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Abstract. We have investigated the potential regula- 
tory role of TGF-B in the interactions of neurons and 
Schwann cells using an in vitro myelinating system. 
Purified populations of neurons and Schwann cells, 
grown alone or in coculture, secrete readily detectable 
levels of the three mammalian isoforms of TGF-B; in 
each case, virtually all of the TGF-/~ activity detected 
is latent. Expression of TGF-BI, a major isoform pro- 
duced by Schwann cells, is specifically and signifi- 
candy downregulated as a result of axon/Schwann cell 
interactions. Treatment of Schwann cells or Schwann 
cell/neuron cocultures with TGF-~I, in turn, has dra- 
matic effects on proliferation and differentiation. In the 
case of purified Schwann cells, treatment with TOF-/31 
increases their proliferation, and it promotes a pre- or 
nonmyelinating Schwann cell phenotype characterized 
by increased NCAM expression, decreased NGF re- 
ceptor expression, inhibition of the forskolin-mediated 
induction of the myelin protein P0, and induction of 
the Schwann cell transcription factor suppressed cAMP- 
inducible POU protein. Addition of TGF-/31 to the 

cocultures inhibits many of the effects of the axon on 
Schwann cells, antagonizing the proliferation induced 
by contact with neurons, and, strikingly, blocking my- 
elination. Ultrastructural analysis of the treated cul- 
tures confirmed the complete inhibition of myelination 
and revealed only rudimentary ensheathment of axons. 
Associated defects of the Schwann cell basal lamina 
and reduced expression of laminin were also detected. 
These effects of TGF-/?I on Schwann cell differentia- 
tion are likely to be direct effects on the Schwann cells 
themselves which express high levels of TGF-/~I recep- 
tors when cocultured with neurons. The regulated ex- 
pression of TGF-~ and its effects on Schwann cells 
suggest that it may be an important autocrine and 
paracrine mediator of neuron/Schwann cell interac- 
tions. During development, TGF-~I could serve as an 
inhibitor of Schwann cell proliferation and myelina- 
tion, whereas after peripheral nerve injury, it may pro- 
mote the transition of Schwann cells to a proliferating, 
nonmyelinating phenotype, and thereby enhani:e the 
regenerative response. 

p ERIPHERAL nerve development progresses through a 
series of distinct stages that reflect complex and 
reciprocal interactions between axons and Schwann 

cells (Webster, 1992). Initially, nerve fibers grow out essen- 
tially free of nonneuronal cells. Subsequently, Schwann cells 
migrate and proliferate on the nerve fibers, progressively 
subdividing the nerve fascicle into smaller groups of nerve 
fibers. Eventually, Schwann cells either communally en- 
sheathe multiple small nerve fibers, or they myelinate in- 
dividual nerve fibers with which they have established a one- 
to-one relationship (Webster, 1992). In both instances, the 
axon/Schwann cell unit is surrounded by a basal lamina that 
is principally synthesized by Schwann cells when they are in 
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contact with neurons (Bunge et al., 1982). This basal lam- 
ina, in turn, is required for the appropriate function of the 
Schwann cell; defects in basal lamina production are as- 
sociated with defects in the ensheathment and myelination of 
axons (Bunge et al., 1986). 

The different anatomic relationships that Schwann cells 
establish with axons correspond to distinct differentiated 
phenotypes. Nomnyelinating, ensheathing Schwann cells 
express high levels of the adhesion molecules L1 and the neu- 
ral cell adhesion molecule (NCAM) ~ do not express my- 
elin proteins, and contain a distinct set of cytoskeletal pro- 
teins. By contrast, myelinating Schwann cells express low 
levels of NCAM and L1, but high levels of the myelin as- 

1. Abbreviations used in :his paper: DRG, dorsal root ganglion; MAG, 
myelin-associated glycoprotein; MBP, myelin basic protein; BrDU, 5-bromo- 
2'deoxyuridine; NCAM, neural cell adhesion molecule; SCIP, suppressed 
cAMP-inducible POU protein; MLEC, mink lung epithelial cells; PAI, 
plasminogen activator inhibitor. 
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sociated glyeoprotein (MAG) and several structural compo- 
nents of the myelin sheath, including myelin basic protein 
(MBP) and P0 (reviewed in Jessen and Mirsky, 1991; Salzer, 
1995). Like proliferation and basal lamina formation, the 
differentiation of Schwann cells is regulated by the axon as 
their ensheathment fate is specified by the type of axon with 
which they are associated (Aguayo et al., 1976; Weinberg 
and Spencer, 1976). 

