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N6-methyladenosine (m6A) modification is the most abundant
RNA methylation modification and involves various biological
processes, such as RNA splicing and degradation. Recent
studies have demonstrated the feasibility of identifying m6A
peaks using high-throughput sequencing techniques. However,
such techniques cannot accurately identify specific methylated
sites, which is important for a better understanding of m6A
functions. In this study, we develop a novel machine
learning-based predictor called M6APred-EL for the identifica-
tion of m6A sites. To predict m6A sites accurately within
genomic sequences, we trained an ensemble of three support
vector machine classifiers that explore the position-specific
information and physical chemical information from posi-
tion-specific k-mer nucleotide propensity, physical-chemical
properties, and ring-function-hydrogen-chemical properties.
We examined and compared the performance of our predictor
with other state-of-the-art methods of benchmarking datasets.
Comparative results showed that the proposed M6APred-EL
performed more accurately for m6A site identification.
Moreover, a user-friendly web server that implements the
proposed M6APred-EL is well established and is currently
available at http://server.malab.cn/M6APred-EL/. It is expected
to be a practical and effective tool for the investigation of m6A
functional mechanisms.

INTRODUCTION
Post-transcriptional modifications of RNA play a crucial role in
understanding a variety of cellular processes, such as RNA splicing,
RNA degradation, protein translation, stability, and immune toler-
ance.1,2 N6-methyladenosine (m6A) is the most abundant RNA
post-transcriptional modification.3 RNA m6A modification is cata-
lyzed by a methyltransferase complex containing at least one subunit
of METTL3 (methyltransferase-like 3). The event is reversible under
catalysis of demethylases FTO and ALKBH5 and usually occurs at
adenine (A) with the genetic motif GAC. Recent studies have demon-
strated that m6A is also closely related to cancer and other human
diseases.4 Therefore, it is of great importance to correctly identify
m6A modification sites of RNA or genomic sequences containing
GAC motifs. This would help us to understand and reveal in depth
the functional mechanisms of m6A sites.
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m6A modification has been detected in a variety of species, such
as Saccharomyces cerevisiae,5 Arabidopsis thaliana,6 Homo sapiens,7

Mus musculus,7 and other species. In recent years, high-throughput
sequencing techniques, such as MERIP-seq4 and m6A sequencing
(m6A-seq),8 have identifiedm6Apeaks.However, identifyingm6A sites
using next-generation sequencing techniques involves some intrinsic
problems, such as lowaccuracywhendetectingm6A sites andnot being
available for large-scale identification of genomic sequences.

In the past few years, machine learning-based methods have emerged
as an attractive approach for m6A site identification. It is common to
build predictive models with several machine learning algorithms. For
instance, Schwartz et al.5 proposed the first machine learning-based
method to predict m6A sites using features like local secondary struc-
ture stability, nucleotide composition, and relative position in se-
quences and training a logistic regression (LR) classifier to achieve
promising predictive results. Later, Chen et al.9 established an m6A
site predictor called “iRNA-Methyl” via pseudonucleotide composi-
tion and support vector machine (SVM). This predictor is reported
to yield an accuracy of 65.59%, Matthew’s correlation coefficient
(MCC) of 0.29 on a dataset containing 1,307 positives (m6A site-sur-
rounding sequences), and 1,307 negatives (non-m6A site-surrounding
sequences) in S. cerevisiae. To improve the predictive performance,
Liu et al.10 proposed to incorporate auto-covariance and cross-covari-
ance with physical-chemical properties for representations of RNA
sequences and built a predictor named “pRNAm_PC” with SVM as
the underlying prediction engine, successfully enhancing the accuracy
to 69.74%. Moreover, Jia et al.11 incorporated bi-profile Bayes, dinu-
cleotide composition, and k-nearest neighbor (KNN) scores for three
feature extractions to establish a predictor named RNA-MethylPred,
which yields better performance than iRNA-Methyl and pRNAm_PC.
Likewise, a new predictor called “AthMethPre,” proposed by Zeng
et al.,12 also employed SVM to train a classification model but used
y: Nucleic Acids Vol. 12 September 2018 ª 2018 The Authors. 635
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Table 1. Performance Comparison of SVM and Other Different Classifiers

