
����������
�������

Citation: Li, N.; He, F.; Ma, W.; Wang,

R.; Jiang, L.; Zhang, X. The

Identification of ECG Signals Using

Wavelet Transform and WOA-PNN.

Sensors 2022, 22, 4343. https://

doi.org/10.3390/s22124343

Academic Editor: Juan Pablo

Martínez

Received: 24 April 2022

Accepted: 4 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

The Identification of ECG Signals Using Wavelet Transform
and WOA-PNN
Ning Li 1,2,* , Fuxing He 1, Wentao Ma 1 , Ruotong Wang 3, Lin Jiang 3 and Xiaoping Zhang 4

1 School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China;
2180320030@stu.xaut.edu.cn (F.H.); mawt@xaut.edu.cn (W.M.)

2 Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education,
Shanghai 200240, China

3 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK;
rw2016@liverpool.ac.uk (R.W.); l.jiang@liverpool.ac.uk (L.J.)

4 Department of Electronic, Electrical, and Systems Engineering, School of Engineering,
University of Birmingham, Birmingham B15 2TT, UK; x.p.zhang@bham.ac.uk

* Correspondence: lining83@xaut.edu.cn; Tel.: +86-137-720-239-27

Abstract: Electrocardiogram (ECG) signal identification technology is rapidly replacing traditional
fingerprint, face, iris and other recognition technologies, avoiding the vulnerability of traditional
recognition technologies. This paper proposes an ECG signal identification method based on the
wavelet transform algorithm and the probabilistic neural network by whale optimization algorithm
(WOA-PNN). Firstly, Q, R and S waves are detected by wavelet transform, and the P and T waves
are detected by local windowed wavelet transform. The characteristic values are constructed by the
detected time points, and the ECG data dimension is smaller than that of the non-reference detection.
Secondly, combined with the probabilistic neural network, the mean impact value algorithm is used
to screen the characteristic values, the characteristic values with low influence are eliminated, and
the input and complexity of the model are simplified. Finally, a WOA-PNN combined classification
method is proposed to intelligently optimize the hyper parameters in the probabilistic neural network
algorithm to improve the model accuracy. According to the simulation verification on three databases,
ECG-ID, MIT-BIH Normal Sinus Rhythm and MIT-BIH Arrhythmia, the identification accuracy of a
single ECG cycle is 96.97%, and the identification accuracy of three ECG cycles is 99.43%.

Keywords: electrocardiogram signal identification; wavelet transform; probabilistic neural network;
mean impact value; whale optimization algorithm

1. Introduction

With the development of information technology, biometric signal recognition technol-
ogy has become increasingly important as a kind of information security system. raditional
biometric signal recognition systems mainly use fingerprints, human faces, iris and other
physiological characteristics for recognition [1–3]. Despitehe advantages of a higher recogni-
tion rate, faster recognition and higher measurability, these physiological characteristicslso
have some disadvantages, such as being easy to copy and forge [4,5].

In recent years, the electrocardiogram(ECG) signal has proved to be effective for
identification. Compared with the external physiological characteristics of organisms,
the ECG signals can be measured only in a living body, so the ECG identification method
is not easy to forge, which can improve the security of the access control system and
ensure that the important information is not stolen. In addition, ECG signals have the
characteristics of universality, uniqueness, stability and measurability [6]. Nowadays, wth
the development of ECG data collection technology, portable ECG signal collection devices
such as smartwatches have been designed in a highly convenient and intelligent manner.
Therefore, identity recognition based on ECG signals has extensive applications [7].
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The research of identity recognition based on ECG signals is mainly divided into
two aspects: ECG signal detection and ECG signal identity recognition. Detection is to
preprocess ECG signals to obtain easy-to-classify data; identification is to use classification
algorithms to classify the detected data.

ECG signal detection is divided into benchmark detection and non-benchmark detec-
tion [8,9]. The benchmark detection method is to extract the characteristic points of the P
wave, QRS wave and T wave from ECG signals [10–12] and then classify and recognize
them according to such characteristics as time and amplitude. However, because the slight
changes in the position of the detection point may lead to classification errors, the recog-
nition accuracy is not high. The non-benchmark detection method is based on Fourier
transform [13], empirical mode decomposition [14,15] and wavelet transform [16,17] to
extract information from ECG signals without using characteristic points. However, due
to a large amount of information, the recognition scale is small, and it takes a long time.
Therefore, how to reduce characteristic information while improving accuracy has become
the main issue of the research.