After injury, there are dramatic changes in peripheral 
nerves distal to the site of the lesion (reviewed in Fawcett and 
Keynes, 1990). Expression of myelin proteins rapidly de- 
clines (Lernke and Chao, 1988) and Schwann cells re- 
express NCAM and L1 (Martini and Schachner, 1988). 
Schwann cells also undergo a wave of proliferation at the site 
of injury in all nerves and in the distal stump of heavily my- 
elinated nerves (reviewed briefly in Salzer and Bunge, 1980). 
Concomitantly, macrophages invade the distal stump and, 
together with resident Schwann cells, they break down and 
clear the degenerating myelin (Stoll et al., 1989). Finally, if 
the nerve has not been permanently transected, new nerve 
fibers sprout from the proximal end of the injured nerve and 
grow into the distal stump guided by Schwann cells. The 
downregulation and clearance of myelin proteins and the 
reexpression of cell adhesion molecules by Schwann cells, 
together with their synthesis and release of neurotrophic fac- 
tors, is thought to be critical for successful regeneration of 
peripheral nerves after injury (Scherer and Asbury, 1993). 

The molecular signals that regulate Schwann cell prolifer- 
ation and differentiation during peripheral nerve develop- 
ment and injury are not well understood. Molecules as- 
sociated with the neuronal surface are known to induce 
Schwann cell proliferation during development (Salzer et al., 
19g0), and they are likely to correspond, at least in part, to 
the recently described family of neuregulins (Marchionni et 
al., 1993), also referred to as glial growth factor and heregu- 
lin (Peles and Yarden, 1993). It is not yet known whether the 
mitogenic signals that stimulate Schwann cell proliferation 
during nerve injury are related to those that operate during 
development. However, a recent study reporting that soluble 
mitogenic factors are released as a result of injury (Wen et 
al., 1994) suggests that they could be distinct. An additional 
potential source of mitogenic factors during nerve injury are 
macrophages, which invade the distal stump in high numbers 
and have been proposed to promote Schwann cell prolifera- 
tion during injury (Beuche and Friede, 1984) via soluble fac- 
tors (Baichwal et al., 1988). However, the proliferation of 
Schwarm cells during Wallerian degeneration in vitro, in the 
absence of macrophages (Salzer and Bunge, 1980), suggests 
that nonmacrophage-derived mitogens, potentially growth 
factors released by the Schwann cells themselves, are also 
likely to be important. 

Both proliferative and differentiative signals may be medi- 
ated via an increase in intracellular levels of cAMP. At low 
cell density, elevation of cAMP levels increases Schwann cell 
proliferation, whereas at high cell densities, particularly 
when proliferation is limited by growing cells in defined me- 
dia without serum, an increase in cAMP leads to an increase 
in the expression of myelin proteins (Jessen and Mirsky, 
1991; Morgan et al., 199I). In view of these findings, treat- 
ment of Schwann ceils with the diterpene analogue forskolin, 
an activator of adenylate cyclase, has been used to mimic the 
effects of the axon on Schwann cells, particularly inducing 

the myelinating phenotype. Forskolin treatment, in addition 
to increasing expression of myelin proteins, also dramati- 
cally elevates the expression of the transcription factor SCIP 
(suppressed cAMP-inducible POU protein) by Schwann ceils 
(Monuki et al., 1989). This protein, which was indepen- 
dently identified by several groups and is also called tst-1 (He 
et al., 1990) and Oct-6 (Suzuki et al., 1990), belongs to the 
POU domain family of transcription factors. It is promi- 
nently expressed by Schwann cells during periods of rapid 
proliferation, i.e., during development and transiently after 
peripheral nerve injury (Monuki et al., 1990; Scherer et al., 
1994). Its expression in vivo has also been inversely cor- 
related with the ability of Schwann cells to myelinate. There- 
fore, SCIP has been suggested to be a marker of, and may 
function in, proliferating, premyelinating Schwann ceils. 
Consistent with this suggestion, SCIP inhibits the expression 
of myelin proteins, strongly repressing the P0 promoter, and 
also inhibiting the expression of the p75 NGF receptor 
(Monuki et al., 1990). 