Classifiers Acc (%) Sn (%) Sp (%) MCC

Naive Bayes 65.95 64.65 67.25 0.3192

Decision tree 65.19 66.41 63.96 0.3038

RF 67.44 69.63 65.26 0.3492

LR 71.50 71.46 71.54 0.4300

Nearest neighbors 65.72 69.47 61.97 0.3153

SVM 72.46 72.07 72.84 0.4491

Table 2. Predictive Performance of the PS(k-mer)NP Descriptors with

Varied k Values

Feature Representation Acc (%) Sn (%) Sp (%) MCC

PS(1-mer)NP 74.28 74.89 73.67 0.4860

PS(2-mer)NP 73.82 72.75 74.90 0.4774

PS(3-mer)NP 70.07 69.99 70.16 0.4020

PS(4-mer)NP 67.32 67.70 66.95 0.3469

PS(5-mer)NP 65.26 65.72 64.80 0.3054
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different features derived from positional flanking nucleotide se-
quences and a position-independent k-mer nucleotide spectrum.
More recently, Zhou et al.13 developed a predictor called “SRAMP”
by using an ensemble of three random forest (RF) classifiers respec-
tively trained with three feature-encoding algorithms: sequence posi-
tional binary encoding, k-nearest neighbor encoding, and nucleotide
pair spectrum encoding. It can be inferred that feature representation
ability is the main focus of existing predictors to further improve pre-
dictive accuracy. Although much progress has been made, it is still a
challenging task to extract sufficiently informative features to accu-
rately distinguish m6A sites from non-m6A sites.

In this study, we proposed a novel sequence-based predictor called
“M6APred-EL” for the identification of m6A sites within RNA se-
quences. As for feature representation, we proposed and used three
types of feature descriptors to exploit physical-chemical information
and position-specific information, including position-specific k-mer
nucleotide propensity, physical-chemical properties, and ring-func-
tion-hydrogen-chemical properties, respectively. In the predictive
model of M6APred-EL, we used an ensemble classifier as the under-
lying prediction engine. To construct the ensemble classifier, we
trained three SVMs as base classifiers using the above three feature
descriptors and then combined them as the ensemble classifier using
a major voting strategy. Experimental results showed that our
proposed predictive model outperformed existing methods in the
literature under a benchmarking validation test, demonstrating the
superiority of our predictor. Thus, it can be expected that our predic-
tor can be an effective tool for identifying m6A sites.

RESULTS AND DISCUSSION
Comparison of SVM and Other Classifiers

To measure the effectiveness of the underlying SVM, we compared its
performance with other five commonly used machine learning algo-
rithms, such as RF, LR, decision tree, nearest neighbors, and naive
Bayes. The reason for using these algorithms as references is that
they are all widely used in a lot fields of bioinformatics, including
methylation site prediction14 and detection of tubule boundaries.15

For fair comparison, all classifiers were used under equal conditions;
i.e., modeling with the same dataset (m6A dataset) and feature extrac-
tion method (i.e., ring-function-hydrogen-chemical properties
without GAC [RFHC-GACs]). Algorithm performance is presented
in Table 1. As shown in Table 1, the SVM algorithm achieved the
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best performance in terms of all four metrics compared with the other
classifiers. The accuracy (Acc), sensitivity (Sn), specificity (Sp), and
MCC of the SVM are 72.46%, 72.07%, 72.84%, and 0.4491, respec-
tively. Compared with the runner-up LR classifier (Acc of 71.50%,
Sn of 71.46%, Sp of 71.54%, and MCC of 0.43), the performance of
SVM is 0.96%, 0.61%, 1.30%, and 1.91% higher in terms of Acc, Sn,
Sp, and MCC, respectively. This demonstrates that the SVM has
more classification power and effectiveness for distinguishing m6A
sites from non-m6A sites than other classification algorithms.

