sepsis, and Parkinson’s disease [7–9]. Recent
studies found that pyroptosis suppressed the tumor onco-
genesis and progression; nevertheless, pyroptosis could pro-
mote tumor growth by forming a suitable
microenvironment [10]. Increasing evidence suggested

pyroptosis as a new frontier for tumor due to its effect on
the proliferation, invasion, and metastasis of tumor [11].
Moreover, the pyroptosis-related signature could serve as a
prognosis biomarker and predicts immune microenviron-
ment infiltration in certain type of cancer, including ovarian
cancer, gastric cancer, and lung adenocarcinoma [12–14].

Given the existing evidences, we suspect that pyroptosis
may also be involved in the oncogenesis and progression of
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Figure 1: Gene expression and genetic mutation landscape. (a) The mRNA level of PRGs in LUSC versus lung tissues. (b, c) The simple
nucleotide variation of PRGs in LUSC. (d, e) The CNV variation frequency and chromosomes location of PRGs in LUSC. ∗p < 0:05 ; ∗∗p
< 0:01 ; ∗∗∗p < 0:001; PRG: pyroptosis-related gene; LUSC: lung squamous cell carcinoma; CNV: copy number variation.
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LUSC. However, the prognostic value and potential mecha-
nism of pyroptosis in LUSC have not be fully studied. The
current study constructed a pyroptosis-related prognosis sig-
nature using the LASSO-Cox analysis. Moreover, we also
explored the correlation between pyroptosis-related progno-
sis signature and the immune microenvironment in LUSC.
A ceRNA network was constructed to clarify potential regu-
latory axis in LUSC.

2. Materials and Methods

2.1. Dataset Acquisition and Preprocessing. Gene expression
(FPKM) and simple nucleotide variation of LUSC patients
and clinic information data were downloaded from the Can-
cer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) on
October 3, 2021. FPKM data were then normalized to tran-
scripts per kilobase million value. Using UCSC Xena
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Figure 2: The functional enrichment and prognostic analysis. (a, b) The enriched items in gene ontology and Kyoto Encyclopedia of Genes
and Genomes analysis. (c–f) Overall survival curve in LUSC patients with high/low expression of IL6, IL1B, ELANE, and CASP4. LUSC:
lung squamous cell carcinoma; BP: biological process; CC: cellular component; MF: molecular function.
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(https://xena.ucsc.edu/), we isolated copy number variation
(CNV) data. R (version 4.0.5) with R packages was applied
to perform dataset processing.

2.2. Defining the Expression and Genetic Alteration
Landscape of Pyroptosis-Related Genes (PRGs). Based on a
previous literature, we obtained 33 PRGs (Supplementary
Table 1) [13, 15]. The “limma” package was applied for
identification of differently expressed pyroptosis-related
genes (PRGs) and a p value was set as 0.05. The mutation
landscape of PRGs was visualized using waterfall function
within the “maftools” package. By using “RCircos” package
in R, we presented the location of CNV alteration of PRG
human chromosomes.

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Analysis. Using differently
expressed pyroptosis-related genes (PRGs) in LUCS, we then
performed GO and KEGG pathway analysis with “ggplot2”
package in R with a p < 0:05. Noteworthily, GO analysis
comprises biological process (BP), cellular component
(CC), and molecular function (MF).

2.4. Construction of a Pyroptosis-Related Prognostic
Signature. A Kaplan-Meier method was used to identify
the prognostic PRGs with p values and hazard ratio (HR)
with 95% confidence interval (CI) calculated by log-rank
test. The LASSO Cox regression model was applied to isolate
the candidate genes and construct a pyroptosis-related prog-
nostic signature based on these prognostic PRGs. The risk
score of each LUSC patients was calculated using the for-
mula as follows: risk score =∑4

i Xi × Yi (X: coefficients, Y :
candidate gene expression). With the median risk score as
the cutoff, all LUSC cases were divided into low- and high-
risk subgroups. The difference of OS rate in two subgroups
of LUSC was calculated with Kaplan-Meier survival curves,

and time-dependent receiver operating characteristic curves
(ROC curves) were applied to evaluate the efficiency of the
prognostic signature with “timeROC” packages. Considering
the clinical characters and prognostic signature, we per-
formed univariate and multivariate cox regression and the
result was drawn in forest with “forestplot” R package. Based
on the result, we constructed a predicted nomogram to pre-
dict the 1-, 3-, and 5-year OS rate of LUSC patients.