ECG identification methods include support vector machine (SVM) and back propaga-
tion (BP) neural network [18], which are not suitable for multi-target classification, and their
accuracy is not high enough. There are also methods such as deep learning [19,20], convo-
lutional neural networks [20,21], and some improved methods [22,23], which have high
accuracy but require very high-performance computer equipment.

The ECG identity recognition block diagram proposed in this papers shown in Figure 1.
First, combiningenchmark detection and non-benchmark detection methods, wavelet trans-
form is used to extract Q, R and S (QRS) waves to obtain their time points; and local
windowed wavelet transform is used to extract P and T waves to obtain their time pointsLo-
cal windowed wavelet transform can avoid the low extraction accuracy caused by the
phenomenon that the R peak is too large. Secondly, the probabilistic neural network (PNN)
algorithm is used for ECG identification. The PNN multi-target classification algorithm
has the advantages of being a simple process, fast convergence and high sample error
tolerance [24,25]. Finally, the PNN algorithm is improved from the two aspects of accuracy
and complexity. On the one hand, the mean impact value (MIV) algorithm [26,27] is used
for variable selection, which simplifies the complexity of the algorithm and eliminates the
characteristic values with large errors in the ECG detection and extraction process. On the
other hand, therobabilistic neural network by whale optimization algorithm (WOA-PNN)
is proposed, which uses WOA [28–30] to optimize the smoothing factor in PNN, improve
the accuracy of the model classification and solve the problem that the smoothing factor of
the PNN algorithm needs to be artificially given.

Figure 1. The ECG identification block diagram.

The contributions of this paper are as follows:

• The local windowed wavelet transform is used to extract P and T waves and obtain
their time points, which can avoid the problem of a too-large R peak, which affects the
extraction accuracy.
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• The MIV algorithm is used to optimize the characteristic values of ECG identification
in the PNN, eliminate the characteristic values with large errors in the detection or
extraction process and simplify the algorithm complexity.

• The WOA-PNN algorithm is proposed to adaptively optimize the hyper parameters
in the ECG identification model to improve the accuracy of the model.

• Experiments were performed on different ECG signal databases, including two normal
ECG signal databases and one arrhythmia ECG database, to verify the robustness of
the proposed method.

The rest of this papers arranged as follows: Section 2 introduces ECG characteristics
detection based on wavelet transform. Section 3 introduces the ECG recognition using the
WOA-PNN algorithm and performs variable selection on the ECG characteristics. Section 4
uses different ECG database simulations and verifies the effectiveness and robustness of the
method by comparing and analyzing various methods. Finally, the results are discussed,
and the conclusion is drawn in Section 5.

2. Ecg Characteristic Detection Based on Wavelet Transform Algorithm

This section mainly introduces the wavelet transform algorithm for QRS process
detection [31,32], and the local windowed wavelet transform algorithm for detecting P and
T wave processes proposed in this paper.

2.1. Qrs Wave Detection

The characteristics of the QRS wave of the ECG signal are relatively clear, which
contain most of the characteristic information of the ECG signal waveform. Therefore,
to obtain the characteristics of the ECG signal, QRS complex information needs to be
extracted. In the QRS waveform, the R wave is the most recognizable waveform with the
largest amplitude and the most obvious characteristics. The peak point of the R wave is
generally composed of a four-layer discrete wavelet through a binary spline wavelet filter
to obtain scales 1 (S1), 2 (S2), 3 (S3) and 4 (S4), respectively [31]. The research demonstrates
that the R wave peak is the most different from the rest of the noise signal on S4. Therefore,
this paper determines to locate the R wave peak on S4. Specific steps of detection are
presented in the following.

Figure 2 shows a schematic diagram of R wave peak detection. First, it reads the
ECG signal data. Secondly, the wavelet decomposition of scales of 1–4 was carried out,
and the threshold was set on S4 to find the extreme value pair containing the R peak and
its zero-crossing point. Then, the offset correction of the zero-crossing point was performed
in the time domain; finally, the R wave peak point was found near the corrected position.
After the above steps, the R peak position was accurate.

