
METHODS
published: 12 January 2022

doi: 10.3389/fnbot.2021.824592

Frontiers in Neurorobotics | www.frontiersin.org 1 January 2022 | Volume 15 | Article 824592

Edited by:

Yong Li,

Nanjing University of Science and

Technology, China

Reviewed by:

Xiaoya Zhang,

Nanjing University of Science and

Technology, China

Yaohui Zhu,

Beijing Normal University, China

Hao Su,

Beihang University, China

*Correspondence:

Chongwen Wang

wcwzzw@bit.edu.cn

Received: 29 November 2021

Accepted: 10 December 2021

Published: 12 January 2022

Citation:

Wang C and Wang Z (2022)

Progressive Multi-Scale Vision

Transformer for Facial Action Unit

Detection.

Front. Neurorobot. 15:824592.

doi: 10.3389/fnbot.2021.824592

Progressive Multi-Scale Vision
Transformer for Facial Action Unit
Detection
Chongwen Wang* and Zicheng Wang

School of Computer Science, Beijing Institute of Technology, Beijing, China

Facial action unit (AU) detection is an important task in affective computing and

has attracted extensive attention in the field of computer vision and artificial

intelligence. Previous studies for AU detection usually encode complex regional

feature representations with manually defined facial landmarks and learn to model the

relationships among AUs via graph neural network. Albeit some progress has been

achieved, it is still tedious for existing methods to capture the exclusive and concurrent

relationships among different combinations of the facial AUs. To circumvent this issue,

we proposed a new progressive multi-scale vision transformer (PMVT) to capture the

complex relationships among different AUs for the wide range of expressions in a

data-driven fashion. PMVT is based on the multi-scale self-attention mechanism that

can flexibly attend to a sequence of image patches to encode the critical cues for

AUs. Compared with previous AU detection methods, the benefits of PMVT are 2-fold:

(i) PMVT does not rely on manually defined facial landmarks to extract the regional

representations, and (ii) PMVT is capable of encoding facial regions with adaptive

receptive fields, thus facilitating representation of different AU flexibly. Experimental results

show that PMVT improves the AU detection accuracy on the popular BP4D and DISFA

datasets. Compared with other state-of-the-art AU detection methods, PMVT obtains

consistent improvements. Visualization results show PMVT automatically perceives the

discriminative facial regions for robust AU detection.

Keywords: affective computing, facial action unit recognition, multi-scale transformer, self-attention, cross-

attention

1. INTRODUCTION

Facial expression is a natural way for non-verbal communication in our daily life and can be
considered as an intuitive illustration of human emotions and mental states. There are some
popular facial expression topics categorized as discrete facial expression categories, facial micro-
expression, and the Facial Action Coding System (FACS) (Ekman and Friesen, 1978). Among
them, FACS is the most comprehensive, anatomical system for encoding expression. FACS defines
a detailed set of about 30 atomic non-overlapping facial muscle actions, i.e., action units (AUs).
Almost any anatomical facial muscle activity can be introduced via a combination of facial AUs.
Automatic AU detection has drawn significant interest from computer scientists and psychologists
over recent decades, as it holds promise to several practical applications (Bartlett et al., 2003; Zafar
and Khan, 2014), such as human affect analysis, human-computer interaction, and pain estimation.
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Thus, a reliable AU detection system is of great importance for
the analysis of fine-grained facial expressions.

In FACS, different AUs are tightly associated with different
facial muscles. It actually means we can observe the active AUs
from specific facial regions. For example, the raising of the
inner corners of the eyebrows means activated AU1 (inner brow
raiser). Lowering the inner corners of the brows corresponds to
AU4 (brow lowerer). AU annotators are ofter unable to describe
the precise location and the facial scope of the AUs due to
the ambiguities of the AUs and individual differences. Actually,
the manually defined local AU regions are ambiguous. Existing
methods (Li et al., 2017a,b, 2018a,b; Corneanu et al., 2018; Shao
et al., 2018; Jacob and Stenger, 2021) usually use artificially
define rectangle local regions, or use adaptive attention masks
to focus on the expected local facial representations. However,
the rectangle local regions violate the actual appearance of the
AUs. Moreover, several AUs are simultaneously correlated with
multiple and fine-grained facial regions. The learned adaptive
attention masks fail to perceive the correlations among different
AUs. Therefore, it is critical to automatically learn the AU-
adaptive local representations and perceive the dependencies of
the facial AUs.