Parameter Determination of the PS(k-mer)NP Descriptor

In this section, we compared five feature representation methods
based on the optimized SVM model. These feature matrices were ex-
tracted by position-specific k-mer nucleotide propensity (PS(k-mer)
NP), where K˛f1; 2; 3; 4; 5g, and the dimensions of them are 51,
50, 49, 48, and 47, respectively. To fairly compare the performance
of the five classifiers, the benchmark dataset illustrated in Dataset
was used, and their optimization value ranges of SVM parameters
were controlled at the same level, which is elaborated in Ensemble
of SVM. The predictive performance was evaluated with the bench-
mark dataset. As shown in Table 2, the PS(1-mer)NP achieved the
highest Acc of 74.28%, Sn of 74.89%, and MCC of 0.4860. Compared
with the PS(2-mer) NP, which has the best Sp of 74.9%, PS(1-mer)NP
reached 0.46%, 2.14%, and 0.86% in terms of Acc, Sn, and MCC,
respectively. To more intuitively compare the performance of these
features, the receiver operating characteristic (ROC) and physical
chemical (PC) curves are illustrated in Figure 1. As shown in Figure 1,
similar results can be observed, showing that the PS(1-mer)NP is
comparable with the PS(2-mer)NP, outperforming other PS(k-mer)
NP features in terms of area under ROC (AUROC) and area under
precision-recall curve (AUPRC). Therefore, PS(1-mer)NP is used in
our predictive model.

Comparison of the Ensemble Classifier and Its Three Base

Classifiers

In our predictive model, we trained an ensemble classifier that com-
bines three SVM classifiers, each of which we called “base classifier.”
The three base classifiers were preliminarily trained using three
feature descriptors, including RFHC-GACs, PC properties (PCPs),
and PS(1-mer)NP. To validate the effectiveness of the ensemble
classifier, we evaluated its performance with the 10-fold cross valida-
tion test. For comparison, its three base classifiers were also evaluated.
The evaluation results are presented in Table 3.
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Figure 1. Performance of the PS(k-mer)NP Feature Descriptor with Varied k Values on Benchmarking Dataset

(A) ROC curves of the PS(k-mer)NP feature descriptor under different k values (k = 1, 2, 3, 4, 5). (B) PR curves of the PS(k-mer)NP feature descriptor under different k values

(k = 1, 2, 3, 4, 5).
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As seen in Table 3, among the three base classifiers, the classifier
trained using the PS(1-mer)NP features outperforms the other two
base classifiers trained with PCPs and RFHC-GACs. To be specific,
the Acc, Sn, Sp, and MCC of the PS(1-mer)NP-based classifier are
74.28%, 74.89%, 73.67%, and 0.486, respectively. Three of the metrics
(Acc, Sn, andMCC) are higher than those of the other base classifiers.
When the three base classifiers were combined to construct the
ensemble classifier, we found that the performance improved signif-
icantly. The four metrics of the ensemble classifier increased to
80.83%, 80.72%, 80.95%, and 0.6167, which is 6.55%, 5.83%, 7.28%
and 0.1307 higher, respectively, than the best-performing base classi-
fier (based on PS(1-mer)NP). To compare the performance more
intuitively, ROC and PC curves are plotted in Figure 2. As shown
in Figure 2, we can observe that the ensemble classifier also exhibits
a better performance in terms of AUROC and AUPRC. The two
metrics of the ensemble classifiers are above 0.90, whereas that of
the other three base classifiers is below 0.8. The significant improve-
ment by the ensemble strategy is probably because that the outcomes
of three basic classifiers exist the significant difference. Therefore,
based on the difference ensemble theory, fusing these outcomes can
effectively improve the performance.
Comparison of the Ensemble Strategy and Feature Fusion

Strategy

The proposed predictive model in this study is integrated by three
base classifiers that were trained with three feature descriptors,
Table 3. Comparison of Voting Performance with Single Classifier

Feature Descriptors Acc (%) Sn (%) Sp (%) MCC

PCP 68.89 68.63 69.16 0.3781

RFHC-GAC 73.10 71.83 74.37 0.4627

PS(1-mer)NP 74.28 74.89 73.67 0.4860

Ensemble classifier 80.83 80.72 80.95 0.6167
including RFH-GACs, PCPs, and PS(1-mer)NP. To further illustrate
the superiority of the proposed ensemble classifier, we also con-
structed a classifier based on the feature fusion strategy that merges
the above three feature descriptors into one. We compared our
ensemble classifier with the newly constructed classifier on the bench-
mark dataset with 10-fold cross-validation. The evaluation results are
illustrated in Figure 3. As seen from Figure 3, the performance of the
newly constructed classifiers is 74.97%, 74.97%, 74.97%, and 0.50% in
terms of Acc, Sn, Sp, and MCC, respectively. Compared with our
ensemble classifier, our classifier performance is 5.86%, 5.75%,
5.98%, and 0.12% higher than the classifier based on feature fusion
in terms of Acc, Sn, Sp, and MCC. This demonstrates that the
ensemble strategy is more effective than the feature fusion strategy.