2.5. Immune Infiltration, Drug Sensitivity, TMB, and MSI
Analysis. The abundance of immune cells was isolated from
TIMER database (https://cistrome.shinyapps.io/timer/). We
collected the IC50 of 265 small molecules in 860 cell lines,
and its corresponding mRNA gene expression from the
Cancer Therapeutics Response Portal (CTRP). The mRNA
expression data and drug sensitivity data were merged.
The microsatellite instability (MSI) score of LUSC patients
was calculated as described previously [16]. After obtaining
the masked somatic mutation file (varscan. Somatic. Maf)
of LUSC patients from TCGA, we calculated the TMB score
of LUSC patients with the “maftools” package in R. Pear-
son’s correlation analysis was used to performed to calcu-
late the correlation between pyroptosis-related prognostic
signature and immune infiltration, drug IC50, TMB, and
MSI score. A p value < 0.05 was considered statistically sig-
nificant difference.

2.6. Construction of Potential Regulatory Axis. We then con-
structed a PPI network with String (https://string-db.org/) to
identify hub gene among pyroptosis-related prognostic sig-
nature. This was followed by identification of the miRNA
target of hub gene using miRDB (http://mirdb.org/), Star-
Base (http://starbase.sysu.edu.cn/), and miRWalk (http://
mirwalk.umm.uni-heidelberg.de/). After identifying miRNA
targets of hub genes, we used StarBase (http://starbase.sysu
.edu.cn/) and LncBase module of DIANA tool (http://
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Figure 3: Construction of a pyroptosis-related prognostic signature. (a, b) The coefficient and partial likelihood deviance of prognostic
signature. (c) The risk score distribution, survival status of LUSC cases and gene expression profile of this prognostic signature. (d, e)
Overall survival curve in the high-/low-risk group and the ROC curve evaluating prognosis predicting performance of LUSC patients.
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carolina.imis.athena-innovation.gr/) to predict lncRNA tar-
get interacting with miRNA. Moreover, the expression of
miRNA and lncRNA was detected with Student’s t-test using
TCGA LUSC dataset. A p value < 0.05 was considered statis-
tically significant difference.

3. Results

3.1. Expression and Genetic Mutation Landscape of PRGs in
LUSC. Figure 1(a) shows the expression landscape of PRGs

in LUSC and the expression of 26 PRGs were increased or
decreased in LUSC (p < 0:05). Minutely, upregulation was
obtained in the expression of GSDMB, PJVK, PLCG1,
GSDME, NLRP7, CASP3, CASP6, GSDMC, and AIM2
while downregulation was obtained in the expression of
PRKACA, CASP9, NOD1, NLRP1, ELANE, TIRAP, CASP4,
GSDMD, TNF, IL1B, IL18, CASP5, NOD2, NLRC4, NLRP3,
IL6, and CASP1 in LUSC (all p < 0:05). Simple nucleotide
variation of PRGs in LUSC cases is shown in Figures 1(b)
and 1(c), revealing that 135 of 236 (57.2%) LUSC samples
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Figure 4: Risk score correlated with immune infiltration in LUSC. The correlation between risk score and the expression of B cells (a), CD4
+ T cells (b), CD8+ T cells (c), neutrophils (d), macrophage (e), and dendritic cells (f).
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presented with simple nucleotide variation and NLRP3 was
the gene with the highest frequency of mutation followed
by NLRP7 and NOD2. We found that missense mutation
ranked the top variant classification and C>A was the most
common SNV class (Figure 1(c)). In CNV analysis, the data
suggested that more than half of 33 PRGs had copy number
amplification while the other had a widespread CNV dele-
tion (Figure 1(d)). The location of CNV alteration of PRGs
on human chromosomes is shown in Figure 1(e).