These studies suggest that there is an inverse relationship 
between Schwann cell proliferation and expression of the 
myelinating phenotype. Consistent with this notion, several 
Schwann cell mitogens, notably FGF and members of the 
TGF-fl family (Ridley et al., 1989; Davis and Stroobant, 
1990; Schubert, 1992), have been reported to inhibit the ex- 
pression of myelin proteins induced by forskolin (Mews and 
Meyer, 1993; Rogister et al., 1993; Morgan et al., 1994). 
These results raise the possibility that these growth factors 
may have a role as inhibitors of Schwann cell myelination, 
although it is not known under what conditions and by which 
cells these growth factors are released. In contrast, axons 
may also release soluble factor(s) that promote the myelinat- 
ing phenotype, transiently inducing the expression of SCIP, 
for example, and leading to a several-fold increase in P0 ex- 
pression (Bolin and Shooter, 1993). These findings suggest 
that soluble mediators might function as both positive and 
negative regulators of Schwann cell myelination. 

In this study, we have investigated the role of TGF-/3s as 
mediators of axon/Schwann cell interactions. We focused on 
the TGF-/~s because of their critical role in regulating cell 
growth and differentiation in many developing systems (Mas- 
sagu6, 1990; Sporn and Roberts, 1992) and their mitogenic 
effects on Schwann cells. The "I'GF-/~ family is comprised of 
three mammalian isoforms termed TGF-fll, -/32, and -f13, 
and the TGF-/3 superfamily contains, in addition, a large 
number of homologous proteins (see Kingsley, 1994, for a 
recent review). We have principally focused on the role of 
TGF-ffl in this study because, as we now report, TGF-fll is 
a prominent isoform produced by Schwann cells, and the ex- 
pression of TGF-/31 appears to be regulated by axon/Schwann 
cell interactions. We have found that TGF-fll, which is a 
mitogen for purified Schwann cells, inhibits the proliferation 
of Schwann cells that is normally induced by neuronal con- 
tact. In addition, TGF-fll increases the expression of mark- 
ers of premyelinating Schwarm cells, notably NCAM and 
SCIP, and it inhibits the forskolin-induced transition to a my- 
elinating phenotype. Consistent with these findings, TGF-fll 
strikingly inhibits myelination in Schwann cell/neuron co- 
cultures and leads to associated defects in the formation of 
the Schwann cell basal lamina. These results indicate that 
TGF-/31 has profound effects on the axonal induction of 
Schwann cell proliferation and differentiation, and they sug- 
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gest that it could be an important inhibitor of Schwann cell 
proliferation and myelination during development. These 
studies also suggest an important role for TGF-ffl in the re- 
generative response that follows Wallerian degeneration in 
the peripheral nervous system. 

Materials and Methods 

Antibodies and Growth Factors 
Antibodies used in this study included anti-MBP and anti-PO polyclonal an- 
tibodies (gifts from D. Colman, Mount Sinai Medical Center, NY), a poly- 
clonal anti-p75 NGF receptor antibody (gift from Dr. B. Hempstead, Cor- 
nell University Medical Center, NY), monoclonal antibody MAS13 to the 
MAG (gift from M. Schachner, Swiss Federal Institute of Technology, 
H6nggerberg, Ztirich), anti-Ll polyclonal antibody (gift from M. Grumet, 
New York University Medical School, NY), anti-NCAM polyclonal anti- 
body (gift from U. Rutishauser, Case Western Reserve University, Cleve- 
land, OH), anti-SCIP polyclonal antibody (gift from M. G. Rosenfeld, 
University of California, San Diego, CA) and anti-laminin polyclonal anti- 
body (Sigma Chemical Co., St. Louis, MO). Neutralizing antibodies 
against recombinant human TGF-/~I, native porcine "I'GF-/~2, and recom- 
binant chicken TGF-/33 were purchased from R & D Systems, Inc. (Min- 
neapolis, MN). A monoclonal antibody that neutralizes rat TGF-~I, TGF- 
/32, and TGF-~3 was purchased from G-enzyme Corp. (Cambridge, MA). 
Species-specific, affinity-purified, rhodamine-conjugated donkey anti-rabbit 
IgG and fluorescein-conjugated donkey anti-mouse IgG were purchased 
from Chemicon International Inc. (Temecula, CA); fluorescein-conjugated 
mouse monoclonal antibodies directed against bromodeoxyuridine (BrDU) 
were obtained from Boehringer Mannheim Corp. (Indianapolis, IN). 