Figure 2. Schematic diagram of R wave peak detection.

The research shows that peak values of Q and S waves are small, resulting in the
absence of extreme points on S3 and S4, and the extreme points on S2 are not obvious
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enough. Therefore, this paper detects Q and S waves on S1. Three extreme points before the
R peak value are approximately used as the starting point of the Q wave, and three extreme
points after the R peak value are approximately used as the end point of the S wave.

2.2. P Wave and T Wave Detection

The detection of P and T waves can also be achieved by wavelet transform. However,
the amplitude of R and P/T waves is too large, and the detection accuracy will be reduced
when the wavelet scale transform is performed. Therefore, this paper proposes a locally
windowed wavelet transform to detect P and T waves. The specific detection steps are
as follows:

Step 1. Read ECG data.
Step 2. Perform QRS detection according to Section 2.1, and calculate the average

period TR of the R peak.
Step 3. Set the window WP and WT of the wavelet transform, Q wave goes forward WP

sampling points for 1–4 scale wavelet transform, and S wave goes backward WT sampling
points for 1–4 scale wavelet transform.

Step 4. Find a value less than the given threshold on S4, which is the peak of P and
T waves.

Step 5. If step 4 does not exist, WP translates a × n to the left, WT translates a × n to
the right, repeat step 4, until the end of WP + a × n > TR/2 or WT + a × n > 2/3TR. where a
is the translation amount of each time; n is translation times; TR/2 and 2/3TR are used to
avoid exceeding the detection range.

Step 6. After finding the P and T wave peaks, find the maximum point on S4, which is
approximately the starting point, and the ending point is approximately symmetrical to the
starting point with respect to the peak point.

Figure 3 is a schematic diagram of P and T wave peak detection. Figure 3 is the electro-
cardiogram of a cycle, and the P and T waves are translated and windowed. Figure 3b,c are
the P and T waves after multi-scale wavelet transformation, respectively. Only S3 and S4
are shown here. It can be seen that the minimum value of S4 corresponds to the peak point.
The detection accuracy of the R peak point is already very high. Recognition based on the
characteristic values of the R wave can only be used in smaller identification systems, so it
is necessary to add the characteristics of P and T waves. However, current research on P
and T waves are not yet mature. Therefore, the use of the above method will also cause
problems, such as error detection and false detection, but the overall identification effect
can be improved.

Figure 3. Schematic diagram of P and T wave peak detection. (a) Windowed wavelet transform of P
and T waves; (b) P wave peak detection; (c) T wave peak detection.
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3. Ecg Identification Based on the WOA-PNN Algorithm

This section first introduces the theory of the PNN multi-target classification algorithm
and applies it to ECG identification. Secondly, the MIV algorithm is used to simplify the
algorithm input characteristic values, eliminating the low impact and wrong characteristic
values. Finally, the smoothing factor in the WOA adaptive optimization PNN algorithm is
proposed to improve the accuracy of ECG identification.

3.1. Introduction to PNN Algorithm

PNN is a feedback neural network based on the Bayes classification criterion and
probability density function, which takes an exponential function as the antecedent of the
activation function [24,25]. As a typical classifier, it is often used in pattern classification,
fault prediction and other fields. Compared with the BP neural network used in the field
of ECG signal identification, PNN is easy to train, with a fast convergence speed, strong
scalability and strong ability for multi-target classification. The PNN network topology
consists of the input layer, the pattern layer, the summation layer and the output layer,
as shown in Figure 4.

Figure 4. Basic structure of probabilistic neural network.

The input layer transmits the characteristic parameters into the network. The number
of input layers is the number of sample features. The pattern layer is connected with the
input layer through the connection weight to calculate the matching degree between the
characteristic vector and each mode in the training set, and its distance is substituted into
the Gaussian function to obtain the output of the pattern layer. The number of neurons in
the pattern layer is the number of input sample vectors. The summation layer connects the
units of the pattern layer. The number of neurons in the summation layer is the number
of categories of samples. The output layer is responsible for outputting the category with
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the highest score in the summation layer. The solution method of the PNN pattern layer is
as follows:

φij(X) =
1

(2π)
1
2 δd

exp[−
(X− Xij)(X− Xij)

T

δ2 ] (1)

where X represents the input sample, δ represents the smoothing factor and d represents
the number of sample attributes.