To mitigate this issue, we introduce a new progressive
multi-scale vision transformer (PMVT) to capture the complex
relationships among different AUs for the wide range of facial
expressions in a data-driven fashion. PMVT is based on the
multi-scale self-attention mechanism that can flexibly attend
to a sequence of image patches to encode the critical cues
for AU detection. Currently, vision transformers (Dosovitskiy
et al., 2020; Li et al., 2021) have shown promising performance
across several vision tasks. The vision transformer models
contain MSA mechanisms that can flexibly attend to a sequence
of image patches to encode the dependencies of the image
patches. The self-attention in the transformers has been shown
to effectively learn global interactions and relations between
distant object parts. A series of works on various tasks such as
image segmentation (Jin et al., 2021), object detection (Carion
et al., 2020), video representation learning (Girdhar et al., 2019;
Fang et al., 2020) have verified the superiority of the vision
transformermodels. Inspired by CrossViT (Chen et al., 2021) that
processes the input image tokens with two separate transformer
branches, our proposed PMVT firstly uses the convolutional
neural network (CNN) to encode the convolutional AU feature
maps. Then PMVT obtains the multi-scale AU tokens with
the small-patch and large-patch branches. The two branches
receive different scale AU tokens and exchange semantic AU
information via a cross attention mechanism. The self-/cross-
attention mechanisms facilitate PMVT the content-dependent
long-range interaction perceiving capabilities. Thus, PMVT can
flexibly focus on the region-specific AU representations and
encode the correlations among different AUs to enhance the
discriminability of the AU representations. Figure 1 shows the
attention maps of several faces. It is clear that PMVT is capable of
focusing on the critical and AU-related facial regions for a wide
range of identities and races. More facial examples and detailed
explanations can be seen in section 4.2.1.

In summary, the contributions of this study are as follows:

1. We introduce a PMVT for facial AU detection. PMVT does
not rely on manually defined facial landmarks to extract the
regional AU representations.

2. To further enhance the discriminability of the facial
expression representation, PMVT consists of separate
transformer branches that receive the multi-scale AU tokens
as input. PMVT is capable of encoding multi-scale facial
AU representations and perceiving the correlations among
different AUs to facilitate representing different AU flexibly.

3. Experimental results demonstrate the advantages of the
proposed PMVT over other state-of-the-art AU detection
methods on two popular AU datasets. Visualization results
show that PMVT is superior in perceiving and capturing the
AU-specific facial regions.

2. RELATED WORK

We focus on the previous studies considering two aspects that are
tightly related to the proposed PMVT, i.e., the facial AU detection
and vision transformer.

2.1. Methods for Facial AU Detection
Action units detection is a multi-label classification problem and
has been studied for decades. Several AU detection methods
have been proposed (Zhao et al., 2016; Li et al., 2017a,b; Shao
et al., 2018; Li and Shan, 2021). To achieve higher AU detection
accuracy, different hand-crafted features have been used to
encode the characteristics of AUs, such as Histogram of Oriented
Gradient (HOG), local binary pattern (LBP), Gabor (Benitez-
Quiroz et al., 2016) etc. Recently, AU detection has achieved
considerable improvements due to deep learning. Since AU
corresponds to the movement of facial muscles, many methods
detect the occurrence of AU based on location (Zhao et al.,
2016; Li et al., 2017a,b; Shao et al., 2018). For example, Zhao
et al. (2016) used a regionally connected convolutional layer
and learned the region-specific convolutional filters from the
sub-areas of the face. EAC-Net (Li et al., 2017b) and ROI (Li
et al., 2017a) extracted AU features around the manually defined
facial landmarks that are robust with respect to non-rigid shape
changes. SEV-Net (Yang et al., 2021) utilized the AU semantic
description as auxiliary information for AU detection. Jacob and
Stenger (2021) used a transformer-based encoder to capture the
relationships between AUs. However, these supervised methods
rely on precisely annotated images and often overfit on a specific
dataset as a result of insufficient training images.