Recombinant human TGF-~I was a gift from Berlex Biosciences (South 
San Francisco, CA), recombinant human TGF-~2 was a gift from Celtrix 
(Santa Clara, CA), and TGF-B3 was purchased from R & D Systems. All 
concentrated stocks of TGF-/3 were stored at 4°C in a solution of 5 mM HCI 
containing 1 mg/ml low endotoxin BSA (ICN Biomedicals, Inc., Costa 
Mesa, CA). 

~ssue Culture Methods 

Cultures of primary rat Schwann cells, dorsal root ganglion (DRG) neurons, 
and myelinating Schwann celI/DRG neurons were established as described 
previously (Einheber et al., 1993). Briefly, cultures of dissociated rat em- 
bryonic day 16 DRG neurons were grown on collagen-coated 12-ram glass 
coverslips in a four-well dish (Nunc, Naperville, IL) and cycled with antimi- 
totic agents in standard serum containing media to remove nonneuronal 
cells. The standard media consists of MEM (Whittaker Biopreducts, Inc., 
Walkersville, MD) supplemented with 10% FBS, 2 mM glntamine, 0.4% 
glucose, and 50 ng/ml 2.5S NGF (Bioproducts for Science, Inc., Indi- 
anapolis, IN)'. To establish myelinating cultures, DRG neuron cultures were 
seeded with 200,000 Schwann cells in standard media. Based on cell mor- 
phology, these Schwann cell preparations contained fewer than 0.1% fibro- 
blasts. On the next day, the standard media was replaced with N2 defined 
media (5 mg/ml insulin, 10 mg/ml transferrin, 20 nM progesterone, 100 
mM putrescine, 30 nM selenium, and 2 mM glutamine in a 1:1 mixture of 
DME and Ham's F-12 supplemented with 2.5S NGF). In this media, 
Schwann cells in contact with neurites proliferate in response to a neuronal 
mitogen, but they do not assemble a basal lamina or myelinate (Moya et 
ai., 1980). The cultures were maintained in N2 media for 3 d to allow the 
Schwann cells to populate the neurites. To initiate basal lamina formation 
and myelination, the cultures were fed the standard media supplemented 
with 50 mg/ml ascorbic acid. 

Determination of TGF-{3 Activity 

Concentrations of total and active TGF-15 present in serum-free culture su- 
pernatants were measured using the plasminogen activator inhibitor-I pro- 
moter luciferase (PAI/L) assay as described (Abe et al., 1994). In this assay, 
serum-free culture conditioned superuatants are incubated with mink lung 
epithelial cells (MLEC) stably transfected with an expression construct 
containing a portion of the TGF-/~-inducible plasminogen activator inhib- 
itor-I (PAI-1) promoter fused to the firefly luciferase reporter gene. Ex- 
posure of the transfected MLEC to TGF-/3 results in a dose-dependent in- 
crease in luciferase activity in lysates of the cells, as measured with a 
luminometer. 

12 separate coverslips, each containing dissociated DRG neurons seeded 
with 200,000 Schwann cells, were maintained on N2 media for 3 d. Six of 
these cultures were switched to standard media (nonmyelinating cultures) 
and six to standard media supplemented with ascorbic acid (myelinating 
cultures). Parallel cultures of neurons alone and Schwann cells alone 
(400,000 Schwann cells/collagen coated coverslip) were maintained as de- 
scribed for the nonmyelinating cultures. (This number of Schwann cells 
represents an estimate of the minimum number of cells actually present in 
the cocultures based on cell counts from random fields). The cultures were 
fed their respective media every 2 or 3 d for a total of 8 d. The cultures 
were washed three times with N2 media, and they were incubated in 0.2 
ml of N2 media for an additional 2 d. The conditioned N2 media from each 
group of cultures was collected, pooled, and spun 10 rain at 4°C in a 
tabletop centrifuge to remove cellular debris. To determine the levels of to- 
tal TGF-B (active and latent), conditioned media were heated for 12 rain 
at 80°C to activate latent TGF-B. Active TGF-/3 levels were determined from 
unheated, undiluted conditioned media. Other samples were diluted to 20% 
with N2 media and added to the PAI/L-transfected MLEC in 96-well plates. 
To determine the total amount of PAL1 promoter activity specifically in- 
duced by TGF-/3 in the samples, a neutralizing anti-TGF-/31,2,3 monoclonal 
antibody (20/~g/ml) was added to the diluted conditioned media and in- 
cubated with the transfected MLEC. The decrease in the amount of lucifer- 
ase expressed in the presence of this antibody (,x,75 % of the total luciferase 
in each case) was used to calculate the amount of active and total (active 
plus latent) TGF-/3 in the conditioned media. Similarly, the amount of PAI-1 
promoter activity induced by the individual TGF-/~ isoforms was determined 
by the addition of TGF-/31, -if2, or -/33 neutralizing antibodies (20 ~g/ml) 
to the assay. To generate standard curves of TGF-/3 isoform activity in the 
assay, serial dilutions of TGF-/~I, -/~2, or -/~3 (1.5-800 pg/mi) in N2 media 
were incubated with the transfected MLEC. After an overnight incubation 
at 37°C in a 5% CO2 incubator, the MLEC were washed with PBS and ex- 
tracted with iysis buffer (Analytical Luminescence Laboratory, San Diego, 
CA). The cell lysates were analyzed for luciferase activity using lueif- 
erin substrate (Analytical Luminescence Laboratory) and a luminometer 
(ML1000; Dynatech Laboratories Inc., Chantilly, VA). 