According to Equation (1), the sum is obtained, and the mean value is taken, then the
solution method of the i-th mode is

gi(x) =
1
L

L

∑
j=1

φij(x) (2)

where L represents the number of samples in the i mode.
Sum all modes and judge the result of the summation as follows:

y = arg max(gi) (3)

Suppose the number of tests is N; yi is the actual value; ŷi is the PNN output value.

E(y) =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

Continuously optimize E(y), adjust parameters such as smoothing factor, and obtain
the required stable network model.

3.2. Miv Algorithm Characteristic Values Screening

Suppose that the number of input variables of the prediction model shown in Equation (1)
is p. Let the p variables form an independent variable vector, and make m times observations
to get the independent variable space of X = [x1, x2, · · · , xm]. Accordingly, the dependent
variable corresponding to each sample point can be written as Y = [y1, y2, · · · , ym]. Take X
composed of independent variable vectors of m samples as the input and the corresponding
vector Y as the output to form a training sample set {X, Y} to train the neural network,
and save the trained neural network. Then, the independent variable space for the original
training is transformed as follows: the respective variables are added and subtracted α (%),
respectively, on the basis of the original value to obtain the following 2p (i = 1, 2, . . . , p) new
independent variable spaces.

X(1)
i =



x11 x12 · · · x1m
x21 x22 · · · x2m

...
... · · ·

...
xi1(1 + α) xi2(1 + α) · · · xim(1 + α)

...
... · · ·

...
xp1 xp2 · · · xpm


(5)

X(2)
i =



x11 x12 · · · x1m
x21 x22 · · · x2m

...
... · · ·

...
xi1(1− α) xi2(1− α) · · · xim(1− α)

...
... · · ·

...
xp1 xp2 · · · xpm


(6)

The constructed new independent variable space is used as the input of the neural
network model in turn, and after the network output, the 2p outputs corresponding to the
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i-th (i = 1, 2 . . . , p) input variable index in the change sample points are obtained when the
index of input variables changes.

Y(1)
i = [ y(1)i1 y(1)i2 · · · y(1)im

] (7)

Y(2)
i = [ y(2)i1 y(2)i2 · · · y(2)im

] (8)

The difference operation is performed on the vectors in Equations (7) and (8) to obtain
the influence change value vector of the output value after the change of the i-th input
variable index in each sample point, expressed as IV.i = Y(1)

i − Y(2)
i , so as to obtain the

average influence value of the output value of m times when the index of the i-th input
variable changes, expressed as follows:

IMIV.i =
m

∑
j=1

IV.i(j)
m

i = 1, 2, · · · , p (9)

where IMIV.i is the average influence value of the i-th input variable index on the output
result in the change sample. The sign IMIV.i indicates the direction in which the independent
variable is related to the dependent variable, and the absolute value represents the relative
importance of the independent variable’s influence on the dependent variable.

3.3. WOA Parameter Adaptive Optimization
3.3.1. Introduction of WOA

Inspired by this special predation behavior, Seyedali Mirjalili et al. proposed a new
swarm intelligence optimization algorithm—the Whale Optimization Algorithm (WOA),
in 2016 [28,29,33]. WOA simulates the predatory behavior of whales in the ocean; optimiz-
ing the search through the process of whales surrounding prey and using bubbles to attack
the prey. Consistent with classical particle swarm optimization, ant colony algorithm and
artificial bee colony algorithm, the WOA is, in essence, a process of statistical optimization.
The WOA has been widely concerned by many scholars for its advantages of simple opera-
tion, few parameters and excellent performance, and has been applied to solve different
practical problems, such as electric vehicle charging optimization, solar cell parameter opti-
mization and photovoltaic cell parameter optimization. In this paper, the WOA is applied
to ECG signal identification. When solving the multidimensional nonlinear equation of
the PNN algorithm, smoothing factor parameter δ needs to be optimized to obtain the
minimum error of the model and avoid the tedious manual parameter setting process.

The WOA imitates the foraging behavior of whales to find optimal solutions to pa-
rameters, including three position update methods: surrounding prey, rotating search and
random search.