3.2. GO and KEGG Pathway Analysis. GO and KEGG path-
ways were performed with above 26 differently expressed
PRGs. The result of GO analysis in Figure 2(a) indicated that
these PRGs were enriched in positive regulation of cytokine
production, pyroptosis, endocytic vesicle, cysteine-type
endopeptidase activity, cytokine receptor binding, and

CRAD binding. As for KEGG pathways analysis, the data
in Figure 2(b) suggested that these PRGs were enriched in
NOD-like receptor signaling pathway, cytosolic DNA-
sensing pathway, NF-KB signaling pathway, and apoptosis.

3.3. Construction of a Pyroptosis-Related Prognostic
Signature. Kaplan-Meier survival curves revealed that LUSC
patients with high expression of IL6 (p = 0:038, HR = 1:34),
IL1B (p = 0:028, HR = 1:36), ELANE (p < 0:001, HR = 1:7),
and CASP4 (p = 0:015, HR = 1:4) had a poor OS rate versus
low expression group (Figures 2(c)–2(f)). LASSO cox regres-
sion analysis was conducted to develop a pyroptosis-related
prognostic signature using above four genes. The coefficient
and partial likelihood deviance of prognostic signature are
shown in Figures 3(a) and 3(b). Figure 3(c) shows the risk
score distribution, survival status of LUSC cases and gene
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8 BioMed Research International



expression profile of this prognostic signature. The risk score
of LUSC patients was calculated with a formula: risk score
= ð0:0312Þ ∗ IL6 + ð0:0569Þ ∗ IL1B + ð0:3276Þ ∗ ELANE + ð
0:1244Þ ∗ CASP4. All LUSC cases were divided into the
high- and low-risk groups. As expected, high risk score
patients had a poor OS rate versus low risk score patients
with a median time of 3 vs. 5.7 years (Figure 3(d),
p=0.0031). As shown in Figure 3(e), the AUC was 0.565,
0.641, and 0.619 in 1-year, 3-year, and 5-year ROC curves,
demonstrating that this prognostic signature had a good per-
formance in predicting the prognosis of LUSC patients. More-
over, further analysis revealed that immune infiltration level of
CD4+ T cells (p = 3:34e − 5, Figure 4(b)), CD8+ T cells
(p = 2:61e − 13, Figure 4(c)), neutrophils, (p = 1:07e − 52,
Figure 4(d)), macrophage (p = 1:82e − 7, Figure 4(e)), and
dendritic cells (p = 6:45e − 42, Figure 4(f)) was positively cor-
related with the risk score of LUSC patients.

3.4. Construction of a Predictive Nomogram. Considering
clinicopathologic features and prognostic signature, univariate
andmultivariate analyses were performed to identify the prog-
nostic factors. As shown in Figures 5(a) and 5(b), the result
indicated ELANE, age gender, and pTNM stage are indepen-
dent prognosis factors for LUSC patients. Based on these data,
we then constructed a predictive nomogram, which indicated
that this predictive nomogram could predict relatively well in
the 3-year and 5-year OS rates compared with an ideal model
in the entire cohort (Figures 5(c) and 5(d)).

3.5. PRGs Correlated with Immune Infiltration in LUSC. The
above result revealed a significant correlation between risk
score and immune infiltration. We further explored with
correlation between four PRGs and immune infiltration in
LUSC. As expected, there was a positive correlation between
IL6 and the immune abundance of CD8+ T cell (cor = 0:162
), macrophage (cor = 0:109), neutrophils (cor = 0:246), and
dendritic cell (cor = 0:135) (Figure 6(a), p < 0:05). IL1B
expression showed negative correlation with B cells
(cor = −0:101) and positive correlation with neutrophils
(cor = 0:413) and dendritic cell (cor = 0:213) (Figure 6(b), p
< 0:05). The abundance of B cells, CD8+ T cells, CD4+ T

cells, macrophage, neutrophils, and dendritic cells increased
as the expression of ELANE and CASP4 increased
(Figures 6(c) and 6(d)). Moreover, we also found that certain
SCNA of these PRGs could inhibit immune infiltration in
LUSC (Figures 6(e)–6(h)).