Comparison with State-of-the-Art Predictors

To evaluate the performance of the proposed M6APred-EL, we
compared our predictor with four state-of-the-art predictors,
including iRNA-methyl,9 pRNAm_PC,10 RAM-ESVM,16 and
RAM_NPPS.17 The reason to choose the above four predictors for
comparison is that they have been reported to achieve outstanding
predictive performance inm6A site identification. For fairness of com-
parison, all compared predictors were trained and validated on the
same benchmarking dataset as presented in this study. The evaluation
results are summarized in Table 4. It can be observed that, among the
compared predictors, the proposed M6APred-EL obtained the best
performances in terms of Acc, Sn, Sp, and MCC, with 80.83%,
80.72%, 80.95%, and 0.62%, respectively. Specifically, compared
with the best of the existing predictors, RAM_NPPS, our Acc, Sn,
Sp, and MCC are 1.18%, 2.3%, 0.08%, and 0.03% higher, respectively.
The performance improvement by our predictor indicated that our
predictor is more accurate than the state-of-the-art predictors to
distinguish true m6A sites from non-m6A sites. Furthermore, the per-
formance of Acc and MCC is higher than in previous research, and it
illustrates that the predictor ismore stable and reliable. This is extraor-
dinary progress in biological research because a more reliable tool for
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 637
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Figure 2. Performance of the Proposed Ensemble Classifier and Its Three Base Classifiers

(A) ROC curves of the proposed ensemble classifier and its three base classifiers trained with PCP, PS(1-mer)NP, and RFHC-GAC, respectively. (B) PR curves of the

proposed ensemble classifier and its three base classifiers trained with PCP, PS(1-mer)NP, and RFHC-GAC, respectively.
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the identification of biological macromolecules can enormously
reduce experimental cost. In conclusion, the predictor can be expected
to be a tool with high availability for the identification of m6A sites.

Conclusion

RNA is considered to be related to several diseases,18,19 including can-
cer.20,21 In this study, we propose a novel predictor called M6APred-
EL for the identification of m6A sites within RNA. To explore suffi-
cient information to improve predictive performance, we used three
feature representation approaches from position-specific nucleotide
composition and physical-chemical properties. In particular,
PS(k-mer)NP is a novel algorithm proposed in this study. In this
study, PS(1-mer)NP is adopted as the basic feature extraction algo-
rithm for its better performance in comparison with PS(k-mer)NPs
within its five k values. For our predictor, we constructed an ensemble
classifier by combining three SVM classifiers trained with the three
types of features. Through a series of experimental analyses, we found
that, after combining the three classifiers, performance improved
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significantly. This implies that the prediction outcomes differ to
some extent, which is beneficial for forming an improved prediction
model. To validate the effectiveness of the predictor M6APred-EL
proposed in this study, we compare it with state-of-the-art predictors.
The cross-validation results show that our predictor outperforms
existing predictors by 1.18% and 0.03% in terms of Acc and MCC.
It is anticipated that M6APred-EL will be a highly available and indis-
pensable software tool for detecting m6A sites within RNA.

MATERIALS AND METHODS
Dataset

A dataset originally proposed in Chen’s work9 is widely used as the
benchmarking dataset for performance comparison of m6A site pre-
dictors. For fair comparison, we also employed this dataset to evaluate
and compare the proposed predictor with existing predictors. This da-
taset contains a total of 2,614 sequences derived from Saccharomyces
cerevisiae, of which 1,307 sequences are positive samples and an equal
number of sequences are negative samples. Positive samples are
49.97

61.67

MCC (%)

Figure 3. Performance of the Ensemble Classifier and

the Classifier Based on the Feature Fusion Strategy



Table 4. Performance of the ProposedM6APred-EL andOther State-of-the-

Art Predictors on the Benchmarking Dataset

Predictors Acc (%) Sn (%) Sp (%) MCC

iRNA-Methyl 65.59 70.55 60.63 0.29

pRNAm_PC 69.74 69.72 69.75 0.4

RAM-ESVM 78.35 78.93 77.78 0.57

RAM_NPPS 79.65 78.42 80.87 0.59

M6APred-EL (this study) 80.83 80.72 80.95 0.62
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sequences centered on true m6A sites, whereas negative samples are
sequences centered on non-m6A sites. Notably, all positive and nega-
tive samples are 51 nt long.Moreover, the sequence identity of this da-
taset is less than 85%. As explained by Chen et al.,9 this can prevent
biased performance evaluation of this dataset. More details regarding
this dataset can be found in the study byChen et al.9 The dataset can be
downloaded from http://server.malab.cn/M6APred-EL/.