(1) Surrounding prey
The whale shares the information of the target prey, and then it approaches the other

whales, which are closest to the prey in the current group, and gradually shrinks the
encirclement of the whole whale group to surround the prey. The whale position update
formula is {

X(t + 1) = X∗(t)− A× D
D = |C× X∗(t)− X(t)| (10)

where t represents the number of iterative searches, X represents the position of the
whale, X* represents the optimal global position and A and C represent the prey, which is
expressed as 

A = 2a× r1 − a
C = 2r2
a = 2− 2t/Tmax

(11)
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where r1 and r2 are uniformly distributed random numbers between [0, 1], a represents the
convergence factor, which decreases linearly from 2 to 0, and Tmax represents the maximum
number of iterations.

(2) Rotating search
Whales search for the prey in a spiral upward and slowly approach the target. The ex-

pression of the spiral search is{
X(t + 1) = X∗(t) + D× ebl cos(2πl)
D = |C× X∗(t)−X(t)| (12)

where b is a constant, which can change the shape of the spiral, and l is a uniformly
distributed random number between [−1, 1].

When a whale is searching for the prey in a spiral, it also shrinks its encirclement, so
in order to simulate this behavior, it is necessary to simultaneously surround the prey and
search in the spiral. The updated formula is

X(t + 1) =
{

X∗(t)− A× D p < 0.5
X∗(t) + D× ebl cos(2πl) p ≥ 0.5

(13)

where p is a random number uniformly distributed between [0, 1].
(3) Random search
In order to improve the global search ability of whales, let the whales search for prey

with a certain degree of randomness and increase the search range of whales.
When the coefficient |A| < 1, it means that the whale is in the constricted encircling

circle and the rotating search method is selected. When the coefficient |A| ≥ 1, it means
that the whale is outside the constricted encircling circle, and the random search method is
selected. The random search update formula is as follows:

X(t + 1) = Xrand(t)− A× |C× Xrand(t)− X(t)| (14)

where Xrand is a random whale position.

3.3.2. WOA-PNN Algorithm

This paper proposes the WOA-PNN algorithm to solve ECG signal identification. First,
the PNN algorithm is used to classify and train the ECG signal. PNN has the advantages
of simple structure, concise training and strong nonlinear classification ability. However,
the smoothing factor δ in PNN significantly affects the classification accuracy. Selecting
the value of δ is a complicated process and requires intelligent optimization. Therefore,
this paper proposes to use the WOA to intelligently optimize the smoothing factor δ,
set the fitness function to measure the advantages and disadvantages of the individual’s
spatial position and use the whale foraging strategy to continuously update the individual
whale position until the optimal whale spatial position is obtained, which is the optimal
smoothing factor δ for the PNN algorithm.

As shown in Figure 5, first, we input the ECG characteristic information extracted by
the wavelet transform algorithm, set the initial smoothing factor δ of the PNN algorithm
and create a PNN network. Then, we calculate the error of the PNN network and use it as
the fitness value of the WOA. When the fitness does not meet the demand, use the WOA
to update the smoothing factor δ. When the number of iterations is less than the given
number, recreate the PNN network model. Until the fitness value or the times of iteration
meets the requirements, the optimal ECG identification model is finally obtained.
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Figure 5. Flow chart of ECG signal identification based on the WOA-PNN algorithm.

4. Simulation Experiment
4.1. Experimental Data

The original ECG data used in this paper are from PhysioNet [34]. PhysioNet is
a free resource supported by the National Academy of Medical Sciences (NIGMS) and
the National Institute of Biomedical Imaging and Bioengineering (NIBIB) that provides
physiologic signal libraries and processing tools for researchers. In this paper, the ECG-
ID database [35], MIT-BIH Normal Sinus Rhythm database [36] and MIT-BIH Arrhyth-
mia database [37] are selected for experimental verification. The ECG-ID database has
90 ECG signals from subjects with normal ECG signals. As the main database to verify the
identification algorithm in this paper, the MIT-BIH normal sinus rhythm database contains
18 ECG signals from subjects with normal ECG signals, which plays an auxiliary role in
verification. The MIT-BIH arrhythmia database has the ECG signals of 48 arrhythmia sub-
jects, which is used to compare the simulation with other studies, verify the effectiveness
of the method and verify the general applicability of the method.