Recently, weakly-supervised (Peng and Wang, 2018; Zhao
et al., 2018) and self-supervised (Wiles et al., 2018; Li et al., 2019b,
2020; Lu et al., 2020) methods have attracted a lot of attention to
mitigate the AU data scarcity issue. Weakly supervised methods
typically use the incomplete AU annotations and learn AU
classifiers from the prior knowledge between facial expression
and facial AU (Peng and Wang, 2018). The self-supervised
learning approaches usually adopt pseudo supervisory signals to
learn facial AU representation without manual AU annotations
(Li et al., 2019b, 2020; Lu et al., 2020). Among them, Lu et al.
(2020) proposed a triplet ranking loss to learn AU representations
via capturing the temporal AU consistency. Fab-Net (Wiles et al.,
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FIGURE 1 | Attention maps of some faces. Our proposed PMVT is capable of capturing the AU-specific facial regions for different identities with diverse

facial expressions.

2018) was optimized to map a source facial frame to a target facial
frame via estimating an optical flow field between the source
and target frames. TCAE (Li et al., 2019b) was introduced to
encode the pose-invariant facial AU representation via predicting
separate displacements for pose and AU and using the cycle
consistency in the feature and image domains simultaneously.

Our proposed PMVT differs from previous CNN-based
or transformer-based (Jacob and Stenger, 2021) AU detection
methods in two ways. One, PMVT does not rely on facial
landmarks to crop the regional AU features. It is because the facial
landmarks may suffer from considerable misalignments under
severe facial poses. Under this condition, the encoded facial
parts are not part-aligned and will lead to incorrect results. Two,
PMVT is themulti-scale transformer-based and the self-attention
and cross-attention mechanisms in PMVT can flexibly focus on a
sequence of image fragments to encode the correlations among
AUs. PMVT is potentially to obtain better facial AU detection
performance than previous approaches. We will verify this in
section 4.

2.2. Vision Transformer
Self-attention is capable of improving computer vision models
due to its content-dependent interactions and parameter-
independent scaling of the receptive fields, in contrast to
previous parameter-dependent scaling and content-independent
interactions of convolutions. Recently, self-attention-based
transformer models have greatly facilitated research in machine
translation and natural language processing tasks (Waswani
et al., 2017). Transformer architecture has become the de-
facto standard for a wide range of applications. The core
intuition of the original transformer is to obtain self-attention by
comparing a feature to all other features in the input sequence.

In detail, features are first encoded to obtain a query (Query)
andmemory [(including key (Key) and value (Value)] embedding
via linear projections. The product of Query with Key is used
as the attention weight for Value. A position embedding is also
introduced for each input token to remember the positional
information which will be lost in the transformer, which is
especially good at capturing long-range dependencies between
tokens within an input sequence.

Inspired by this, many recent studies use transformers in
various computer vision tasks (Dosovitskiy et al., 2020; Li
et al., 2021). Among them, ViT (Dosovitskiy et al., 2020)
introduces to view an image as a sequence of tokens and
conduct image classification with a transformer encoder. To
obtain the input patch features, ViT partition the input image
into non-overlapping tokens with 16 × 16 spatial dimension
and linearly project the tokens to match the encoder’s input
dimension. DeiT (Touvron et al., 2021) further proposes
the data-efficient training and distillation for transformer-
based image classification models. DETR (Carion et al., 2020)
introduces an excellent object detection model based on the
transformer, which considerably simplifies the traditional object
detection pipeline and obtains comparable performances with
prior CNN-based detectors. CrossViT (Chen et al., 2021) encodes
small-patch and large-patch image tokens with two exclusive
branches and these image tokens are then fused purely by a
cross-attention mechanism. Subsequently, transformer models
are further extended to other popular computer vision tasks
such as segmentation (Jin et al., 2021), face recognition (Li
et al., 2021), and 3D reconstruction (Lin et al., 2021). In
this study, we extend CrossViT to facial AU detection and
show its feasibility and superiority on two publicly available
AU datasets.
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FIGURE 2 | The main idea of the proposed progressive multi-scale vision transformer (PMVT). With the encoded convolutional feature map Xcon, PMVT uses L and S

branch transformer encoders that each receives tokens with different resolutions as input. The two branches will be fused adaptively via cross-attention mechanism.