In parallel, we also performed a series of controls with each of the anti- 
bodies used in these assays to determine their specificity and efficiency in 
neutralizing each of the TGF-/~ isoforms. On average, the anti-TGF-~l,2,3 
monoclonal antibody inhibited 79%, 89%, and 83% of purified TGF4~I, 
TGF-/Y2, and TGF-B3, respectively. The anti-'rGF-/31 antibody inhibited 
80%, 3%, and 5% of purified TGF-/~I, TGF-/T2, and TGF-33, respectively; 
the anti-TGF-ff2 antibody inhibited 3%, 92%, and 20% of purified TGF- 
/~1, TGF-/T2, and TGF-/~3, respectively; and the anti-'l'GF-/33 antibody in- 
hibited 6%, 39%, and 94% of purified TGF-~I, TGF-/~2, and TGF-/33, 
respectively. (Thus, the anti-TGF-/~l antibody was highly specific; the anti- 
bodies to TGF-ff2 and TGF-/33 displayed some cross-reactivity with recom- 
binant TGF-~3 and TGF-ff2, respectively). The calculated concentrations 
of TGF-/~ isoforms were corrected for this cross-reactivity. 

Effects of TGF-~I on the Expression of Schwann 
Cell Markers 
Primary rat Schwann cells were expanded in tissue culture flasks (T-75 
Primaria; Falcon, Oxnard, CA) or poly-L-lysine-coated flasks in D media 
(DME containing 10% FBS and 2 mM glutamine) supplemented with 2/tM 
forskolin and 10/tg/ml crude glial growth factor prepared as described (Por- 
ter et al., 1986). Once confluent, the cultures were maintained in D media 
for at least 7 d before addition of growth factors. To examine the effects of 
TGF-/31 and forskolin on Schwann cell protein expression, flasks of 
Schwann cells were fed with either N2 media or D media containing one 
of the following: 1 ng/ml TGF-/~1, 10 ng/mi TGF-/31, 10/tM forskolin, or 
a combination of 10 ng/ml TGF-~I and 10/tM forskolin for 7 d. Control 
cultures were fed the corresponding media containing an appropriate 
amount of TGF-~I diluent. Cultures receiving N2 media or D media con- 
taining the added factors were fed either twice or three times, respectively, 
during the 7 d of treatment. In the N2 media experiments, three flasks were 
used for each treatment, and four flasks were maintained as controls. Only 
one flask was used per culture condition in the D media experiments. 

Expression of Schwann cell markers was determined by immunoblot 
analysis of cell lysates. To prepare lysates, the cultures were washed with 
PBS, scraped into lysis buffer (95 mM NaC1, 25 mM Tris-Cl, pH 7.4, 10 
mM EDTA, 2% SDS, 1 mM PMSE and 10 mg/ml each of antipain, pepsta- 
tin A, and leupeptin), incubated in a boiling water bath for 5 rain, and then 
briefly sonicated. The lysates were spun in a microfuge to remove insoluble 
material, and the protein concentrations of the cleared supernatants were 
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determined using the Micro BCA method (Pierce Chemical Co., Rockford, 
IL). 75/~g of protein from each lysate was fractionated on a 5-15% SDS 
polyacrylamide gel and blotted onto nitrocellulose. Blots were incubated 
with primary antibodies followed by 125I-labeled protein A (Amersham 
Intl.) and exposed for autoradiography. Quantitation of the immunoreactive 
bands on the blots was performed on a Phosphorlmager (Molecular Dy- 
namics, Inc., Sunnyvale, CA). 