4.2. Results of Qrs Wave, P Wave and T Wave Detection

This study used 10 ECG signal cycles from each subject, and a total of 1560 ECG signal
cycles were compared. After multiple instances of manual professional observation and
the intelligent identification of positions, the detection accuracy results of the intelligent
method are shown in Table 1 below. There were some differences in the results. The R
wave had the most obvious characteristics, and its detection result was 100%; the detection
results of other waves were also above 80%. The data of the MIT-BIH arrhythmia database
were the ECG signals of subjects with arrhythmia, so the detection accuracy of this database
was relatively low.
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Table 1. QRS Wave, P Wave and T Wave detection results in different databases (%).

Q R S P T

ECG-ID 93.24 100 91.96 89.24 87.52
MIT-BIH normal 89.57 100 87.08 84.28 82.93

MIT-BIH arrhythmia 82.47 100 81.03 80.80 78.83
Weighted average 89.50 100 88.03 86.07 84.32

Figure 6 shows the results of the QRS wave detection part. Obviously, the detection
of the R peak position was correct, the detection of the Q wave position was also correct,
and the detection of the S wave position had very few errors. Figure 7 shows the detection
results of the P and T waves. Compared with the T wave, the characteristics of the P
wave were more obvious, so the detection accuracy of the position of the P wave was
higher than that of the T wave. Although very few errors may occur in the above detection,
the extracted positioning points could still be used as features for identification, which
improved the accuracy of the ECG signal identification.

Figure 6. QRS wave detection results.

Figure 7. P wave and T wave detection results.

4.3. Ecg Identification Simulation Results of WOA-PNN Algorithm

This section first constructs the characteristic values based on the detection results of
the previous section and uses the MIV algorithm to screen characteristic values with high
influence. Secondly, based on the MIT-BIH arrhythmia database, it is compared with other
studies to verify the feasibility of this method. Finally, in order to improve the accuracy,
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ECG signals are expanded from one cycle to three cycles, and the method is verified in
different databases.

4.3.1. Results of Characteristic Values Screening of the Miv Algorithm

Based on the results of QRS, P and T wave detection, 22 characteristic values were
selected, including 16 distance characteristic values: R-R, R-Q, R-S, R-P, R-T, R-Pbegin, R-Pend,
R-Tbegin, R-Tend, Q-P, Q-Pbegin, S-T, S-Tend, P-T, Pbegin-Pend, Tbegin-Tend and 6 amplitude
characteristic values: R-Q, R-S, Q-P, S-T, Pbegin-P, Tbegin-T.

Table 2 shows the influence degree of the PNN characteristic values based on the MIV
algorithm. The influence degree was arranged in descending order. The detection accuracy
of the R wave was the highest, so the R-R characteristic values were the most accurate,
and its influence degree was also the highest. The influence degrees of the correlation
characteristic values of P and T waves were greater than those of Q and S waves. It could
be concluded that the detection of P and T waves is necessary. The time of Q and S waves
was relatively short, and the extraction results were not obvious. The influence degrees of
all amplitude characteristic values were 0. The amplitude characteristics were obtained
on the basis of the distance characteristics, so when the distance characteristic deviated,
the amplitude characteristic deviation would be larger.

Table 2. Characteristic value influence degree based on the MIV algorithm.

Distance R-R Tbegin-Tend R-Tend R-Pbegin S-Tend R-P

MIV 1.0862 0.6744 0.570 0.4713 0.3176 0.2987
Distance Q-Pbegin R-Pend P-T Q-P S-T R-T

MIV 0.2449 0.2138 0.1724 0.07955 0.04933 0.02933
Distance R-Tbegin Pbegin-Pend R-Q R-S

MIV 0.01 0.00644 0.00222 0.00022

Amplitude R-Q R-S Q-P S-T Pbegin-P Tbegin-T
MIV 0 0 0 0 0 0

Figure 8 shows ECG identification of the PNN algorithm with different numbers of
characteristic values. The characteristic values were added in descending order of MIV. It
could be seen that the identification accuracy of the first 6 characteristic values reached
more than 90%; after the 13th characteristic value was added, the identification accuracy
reached the limit value, and the subsequent characteristic values had little effect on the
classification accuracy. In addition, the 13th characteristic value point corresponded to
the MIV value of 0.1, so this article used all the characteristic values with MIV values
greater than 0.1 for ECG identification. Excluding nine characteristic values simplified the
complexity of the algorithm by 40.91%.