3. METHOD

Figure 2 illustrates the main idea of the proposed PMVT. Given
an input face, PMVT first extracts its convolutional feature
maps via a commonly-used backbone network. Second, PMVT
encodes the discriminative facial AU feature by the multi-scale
transformer blocks. We will first review the traditional vision
transformer and present our proposed PMVT afterward.

3.1. Revisiting Vision Transformer
We first revisit the critical components in ViT (Dosovitskiy et al.,
2020) that mainly consist of image tokenization and several layers
of the token encoder. Each encoder consists of two layers, i.e.,

multi-head self-attention (MSA) layer and feed-forward network
(FFN) layer.

Traditional vision transformer typically receives a sequence
of image patch embeddings as input. To obtain the token
embeddings, ViT encodes the input image X ∈ R

H×W×C

into a set of flattened two-dimensional image patches: Xp ∈
R
N×P2×C. Among the mathematic symbols, H W, C denote the

height, width, channel of the input image X. P means the spatial
resolution of each image patch Xp. After the image tokenization,

we can obtain N = H×W
P2

patches that will be treated as the
sequential input for the transformer. These image patches are
then flattened and projected to embeddings with a size of S.
Typically, ViT adds an extra class token that will be concatenated
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with the image embeddings, resulting in the input sequence
with a size of Xt ∈ R

(N+1)×S. Finally, the class token will
serve as the image representation that will be used for image
classification. ViT uses a residual connection for each encoder.
The computation in each encoder can be formulated as:

Xt
′ = LN(Xt +MSA(Xt)), (1)

Y = LN(Xt
′ + FFN(Xt

′)), (2)

whereXt andY denote the input and output of the encoder.Xt
′ is

the output of theMSA layer. LNmeans layer normalization.MSA
means multi-head self-attention which will be described next.

For the self-attention module in ViT, the sequential input
tokens Xt ∈ R

(N+1)×S are linearly transformed into Query, Key,
Value spaces. Typically, Query ∈ R

(N+1)×S, Key ∈ R
(N+1)×S,

Value ∈ R
(N+1)×S. Afterward, a weighted sum over all values in

the sequential tokens is computed as,

Attention(Quey,Key,Value) = softmax(
Query× KeyT√

S
)Value.

(3)

Then a linear projection is conducted to the weighted values
Attention(Quey,Key,Value). MSA is a natural extension of the
single-head self-attention described above. MSA splits Query,
Key,Value for h times and performs the self-attentionmechanism
in parallel, then maps their concatenated outputs via linear
transformation. In addition to the MSA module, ViT exploits
the FFN module to conduct dimension adjustment and non-
linear transformation on each image token to enhance the
representation ability of the transformed tokens.

3.2. Progressive Multi-Scale Transformer
The direct tokenization of input images into large patches in
ViT has been found to show its limitations (Yuan et al., 2021).
On the one hand, it is difficult to perceive the important low-
level characteristics (e.g., edges, colors, corners) in images; On the
other hand, large CNNkernels for the image tokenization contain
too many trainable parameters and are often difficult to optimize,
and thus, ViT requires much more training samples. This is
particularly impartial for facial AU detection. As AU annotation
is time-consuming, cumbersome, and error-prone. Currently,
the publicly available AU datasets merely contain limited facial
images. To cope with this issue, we exploit the popular ResNet-
based backbone to encode the input facial image X to obtain
the convolutional feature map Xcon = F(X), where F means the
neural operation in the backbone network.

To obtain multi-scale tokens from Xcon, we use two separate
branch transformer encoder that each receives tokens with
different resolution as input. We illustrate the main idea of our
proposed PMVT in Figure 2. Mathematically speaking, let us
denote the two branches as L and S , respectively. In PMVT,
the L branch uses coarse-grained token as input while the S

branch directly operates at a much more fine-grained token.
Both branches are adaptively fused K times via a cross-attention
mechanism. Finally, PMVT exploits the CLS token of the L

and S branches for facial AU detection. For each token within

each branch, PMVT introduces a trainable position embedding.
Note that we can use multiple multi-scale transformer encoders
(MST) or perform cross-attention times within each MST. We
will analyze the performance variations in section 4.2.1.