Effects of TGF-~I on Myelination 
To examine the effects of TGF-~I on the differentiation of Schwann cells, 
cocultures of Schwann cells and DRG neurons were grown under myelin- 
promoting conditions (standard media containing ascorbic acid) in the pres- 
ence or absence of 1 or 10 ng/mi TGF-~I. TGF-~I was added to cultures 
either when they were initially switched to myelin-promoting conditions or, 
alternatively, after they bad been maintained in myelinating conditions for 
2 d. The media for control cultures and cultures treated with 1 ng/ml TGF- 
l~l were supplemented with the TGF-~I diluent (i.e., I mg/ml low endotoxin 
BSA in 5 mM HC1) equal in amount to that added to the cultures treated 
with 10 ng/ml TGF-~I. Cultures were subsequently given the standard me- 
dia containing ascorbic acid with or without TGF-~I every 2 or 3 d. After 
8 d of growth under myelinating conditions, the cultures were processed for 
immunofluorescence or electron microscopy (described below). To deter- 
mine the number of myelin segments present in the control and TGF- 
/~l-treated cultures, the coverslips were immunostained for MBP and exam- 
ined by epifluorescence on a microscope (Axiophot; Carl Zeiss, Inc., 
Thornwood, NY). A transparent grid was placed over the coverslips to 
facilitate counting the MBP-positive myelin segments on each coverslip. 
Statistical analyses were performed using the StatView program (Abacus 
Concepts, Inc., Berkeley, CA). 

Effects of TGF-~I on Schwann Cell Proliferation 
The proliferation of Schwann cells grown in the absence or presence of neu- 
rons was determined using a BrDU nuclear labeling assay. To investigate 
the effects of TGF-/31 on Schwann cells grown alone, 100,000 Schwann cells 
were plated onto poly-L-lysine-coated glass coverslips in standard media. 
The next day, the cultures were fed standard media with or without 1 or 10 
ng/ml TGF-~I; control cultures and cultures treated with 1 ng/mi TGF-/31 
were also supplemented with "rGtL01 diluent equal in amount to that added 
to the cultures treated with 10 ng/ml TGF-31. After •72 h, the culture media 
was supplemented with BrDU (10 ~tM final concentration). The cultures 
were incubated with BrDU in a 7% CO2 incubator at 35°C for 3.5 h. Cul- 
tures were washed in Dulbeoco's PBS, fixed in 100% methanol at -20°C for 
15 rain, and incubated in 2 N HC1 for 10-30 rain. The HCI solution was 
removed and the cultures neutralized by two 5-rain incubations in 0.15 M 
sodium borate buffer, pH 8.4, and several washes with LI5 media (GIBCO 
BRL, Gaithersburg, MD). The cultures were then blocked with LI5 media 
containing 10% serum for 30 rain, and they wore incubated with fhiores- 
cein-conjngated anti-BrDU antibody for 1 h at room temperature. Cover- 
slips were washed in PBS and mounted on glass slides in Citifluor (Citi- 
fluor Ltd., London, U.K.) containing 1 mg/ml Hoechst dye. 

The effects of TGF-~I on the proliferation of Schwann cells in coculture 
with neurons were also investigated. In these studies, neuron cultures were 
seeded with 200,000 Schwann cells in standard media and maintained in 
N2 media for an additional 3 d. The cultures were then fed standard media 
containing ascorbic acid to promote myelination. TGF-/31 was added to cul- 
tunes either when they were switched to myelin-promoting media or, alter- 
natively, after they had been maintained in this media for 2 d. The BrDU 
proliferation assay was performed ,,o20 h after the addition of TGF-~ to 
the cultures. Proliferation assays were also performed on cocultures main- 
tained for 7 d in standard media after seeding neurons with Schwann cells. 
These cultures were switched to standard media containing ascorbic acid 
with or without TGF-/31 for 20 h before the proliferation assay was per- 
formed. 

BrDU- and Hoechst dye-labeled nuclei in random fields of the coverslips 
were photographed using a Zeiss Axiophot microscope and slide film (Ek- 
tachrome 1601"; Eastman Kodak Co., Rochester, NY). At least five or six 
random fields were photographed, typically using a 20x objective. The 
number of BrDU- and Hoechst dye-labeled nuclei in each field were then 
Counted in a blinded manner from the Ektachrome slides projected on a 
slide Viewer. In the case of Schwann cells grown alone, ',,1,500 cells per 
condition were counted; in the case of the Schwann cell/neuron cocultures, 
in excess of 2DO0 Cells per .condition were counted. 

lmmunofluorescence Microscopy 
Cultures were processed for immunofluorescence microscopy as.described 
previously (Einheber et al., 1993). 