3.6. The Correlation between PRG Expression and TMB, MSI,
and Drug Sensitivity. Increasing evidences suggested TMB as
a predictive marker for immunotherapy efficacy in lung can-
cer [17, 18]. MSI was also referred as a predictive marker for
cancer immunotherapy [19]. To clarify the important role of
PRGs in LUSC, we then explored its correlation with TMB
and MSI in LUSC. As shown in Figure 7(a), the TMB score
decreased as the expression of IL1B (p = 0:038) and ELANE
(p = 0:003) increased. Similarly, the MSI score decreased as
the expression of IL6 (p = 0:048), IL1B (p = 0:004), and
CASP4 (p = 6:15e − 10) increased (Figure 7(b)). To develop
a therapy target, one of vital way is to analyze its correlation
with exited drugs. Interestingly, drug sensitivity analysis
indicated high expression of IL6, CASP4, and IL1B was cor-
related with drug resistance of CTRP (Figure 7(c)), suggest-
ing that IL6, CASP4, and IL1B may serve as the potential
biomarkers for drug scanning. We also explored PRGs
expression in different TNM stages of LUSC patients. How-
ever, only ELANE showed positive correlation with TNM
stage (Figure 8(c), p = 0:049). There is no significant differ-
ence between the expression of IL6 (Figure 8(a)), IL1B
(Figure 8(b)), and ELANE (Figure 8(d)) and different
TNM stage LUSC patients (all p > 0:05).

3.7. Construction of a lncRNA-miRNA-mRNA Regulatory
Axis. A PPI network was constructed and revealed IL1B as
the hub gene among pyroptosis-related prognostic signature
(Figure 9(a)), and we selected IL1B for further analysis. The
miRNA target of IL1B was obtained from miRDB, miRWalk,
and StarBase. As a result, miR-328-3p was suggested as the
miRNA target for IL1B (Figure 9(b)). Moreover, we also found
that miR-328-3p was upregulated in LUSC (Figure 9(c), p =
0:017). We further explored the lncRNA target of miR-328-
3p, and the data from lncBase and StarBase suggested lncRNA
KCNQ1OT1 as a lncRNA target interacting to miR-328-3p
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Figure 6: Pyroptosis-related prognostic signature correlated with immune infiltration in LUSC. The correlation between immune cells
expression and the mRNA level of IL6 (a), IL1B (b), ELANE (c), and CASP4 (d) in LUSC. The correlation between different copy
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(Figure 9(d)). Further analysis demonstrated upregulation of
KCNQ1OT1 in LUSC versus normal tissues (p = 3:3e − 9,
Figure 9(e)). Thus, lncRNA KCNQ1OT1/miR-328-3p/IL1B

regulatory axis may play a vital role in the progression in
LUSC. Further in vivo and in vitro studies should be con-
ducted to verify this hypothesis.
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4. Discussion

Pyroptosis was Gasdermin-mediated programmed necrosis
associated with pathogenesis of many diseases [20]. Pyropto-
sis can be chemically induced in tumor cells in the absence
of any bacterial or viral infection [21]. Pyroptosis was
involved in all stages of carcinogenesis, suggesting it as one
of most promising directions for cancer research [22]. More-
over, the pyroptosis-related signature could serve as a prog-
nosis biomarker and predicts immune microenvironment
infiltration in a certain type of cancer, including ovarian can-
cer and gastric cancer [12, 13]. However, the role of pyrop-
tosis in LUSC was not fully established.

Expression analysis revealed upregulation of GSDMB,
PJVK, PLCG1, GSDME, NLRP7, CASP3, CASP6, GSDMC,
and AIM2 while revealing downregulation of PRKACA,
CASP9, NOD1, NLRP1, ELANE, TIRAP, CASP4, GSDMD,
TNF, IL1B, IL18, CASP5, NOD2, NLRC4, NLRP3, IL6, and
CASP1 in LUSC versus normal tissues. Kaplan-Meier survival
curves revealed that LUSC patients with high expression of
IL6, IL1B, ELANE, and CASP4 had a poor OS rate versus a
low-expression group. Actually, these genes were suggested

as a prognosis biomarker for lung cancer or other types of can-
cers. IL-6 polymorphism was associated with survival progno-
sis of non-small-cell lung cancer (nSCLC) [23]. A genomic
analysis revealed that high ELANE expression in LUAD was
associated with a good prognosis [24]. In esophageal squa-
mous cell carcinoma, CASP4 served as a prognostic biomarker
and is associated with poor prognosis [25].