Figure 3 illustrates the cross-attention mechanism in PMVT.
To effectively fuse the multi-scale AU features, PMVT utilizes
the CLS token at each branch (e.g., L branch) as an agent to
exchange semantic AU information among the patch tokens from
the other branch (e.g., S branch) and then project the CLS
token back to its own branch (e.g., L branch). Such operation
is reasonable because the CLS token in L or S branch already
learns semantic features among all patch tokens in its own
branch. Thus, interacting with the patch tokens at the other
branch can absorb more semantic AU information at a different
scale. We hypothesize such cross-attention mechanism will help
learn discriminative AU features as different AU usually have
different appearance scopes and there exist correlations among
the facial AUs. The multi-scale features will help encode AUs
more precisely and PMVT will encode the AU correlations with
the self-/cross-attention mechanism.

Take L for example to show the cross-attention mechanism
in PMVT. Specially, PMVT uses the CLS token Xl

cls
from the L

branch and patch tokens the Xs
i from S branch for feature fusing.

PMVT usesXl
cls
to obtain a query and useXs

i to obtain the key and
value. The query, key, value will be transformed into a weighted
sum overall values in the sequential tokens as that in Equation
(3). Notably, such a cross-attention mechanism is similar to self-
attention except that the query is obtained from the CLS token in
another transformer branch. In Figure 3, f (.) and g(.) mean linear
projections that aim the alignment of the feature dimension.
We will evaluate the effectiveness of the proposed PMVT in the
next section.

3.3. Training Objective
We utilize the multi-label sigmoid cross-entropy loss for
training the facial AU detection model in PMVT, which can be
formulated as:

L
AU = −

J∑

j

zj log ẑj + (1− zj) log(1− ẑj), (4)

where J denotes the number of facial AUs. zj denotes the j-th
ground truth AU annotation of the input AU sample. ẑj means
the predicted AU score. zi ∈ {0, 1} denotes the annotation with
respect to the ith AU. 1 means the AU is active, 0 means inactive.

4. EXPERIMENT

4.1. Implementation Details
We adopted ResNet-34 (He et al., 2016) as the backbone network
for PMVT due to its elegant network structure and excellent
performance in image classification. We chose the output of
the third stage as the convolutional feature maps: Xcon ∈
R
14×14×512. For the L branch, the token size is set as N =

5 × 5 via adaptative pooling operation. For the S branch, the
token size is set as N = 14 × 14. The pre-trained model
based on the ImageNet dataset was used for initializing the
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FIGURE 3 | The main idea of the cross-attention in PMVT. In this study, we show that PMVT utilizes the classification (CLS) token at the L branch as an agent to

exchange semantic AU information among the patch tokens from the S branch. PMVT can also use the CLS token at S to absorb information among the tokens from

the L branch.
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backbone network. For the transformer part, we use one layer
of transformer encoder that consists of two-layer cross-attention.
We exploited a batch-based stochastic gradient descent method
to optimize the proposed PMVT. During the training process,
we set the batch size as 64 and the initial learning rate as 0.002.
The momentum was set as 0.9 and the weight decay was set
as 0.0005.

4.1.1. Datasets
For AU detection, we adopted BP4D (Zhang et al., 2013) and
DISFA (Mavadati et al., 2013) datasets. Among them, BP4D
is a spontaneous FACS dataset that consists of 328 videos for
41 subjects (18 men and 23 women). Eight different tasks are
evaluated on a total of 41 participants, and their spontaneous
facial expression variations were recorded in several videos.
Each participant subject is involved in eight sessions, and their
spontaneous facial expressions were captured in both 2D and
3D videos. A total of 12 AUs were annotated for the 328
videos, and there are approximately 1,40,000 frames with AU
annotations. DISFA contains 27 participants that consists of 12
women and 15 men. Each subject is asked to watch a 4-min
video to elicit their facial AUs. The facial AUs are annotated
with intensities from 0 to 5. In our experiments, we obtained
nearly 1,30,000 AU-annotated images in the DISFA dataset by
considering the images with intensities greater than 1 as active.
For BP4D and DISFA datasets, the images are split into 3-
fold in a subject-independent manner. Based on the datasets,
we conducted 3-fold cross-validation. We adopted 12 AUs in
BP4D and 8 AUs in DISFA dataset for evaluation. For the DISFA
dataset, we leveraged the model trained on BP4D to initialize the
backbone network, following the same experimental setting of
Li et al. (2017b).