Prediction Framework of the Proposed Predictor

To precisely identify m6A sites within RNA sequences, in this study,
we proposed a sequence-based predictor called M6APred-EL. The
overall process is illustrated in Figure 4. The prediction procedure
of M6APred-EL involves three steps. First, for given query RNA
sequences, a 51-nt flanking window is used to scan the sequences;
sub-sequences centered on GAC motifs are selected. Second, the
resulting sequences are submitted to three types of feature representa-
Step 1. Data pre-processing
RNA sequences

Using a 51 nt flanking window to 
match the same size sequences

Pick out sequences with 
GAC motif

Step 2. Generating p

Produce numerical vectors from 
acquired sequences based on three 
feature extraction algorithms

Feed into three kinds o
models for prediction re
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4,1,0,0,0.38,1,1,1,0.44,0,0,1,0.2,0,
0,1,0.27,0,0,1,0.33,1,1,1,0.38,0,0,
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,1,0,0,0.21,1,0,0,0.24,1,1,1,0.27,0,

Figure 4. Framework of M6APred-EL

The procedure of m6A site identification is described in the following three steps. First,

including the GAC motif, were retained; the others were discarded. Second, the rem

predicted by three well-trained SVM models to generate three prediction scores. Finall
tion approaches to extract numerical feature vectors, which are then
submitted to three well-trained SVM models for prediction. After-
ward, each model gives the prediction score for the corresponding
feature vector. Notably, the prediction score is 0 or 1. If the score
is 0, it indicates that the sequence is predicted to be a true m6A site;
otherwise, it is a non-m6A site. Finally, we used amajor voting strategy
to combine the prediction scores of the three models and then ob-
tained the final prediction score. With this strategy, if the scores of
two of the three models are 0, then the final score of our ensemble
classifier is 0, which indicates that the sequence is a true m6A site;
otherwise, it is a non-m6A site. More details about feature representa-
tion methods and SVM can be found in Feature Representation and
Ensemble of SVM, respectively.

Feature Representation

Feature representation, fusion,22–41 and selection42–49 are the key
steps in the machine learning process. In this paper, we propose
and employ three feature representation algorithms, including
PS(k-mer)NP, PCPs,10 and RFHC-GACs. The three algorithms are
capable to extract features directly from RNA primary sequences.
The dataset presented in this study contains equal-length samples
(RNA sequences). Thus, each sequence sample is denoted as follows:

S=N1N2N3N4N5/NL; (Equation 1)

where L represents the sequence length, and Ni represents one spe-
cific nucleotide in the i-th position of the sequence, which can be
denoted as
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Ni˛fAðadenineÞ;CðcytosineÞ;GðguanineÞ;UðuracilÞg
ði= 1; 2;.; LÞ:

(Equation 2)

The three sequence-based feature representation algorithms are
described as follows.
fj =

8>>>><
>>>>:

z1;i when NjNj+ 1.Nj+K�1 = fAgK
z2;i when NjNj+ 1.Nj+K�1 = fAgK�1fCgK

z3;i
z4K ;i

when NjNj+ 1.Nj+K�1 = fAgK�2fCg2
« « «

when NjNj+ 1.Nj+K�1 = fUgi
ð1%j%51� K + 1Þ; (Equation 7)
PS(k-mer)NP

The position-specific theory has been successfully applied to many
fields of bioinformatics. For instance, a previous study has revealed
that the position-specific composition of tri-nucleotides is powerful
for identifying promoters. Motivated by this work, we propose a
new feature representation algorithm, PS(k-mer)NP, which is also
based on the position-specific theory.