4.3.2. Single Ecg Cycle Identification Result Contrast

On the basis of the above experiment, the characteristic values with a MIV greater
than 0.1 were used as the input variables for the PNN, and the different identities were
numbered from 0 as the output label of PNN. Using 70% of the data as the training data and
30% of the data as the test data and compared to the other methods [33,38–42], a summary
is made, as shown in Table 3.
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Figure 8. ECG identification of the PNN algorithm with different numbers of characteristic values.
(The MIV was added from large to small).

Table 3. Comparison of ECG identification accuracy between PNN and the traditional
Arrhythmia database.

Database Method Accuracy (%)

ECG-ID

WOA-PNN 97.16
PNN 95.65

Softmax [41] 92.3
SFFS KNN [40] 91.26

Random Forest [39] 83.9
KNN [38] 83.2

MIT-BIH Arrhythmia

WOA-PNN 95.48
PNN 94.48

SVM [43] 93.41
Decision tree [43] 92.68

Random Forest [42] 92.68
Bayes [42] 90.24

Logistic [42] 83.54
SVC [42] 83.52

The feature extraction and recognition method of ECG signal recognition based on the
PNN network proposed in this paper has relatively high recognition accuracy. Compared
with other methods, the absolute value of the accuracy is improved by 1.07% (MIT-BIH
Arrhythmia) and 3.35% (ECG-ID database). There are few studies using the MIT-BIH
Normal Sinus Rhythm database, so no comparative analysis is given here.

In order to improve the recognition accuracy, this paper sets the population size to 10
and iteration time to 100 to optimize the smoothing factor δ in the WOA-PNN. The iterative
process of the WOA-PNN is shown in Figure 9. After 33 iterations, the ECG-ID database’s
recognition accuracy was improved from 95.65% to 97.16%, the absolute accuracy increased
by 1.51%, the recognition error rate decreased from 4.35% to 2.48%, and errors decreased by
43.67%. After 22 iterations, the recognition accuracy of the MIT-BIH Arrhythmia database
was improved from 94.48% to 95.48%, the absolute accuracy increased by 1%, and the
recognition error rate decreased from 5.52% to 4.52%, with a 19.93% reduction in error.
The final smoothing factor δ was 5.6801. In summary, the weighted average accuracy of the
WOA-PNN for ECG signal recognition of the three databases is 96.97%.
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Figure 9. WOA-PNN algorithm iterative process diagram.

4.3.3. Three Ecg Cycle Identification Results

Single ECG identification can be errant, so three ECG identification can be used to be
more accurate, just to be on the safe side. Table 4 shows the ECG identification results of
three ECG cycles under different databases. It could be seen that the identification accuracy
of the three databases is above 98%. The WOA-PNN algorithm in this paper is superior to
the traditional PNN algorithm, with a weighted average identification accuracy of 99.43%.

Table 4. Identification of multiple ECG cycles (%).

ECG-ID MIT-BIH Normal MIT-BIH Arrhythmia Weighted Average

PNN 99.33 99.76 98.08 99.00
WOA-PNN 99.79 100 98.54 99.43

5. Conclusions

ECG signal biometric technology is rapidly replacing traditional fingerprint, face, iris
and other recognition technologies, avoiding the vulnerability of traditional recognition
technologies. This article proposes an ECG signal identification method based on the
wavelet transform algorithm and WOA-PNN algorithm. Firstly, the wavelet transform was
used to detect QRS waves and the local windowed wavelet transform was used to detect P
and T waves, and the characteristic values were constructed according to the detection time
point to reduce the dimension of the ECG data. Secondly, combined with the PNN, the MIV
algorithm was used to screen the characteristic values, and the characteristic values with
low impact were eliminated, simplifying the input and complexity of the model. Finally,
the WOA-PNN combined classification method was proposed to intelligently optimize the
hyper parameters in the PNN algorithm and improve the accuracy of the model. According
to the experimental analysis, the accuracy of identification of a single ECG cycle was 96.97%,
and the accuracy of identification of three ECG cycles was 99.43%.

The next step of this study is to further optimize the classification algorithm to reduce
the impact of increasing categories. In addition, the follow-up research will introduce more
databases, such as the PTB database, to validate the method.
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