4.1.2. Evaluation Metric
We adopted F1-score (F1 = 2RP

R+P ) to evaluate the performance of
the proposed AU detection method, where R and P, respectively,
denote recall and precision. We additionally calculated the
average F1-score over all AUs (AVE) to quantitatively evaluate
the overall facial AU detection performance. We show the AU
detection results as F1× 100.

4.2. Experimental Results
We compare the proposed with the state-of-the-art facial AU
detection approaches, including DRML (Zhao et al., 2016), EAC-
Net (Li et al., 2017b), ROI (Li et al., 2017a), JAA-Net (Shao
et al., 2018), OFS-CNN (Han et al., 2018), DSIN (Corneanu et al.,
2018), TCAE (Li et al., 2019b), TAE (Li et al., 2020), SRERL
(Li et al., 2019a), ARL (Shao et al., 2019), SEV-Net (Yang et al.,
2021), and FAUT (Jacob and Stenger, 2021). Among them, most
of the AU methods (Li et al., 2017a, 2019a; Corneanu et al., 2018;
Shao et al., 2018) manually crop the local facial regions to learn
the AU-specific representations with exclusive CNN branches.
TAE (Li et al., 2020) utilize unlabeled videos that consist of
approximately 7,000 subjects to encode the AU-discriminative
representation without AU annotations. SEV-Net (Yang et al.,
2021) introduce the auxiliary semantic word embedding and
visual feature for AU detection. FAUT (Jacob and Stenger, 2021)

introduce an AU correlation network based on a transformer
architecture to perceive the relationships between different AU
in an end-to-end manner.

Table 1 shows the AU detection results of our method
and studies works on the BP4D dataset. Our PMVT achieves
comparable AU detection accuracy with the best state-of-the-
art AU detection methods in the average F1 score. Compared
with other methods, PMVT obtains consistent improvements
in the average accuracy (+14.6% over DRML, +7.0% over
EAC-Net, +6.5% over ROI, +2.9% over JAA-Net, +4.0% over
DSIN, +6.8% over TCAE, +2.6% over TAE). The benefits of
our proposed PMVT over other methods can be explained in
2-fold. First, PMVT explicitly introduces transformer modules
in the network structure. The self-attention mechanism in
the transformer modules is capable of perceiving the local to
global interactions between different facial AUs. Second, we
use multi-scale features to better encode the regional features
of the facial AUs, as different AUs have different appearance
scopes. The cross-attention mechanism between the multi-
scale features is beneficial for learning discriminative facial
AU representations. Table 2 shows the quantitative facial AU
detection results of our PMVT and other methods on the
DISFA dataset. PMVT achieves the second-best AU detection
accuracy compared with all the state-of-the-art AU detection
methods in the average F1 score. In detail, PMVT outperforms
EAC-Net, JAA-Net, OFS-CNN, TCAE, TAE, SRERL, ARL,
and SEV-Net with +12.4%, +4.9%, +9.5%, +7.3%, +15.9%,
+9.4%, +5.0%, +2.2%, and +2.1% improvements in the
average F1 scores. The consistent improvements over other
methods on the two popular datasets verify the feasibility and
superiority of our proposed PVMT. We will carry out an
ablation study to investigate the contribution of the self-/cross-
attention in PVMT and illustrate visualization results in the
next section.

4.2.1. Ablation Study
We illustrate the ablation study experimental results in Table 3.
In Table 3, we show the AU detection performance variations
with different cross-attention layers (CL = 1, 2, 3) in the multi-
scale transformer encoder and with different layers of multi-scale
transformer encoders (MS = 1, 2, 3).

As shown in Table 3, PMVT shows its best AU detection
performance with CL = 2 and MS = 1. It means PMVT
merely contains one layer of the multi-scale transformer encoder,
and the encoder contains two layers of cross-attention. With
more MST encoders, PMVT will contain too many trainable
parameters and will suffer from insufficient training images.
With CL = 1 or CL = 3, PMVT shows degraded
AU detection performance, and it suggests that information
fusion should be performed twice to achieve the discriminative
AU representations.