Electron Microscopy 
Control and TGF-~l-treated myelinating cultures, grown on collagen- 
coated aclar plastic coverslips, were rinsed in PBS and fixed overnight at 
4°C in 0.05M sodium phosphate buffer, pH 7.0, containing 2% glutaralde- 
hyde and 0.1 M sucrose (Owens and Bunge, 1989). After washing in 0.1 M 
phosphate buffer, the coverslips were incubated in 2% osmium tetroxide in 
0.1 M phosphate buffer for 1 h and embedded in Epon (Milner and Bacon, 
1989). Portions of the coverslips were removed and reembedded in an orien- 
tation suitable for obtaining cross-sections of the cultures. Ultrathin sec- 
tions (50-65 nm) were collected on copper grids and counterstained with 
uranyl acetate and Reynold's lead citrate. Sections were analyzed on an elec- 
tron microscope (model 201; Philips Electronic Instruments Co., Mahwah, 
NJ). To confirm the extent of myelination of the control and treated cultures 
used for ultrastructural analysis, additional cultures treated identically and 
in parallel to those used for ultrastructural analysis were immunostained for 
MBE and they were examined by immunofluorescence. 

To quantify the number of Schwann cell/neurite units with complete or 
patchy basal lamina in control and TGF-/~l-treated cultures, regions from 
at least two different coverslips for each condition were analyzed under the 
electron microscope. 

Identification of TGF-gl Receptors by Cross-linking 
TGF-~I was iodinated using the IODO-GEN iodination reagent (Pierce 
Chemical Co.) according to the manufacturer's instructions. Chemical 
cross-linking of iodinated TGF-/~I to cells was performed by a modification 
of described procedures (Wang et al., 1991). For these experiments 
collagen-coated 35-ram dishes were each plated with ,'~24 dissociated 
DRG's obtained from embryonic day 16 rat embryos. After cycling the cul- 
tures with antimitotic agents to remove nonneuronal cells, some of the col- 
tures were seeded with ,'ol × 106 Schwann cells per dish, and they were 
allowed to myelinate for 1 mo under standard conditions. The remaining 
neuron cultures were maintained in standard media. To perform the cross- 
linking reaction, cultures were washed four times with Dulbecco's PBS and 
incubated with binding buffer (Krebs-Ringer solution with 20 mM Hepes, 
pH 7.5, 0.5 mM MgSO4, and 0.1% BSA) containing 25 pM 12SI-labeled 
TGF-t51 for 3 h at 4°C with gentle rotation. As a control for the specificity 
of the TGF-~I binding, some cultures were incubated with competing 
amounts of unlabeled TGF-~I (final concentration of 25 nM) in addition to 
the 25 pM 125I-labeled TGF-~I. The cultures were then washed four times 
in binding buffer without BSA at 4°C and then incubated in this buffer con- 
taining bis (sulfosuccinimidyl) suberate (BS 3) (Pierce Chemical Co.) at a 
final concentration of 62 ng/ml for 15 rain at 4°C with gentle shaking. The 
reaction was stopped by addition of Tris-HCl, pH 7.4, to a final concentra- 
tion of 100 raM. The reaction buffer was removed, and the cultures were 
resuspended in SDS gel sample buffer. Samples were subjected to elec- 
trophoresis on a 7 % SDS polyacrylamide gel and then developed with the 
PhosphorImager. 

Statistical Analysis 
Statistical analyses were performed using the Statview program (Abacus 
Concepts, Inc.). All data were analyzed statistically by analysis of variance 
followed by the Bonferroni/Dunn post-hoc test, except in the case of the 
TGF-/5 levels, which were subjected to the Fisher's protected least signifi- 
cant difference post-hoc test. 