To compute the PS(k-mer)NP features, we first defined a k-mer
nucleotide set as follows:

Set=
�fAgK ; fAgK�1fCg1; fAgK�2fCg2;. ; fGgK ;
fGgK�1fUg1;.; fUgK�; (Equation 3)

where fAgK represents k consecutive As, fAgK�1fCg1 represents
(k-1) consecutive As followed by a C, fAgK�2fCg2 represents
(k-1) consecutive As followed by two Cs, and so forth. Thus,
there are a total of 4k nucleotide combinations. Then we computed
position-specific k-mer nucleotide propensity on the whole data-
set and generated a 4k� (52-k) global frequency matrix repre-
sented as

Z =

2
664

z1;1 z1;2 / z1;51�K + 1

z2;1 z2;2 / z2;51�K + 1

«
z4K ;1

«
z4K ;2

/
/

«
z4K ;51�K + 1

3
775; (Equation 4)

with the element formulated as

zi;j = F + ðKmerijjÞ � F�ðKmerijjÞði= 1; 2;.; 4K ;

j= 1; 2;.; ð51� K + 1ÞÞ;
(Equation 5)

where F + ðKmerijjÞmeans the occurrence frequency of the i-th k-mer
nucleotides ðKmeriÞ at the j-th position in the positive samples S+

and F�ðKmerijjÞ denotes the occurrence frequency of the i-th
k-mer nucleotides ðKmeriÞ at the j-th position in the negative
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samples S�. For the convenience of calculating, the algorithm can
also be expressed as the vector as follows:

Z =
h
f1;f2;.;fj;.;f51�K + 1

iT
; (Equation 6)

where T represents the transpose operator. fk is indicated by
where NjNj+ 1.Nj+K�1 represents a sub-sequence with K bases long.
This method measures the specificity of position-specific k-mer
nucleotide on the entire dataset.

RFHC-GAC

There are four types of ribonucleotides: adenine (A), cytosine (C), gua-
nine (G), and uracil (U). Previous studies have demonstrated that the
four nucleotides have different chemical properties, such as rings, func-
tional groups, and hydrogen bonds.50 As for the ring structures, A and
G are purines that have two rings structures, whereas C and U are py-
rimidines that have one ring only. In terms of secondary structures,
A and U are assigned to one group because they both contain weak
hydrogen bonds, whereas C and G are in the same group because
they have strong hydrogen bonds. Regarding chemical functionality,
A andC can be assigned to an amino group, whereas the others are clas-
sified into a keto group. To incorporate the chemical property informa-
tion into feature representation, we constructed a four-dimensional
vector ði; j; k; diÞ .51–53 The algorithm can be formulated as follows:

i=

�
1 if x˛fA;Gg
0 others

j=

�
1 if x˛fA;Ug
0 others

k =

�
1 if x˛fA;Cg
0 others

;

(Equation 8)

where x denotes a nucleotide and A, C, G, and U can be represented as
ð1; 1; 1Þ, ð0; 0; 1Þ, ð1; 0; 0Þ, and (0,1,0), respectively, considering that a
certain degree of correlation between one nucleotide and the sequence
to which it belongs. The density method is used to measure the rele-
vance between frequency and position. The density of di can be de-
noted by the following formula:

di =
1

jNi j
XL

j= 1

f
�
nj
�
; f
�
nj
�
=

�
1 if nj = q

0 other cases
; (Equation 9)

where L denotes sequence length,; jNi j denotes the length from cur-
rent nucleotide position to first nucleotide, and q is a symbol of fA;U ;

G; Cg. To intuitively illustrate the algorithm, for a given sequence
example ‘CAAAGGUGAC’, it can be transferred into the following
discrete vector like (1.0,0.5,0.67,0.75,0.2,0.33,0.14,0.38,0.44,0.2).
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To further enhance the prediction ability, it is important to
reduce similarity between positive and negative samples. Obvi-
ously, the GAC motif exists in the same position of both positive
ACðm; lÞ=
P50�l

j= 1

h
PCm

�
NjNj+ 1

�� PCm
ih
PCm

�
Nj+ lNj+ 1+ l

�� PCm
i

50� l
m= ð1; 2;.; 10Þ; (Equation 12)
and negative samples. When we use these samples to train a pre-
diction model, the similarity would affect the predictive perfor-
mance. Thus, it is imperative to extract information through its
flanking nucleotide without using the GAC motif in the center.
Finally, the vector length is 3� ð51� 3Þ + 1� ð51� 3Þ = 4�
48 = 192.
CCðm1;m2; lÞ=
P50�l

j= 1

h
PCm1

�
NjNj+ 1 � PCu1

�ih
PCm2

�
Nj+ lNj+ 1+ l

�� PCm2

i
50� l

ðm1 = 1; 2;.; 10;m2 = 1; 2;.; 10;m1sm2Þ: (Equation 13)
Features Based on Physical-Chemical Properties