Based on the above four prognostic PRGs, LASSO Cox
regression analysis was conducted to develop a pyroptosis-
related prognostic signature, which could serve as a prognosis
biomarker in LUSC and predict the OS rate with medium to
high accuracy. We also constructed a predictive nomogram,
which could predict relatively well in the 3-year and 5-year
OS rates compared with an ideal model in the entire cohort.
Actually, a previous study revealed that pyroptosis-related sig-
nature could serve as a prognosis biomarker in a certain type
of cancer. Ying et al. constructed a 7-pyroptosis-related signa-
ture, which could predict the prognosis of ovarian cancer [13].
Another pyroptosis-related signature could serve as a bio-
marker in gastric cancer, for predicting prognosis and
immune microenvironment infiltration [12]. In our study,
we firstly identified a pyroptosis-related prognostic gene
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Figure 8: The expression of pyroptosis-related prognostic signature in different TNM stage in LUSC patients. The expression of IL6 (a),
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signature for LUSC, further confirming the important role of
pyroptosis for the development and prognosis of cancer.

Our results revealed that risk score and PRGs (IL6, IL1B,
ELANE, and CASP4) were significant correlated with immune
infiltration. Previous study had revealed the vital role of these
PRGs in tumor microenvironment and immune infiltration.
Combined blocking of IL-6 and PD-1/PD-L1 signals can elim-
inate their immunosuppressive effects in the tumor microen-
vironment [26]. In colorectal cancer, macrophage-derived
IL6 in immune microenvironment was associated with che-
moresistance [27]. In lung cancer, IL6 was involved in cell
autonomous propensity for metastasis and establishing the
metastatic niche [28]. Interestingly, our study also found that
high IL6 expression was correlated with drug resistance in

LUSC. Thus, the immune-microenvironment may confer che-
moresistance of LUSC through immune cell derived IL6. A
further study should be conducted to clarify the molecular
mechanism of this regulatory axis.

Another vital finding of the current study was that we
identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regula-
tory axis in LUSC by developing a ceRNA network. Zhang
et al. found that KCNQ1OT1 was upregulation in non-
SCLC and associated with clinicopathology [29]. Another
study revealed that KCNQ1OT1 was a prognostic biomarker
in non-SCLC and could accelerate tumor progression by the
regulation of miR-204-5p/ATG3 axis [30, 31]. Moreover,
miR-328-3p could accelerate the occurrence and progression
of lung cancer via NF2-mediated Hippo axis [32]. High
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expression of miR-328-3p was correlated with radiotherapy
sensitivity in non-SCLC [33]. Our study revealed another
lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis in
LUSC, which may also play a vital function in the tumor
progression.

Pyroptosis was a double-edged sword and played a vital
function in both tumorigenesis and antitumor immunities at
all stages of tumor development [34]. Different from autoph-
agy and apoptosis and necroptosis, pyroptosis was character-
ized by unique morphology and mechanism [6, 35].
Increasing evidences revealed that pyroptosis was involved in
host defense and highly correlated with bridging innate and
adaptive immunity [36]. Moreover, targeting pyroptosis and
developing related drugs may provide another immunother-
apy strategy for cancer [36]. Our study clarified a significant
correlation between pyroptosis-related prognostic signature
and immunological infiltration in LUSC, providing some data
for the pyroptosis-related immunotherapy of LUSC.

In conclusion, a bioinformatics method was performed
to develop a pyroptosis-related prognostic signature con-
taining four genes (IL6, IL1B, ELANE, and CASP4) in
LUSC. We also constructed a ceRNA network and identified
a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for
LUSC. Further in vivo and in vitro studies should be con-
ducted to verify these results.
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