We additionally show the attention maps of PMVT on some
randomly sampled faces in Figure 4. The visualization results
show the benefits of the proposed PMVT for robust facial AU
detection. It is obvious that PVMT shows consistent activation
maps for each face under different races, expressions, lightings,
and identities. For example, the third face in the second row
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TABLE 1 | Action unit (AU) detection performance of our proposed progressive multi-scale vision transformer (PMVT) and state-of-the-art methods on the BP4D dataset.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 AVE

LSVM (Fan et al., 2008) 23.2 22.8 23.1 27.2 47.1 77.2 63.7 64.3 18.4 33.0 19.4 20.7 35.3

DRML (Zhao et al., 2016) 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-Net (Li et al., 2017b) 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

ROI (Li et al., 2017a) 36.2 31.6 43.4 77.1 73.7 85.0 87.0 62.6 45.7 58.0 38.3 37.4 56.4

JAA-Net (Shao et al., 2018) 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

DSIN (Corneanu et al., 2018) 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

TCAE (Li et al., 2019b) 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 34.7 58.5 37.2 48.7 56.1

TAE (Li et al., 2020) 47.0 45.9 50.9 74.7 72.0 82.4 85.6 62.3 48.1 62.3 45.9 46.3 60.3

SRERL (Li et al., 2019a) 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9

ARL (Shao et al., 2019) 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1

FAUT (Jacob and Stenger, 2021) 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2

SEV-Net (Yang et al., 2021) 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9

PMVT (Ours) 59.3 43.0 59.3 82.3 73.6 82.6 86.1 57.6 53.0 60.2 47.9 50.6 62.9

The highest values are illustrated in Bold format.

TABLE 2 | Action unit detection performance of our proposed PMVT and state-of-the-art methods on the DISFA dataset.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 ave

DRML (Zhao et al., 2016) 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-Net (Li et al., 2017b) 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

JAA-Net (Shao et al., 2018) 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

OFS-CNN (Han et al., 2018) 43.7 40.0 67.2 59.0 49.7 75.8 72.4 54.8 51.4

DSIN (Corneanu et al., 2018) 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

TCAE (Li et al., 2019b) 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0

TAE (Li et al., 2020) 21.4 19.6 64.5 46.8 44.0 73.2 85.1 55.3 51.5

SRERL (Li et al., 2019a) 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9

FAUT (Jacob and Stenger, 2021) 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5

ARL (Shao et al., 2019) 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7

SEV-Net (Yang et al., 2021) 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8

PMVT (Ours) 50.0 54.3 63.2 55.6 40.0 72.2 95.9 56.3 60.9

The highest values are illustrated in Bold format.

TABLE 3 | Ablation studies on the BP4D and DISFA datasets.

Methods BP4D DISFA

CL=1 60.7 56.3

CL=2 62.9 60.9

CL=3 59.5 55.8

MS=1 62.9 60.9

MS=2 59.8 58.1

MS=3 55.0 51.1

is annotated with active AU1 (inner brow raiser), AU2 (outer
brow raiser), AU6 (cheek raiser), AU7 (inner brow raiser), AU10
(inner brow raiser), and AU12 (inner brow raiser). The second
face in the third row is annotated with active AU1 (inner brow

raiser), AU10 (inner brow raiser), AU12 (inner brow raiser),
and AU15 (lip corner depressor). The first face in the fourth
row is annotated with active AU7 (inner brow raiser) and AU14
(dimpler). The attention maps of these faces are in line and
consistent with the annotated AUs. The visualization maps in
Figure 4 show the generalization ability and feasibility of our
proposed PVMT.

5. CONCLUSIONS

In this study, we propose a PMVT to perceive the complex
relationships among different AUs in an end-to-end data-driven
manner. PMVT is based on the multi-scale self-/cross-attention
mechanism that can flexibly focus on sequential image patches
to effectively encode the discriminative AU representation and
perceive the correlations among different facial AUs. Compared
with previous facial AU detection methods, PMVT obtains
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FIGURE 4 | Attention maps of some representative faces. We illustrate a subject with different facial expressions in each row. It is obvious that the proposed PMVT is

capable of focusing on the most silent parts for facial AU detection. Deep red denotes high activation, better viewed in color and zoom in.

comparable AU detection performance. Visualization results
show the superiority and feasibility of our proposed PMVT.
For future study, we will explore utilizing PMVT for more
affective computing tasks, such as facial expression recognition,
AU density estimation.
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