The feature method based on physical-chemical properties10,54 is pro-
posed to incorporate the dinucleotide compositionwith physical-chem-
ical properties and the transformation of auto-covariance and cross
covariance.Hereweused the following 10physical-chemical properties:
PC1, rise;55 PC2, roll;55 PC3, shift;55 PC4, slide;55 PC5, tilt;55 PC6,
twist;55 PC7, enthalpy;55 PC8, entropy;56 PC9, stack energy;57 PC10,
free energy.56 For an RNA sequence, there are 4� 4= 16 kinds of
dinucleotides. Each of the 16 dinucleotides has a set of 10 PC properties
corresponding to specific values, as shown in Table 5.

For given a RNA sequence, it can be formulated as the following dinu-
cleotide vector:

C = ½N1N2，N2N3，N3N4;/;NL�1NL� ðL= 51Þ; (Equation 10)

where C represents the dinucleotide vector, each element is a
dinucleotide pair, and L is the length of each sequence. Then the
dinucleotide vector C can be further encoded with the following
matrix as

PC =

2
64

PC1ðN1N2Þ
PC2ðN1N2Þ

«
PC10ðN1N2Þ

PC1ðN2N3Þ
PC2ðN2N3Þ

«
PC10ðN2N3Þ

/
/
«
/

PC1ðN50N51Þ
PC2ðN50N51Þ

«
PC10ðN50N51Þ

3
75;

(Equation 11)

where PCjðNiNi+ 1Þ denotes the j-th property value for NiNi+ 1 dinu-
cleotide in Equation 10. The property matrix is illustrated in Table 5,
which needs to be normalized before being applied to extract features.
For the same line of PCs, the correlation between two nucleotides is
separated by l nucleotide intervals. To incorporate the auto-covari-
ance transformation, the features are computed as
where l ranges from 0 to 49 and PCm represents the average of the
m-th row in the matrix, which is illustrated in Equation 11.

Cross-covariance measures the correlation between two different
nucleotides belonging to different properties. It can be formulated
by the following:
To this end, we yielded 10� l features from auto-covariance and
10� 9� l features from cross-covariance. In this study, we set l as
4 because it contributes to the best predictive performance. Therefore,
we have a total of ð10� l + 10� 9� lÞ= 400 features based on
physical-chemical properties.
Ensemble of SVM

SVM is a powerful algorithm that has been widely used in bioinfor-
matics fields.13,58–66 The basic idea of SVM is to determine a sepa-
rating hyperplane tomaximize themargin between positive and nega-
tive samples. In particular, as for non-linear separable data, the SVM
algorithm uses kernel functions to map a non-linear feature space to
a high-dimensional one, where the mapped feature space is linearly
separable. There are three kernel functions that are usually used:
polynomial, radial basis function (RBF), and Gaussian. Here, RBF
was used as the kernel function because its performance is better
than the other two. More details regarding SVM and its kernel func-
tion can refer be found in Chou et al.,67 Cai et al.,68 and Cristianini
and Shawe-Taylor.69 To achieve the best classification performance,
we optimized two parameters of the SVM algorithm by using a
grid search approach. The first parameter is the penalty coefficient
(denoted as C), and the second one is g, which is used to balance
the kernel function in case of overfitting. The optimization ranges
about C and g are ð� 2; 5Þ; and ð� 5; 2Þ, respectively. The SVM
is implemented and optimized in the Python package (version 3.5.2).

To construct an ensemble classifier, we first extracted the three types
of features of the training dataset using the three feature descriptors,
respectively. Afterward, for each training dataset encoded by one
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 641
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Table 5. The Original 10 Physical-Chemical Properties for 16 Dinucleotides

Dinucleotides PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

AA 3.18 7 �0.08 �1.27 �0.8 31 �6.82 �18.4 �13.7 �0.9

AC 3.24 4.8 0.23 �1.43 0.8 32 �11.4 �26.2 �13.8 �2.1

AG 3.3 8.5 �0.04 �1.5 0.5 30 �10.48 �19.2 �14 �1.7

AU 3.24 7.1 �0.06 �1.36 1.1 33 �9.38 �15.5 �15.4 �0.9

CA 3.09 9.9 0.11 �1.46 1 31 �10.44 �27.8 �14.4 �1.8

CC 3.32 8.7 �0.01 �1.78 0.3 32 �13.39 �29.7 �11.1 �2.9

CG 3.3 12.1 0.3 �1.89 �0.1 27 �10.64 �19.4 �15.6 �2

CU 3.3 8.5 �0.04 �1.5 0.5 30 �10.48 �19.2 �14 �1.7

GA 3.38 9.4 0.07 �1.7 1.3 32 �12.44 �35.5 �14.2 �2.3

GC 3.22 6.1 0.07 �1.39 0 35 �14.88 �34.9 �16.9 �3.4

GG 3.32 12.1 �0.01 �1.78 0.3 32 �13.39 �29.7 �11.1 �2.9

GU 3.24 4.8 0.23 �1.43 0.8 32 �11.4 �26.2 �13.8 �2.1

UA 3.26 10.7 �0.02 �1.45 �0.2 32 �7.69 �22.6 �16 �1.1

UC 3.38 9.4 0.07 �1.7 1.3 32 �12.44 �26.2 �14.2 �2.1

UG 3.09 9.9 0.11 �1.46 1 31 �10.44 �19.2 �14.4 �1.7

UU 3.18 7 �0.08 �1.27 �0.8 31 �6.82 �18.4 �13.7 �0.9
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specific feature descriptor, we trained an SVMmodel. A total of three
SVM models were obtained. For each trained model, we evaluated its
predictive performance and produced the prediction scores. Finally,
if the scores of two of the three models are 0, then the final score of
our ensemble classifier is 0, which indicates that the sequence is a
true m6A site; otherwise, it is a non-m6A site.

Performance Measurement

In this study, four commonly used metrics are employed to evaluate
predictive performance, including Acc, Sp, Sn, and MCC. They are
formulated as follows:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Sn=
TP

TP + FN
� 100%

Sp=
TN

TN + FP
� 100%

Acc=
TP +TN

TP + FN +TN + FP
� 100%

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FNÞðTN + FPÞðTP + FPÞðTN + FNÞp

;

(Equation 14)

where TP, TN, FP, and FN are true positive, true negative, false pos-
itive, and false negative, respectively. In this study, TP represents the
number of true m6A sites predicted correctly, TN represents the num-
ber of non-m6A sites predicted correctly, FP represents the number of
non-m6A sites predicted incorrectly as true m6A sites, and FN repre-
sents the number of true m6A sites predicted incorrectly as non-m6A
sites. MCC and Acc are two metrics used for evaluating the overall
performance of a predictive model on the whole dataset, whereas
642 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
SN and SP are used for measuring the performance on positive sam-
ples and negative samples, respectively.

Moreover, we used the 10-fold cross-validation method to measure
the predictive performance of the predictor. The procedure of this
validation method is briefly described as follows. First, a dataset is
randomly partitioned into 10 subsets with equal size. Of the 10 sub-
sets, nine subsets are chosen as the training data to train a predictive
model, whereas the remaining single subset is retained as the valida-
tion data to test the model. This process is then repeated 10 times,
with each of the 10 subsets used exactly once as the validation
data. Last, the 10 results are averaged to obtain a final prediction
estimation.

ROC Curve

The ROC curve is often used to measure the overall performance of a
binary classifier system. The ROC curve is generated by plotting the
true positive rate (TPR) against the false positive rate (FPR) under
different classification thresholds. The TPR is also known as sensi-
tivity above, whereas the FPR can be calculated as (1 � specificity).
We also calculated the area under the ROC curve (AUC) to evaluate
the performance of a predictor. The range of the AUC is from 0.5 to 1.
When the AUC score of a predictor is near 1, the predictor is consid-
ered a perfect predictor; when the AUC score is 0.5, it corresponds to
a random predictor. The larger the AUC, the better and more robust
the model.

Precision-Recall Curve

Another measurement is the precision-recall curve, which measures
the trade-off in precision and recall. Precision-recall curves plot pre-
cision (the fraction of TP in all predicted positives) against recall
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(sensitivity) at various threshold settings. The PR curve is more sen-
sitive to FPs than the ROC curve.
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