Results 

Expression of TGF-~ Isoforms by Schwann Cells 
and Neurons 
As a first step in analyzing the potential role of TGF-/~ in the 
interactions of Schwann cells and neurons, we measured the 
expression of each of the three TGF-/~ isoforms by these cell 
types. To this end, we used a sensitive bioassay (Abe et al., 
1994) to determine the levels of TGF-/3 in culture media con- 
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ditioned by Schwann cells and neurons grown alone or in 
coculture. In this assay, conditioned media from the cultures 
were incubated with a mink lung epithelial cell line stably 
transfected with an expression construct in which a TGF-/$- 
inducible promoter (i.e., a portion of the PAI-1 promoter) 
was fused to a luciferase reporter gene. TGF-/3 stimulates 
these cells to synthesize luciferase in a dose-dependent man- 
ner. During incubation with the MLEC, we also added a se- 
ries of commercially available neutralizing antibodies to the 
conditioned media. One antibody blocked the activity of all 
three TGF-/~ isoforms; the other antibodies were isoform 
specific. The decrease in the amount of luciferase synthe- 
sized in the presence of these antibodies represented TGF- 
/S-specific activity. 

Using this assay, we first determined the concentration of 
total (latent plus active) and active TGF-/3 in media condi- 
tioned by DRG neurons, Schwann cells, and neuron/Schwann 
cell cocultures under myelinating (serum plus ascorbic acid) 
and nonmyelinating (serum alone) conditions. Results of 
three separate experiments are summarized in Fig. 1. We 
found significant and comparable amounts of total TGF-/3 
activity expressed by each cell type, with the most activity 
in the cultures of neurons and the least activity in the 
Schwann cell/neuron cocultures. Very little active TGF-/3 
was detected in any of the cultures, with active levels consis- 
tently measured in the 4-5 pg/ml range compared to total 
levels in the 300-500 pg/ml range. Thus, in each case, the 
majority of the TGF-~ activity present in the culture media 
is latent. Using isoform-specific antibodies, we also deter- 

mined which of the three mammalian TGF-/~ isoforms are 
released by these cells. These studies demonstrated that all 
three TGF-/3 isoforms are released by neurons and Schwann 
cells, with the proportions varying by cell type. Neurons 
principally release TGF-/~2 and -/~3, whereas Schwann cells 
principally release TGF-/~I and -/~2. The amount of the in- 
dividual isoforms, when added together, exceeded the amount 
independently measured with an anti-TGF-/~l,2,3 monoclo- 
nal antibody potentially reflecting less efficient inhibition of 
each isoform with this antibody. Of particular note, the levels 
of TGF-~,  as a proportion of the TGF-/~ activity, drop sig- 
nificantly in the neuron/Schwann cell cocultures in compari- 
son to the levels of TGF-~I in the Schwann cell cultures. By 
contrast, the levels of TGF-/~2 are similar in each case, and 
the relative levels of TGF-/~3 are elevated in the cocultures 
compared to Schwann cells alone. These results suggest that 
there is a differential regulation of TGF-/$ isoforms. TGF-/~I 
expression appears to be specifically downregulated as a re- 
sult of coculture, suggesting it may have a role in mediating 
axon/Schwann cell interactions. 

TGF-[31 Promotes NCAM and SCIP Expression and 
Antagonizes the Effects of Forskolin on Schwann Cells 

To examine the potential significance of the regulated expres- 
sion of TGF-/~I in these cultures, we first characterized its 
effects on the expression of Schwann cell markers. For these 
studies, we grew Schwann cells in media, with or without se- 
rum, containing 1 or 10 ng/ml of TGF-/~I, 10/xM forskolin, 
10 #M forskolin with 10 ng/ml of TGF-~I, or without supple- 
ments (control). As previously noted (Rogister et al., 1993), 
TGF-/~ dramatically alters the morphology of Schwann cells. 
Thus, cells treated with TGF-/3, with forskolin, or with both 

Figure 1. TGF-/~ levels in Schwann cells, neurons, and Schwann 
cell/neuron cocultures. Conditioned serum-free media were col- 
lected from cultures of neurons, Schwann cells, and neuron/ 
Schwann cell cocultures that had previously been maintained in 
media containing serum (N+Sc:S) or serum plus ascorbic acid 
(N+Sc:S+A) to promote myelination. Total levels of TGF-/3, TGF- 
~1, TGF-/32, and TGF-/33 were determined in three separate experi- 
ments; standard error bars are shown. Individual TGF-/~ isoform 
levels shown were corrected for cross-reactivity of the isoform- 
specific antibodies, as described in the Materials and Methods. The 
levels of TGF-~, relative to the TGF-/3 activity, are significantly 
less in the neuron/Schwann cell cocultures compared to the 
Schwann cell cultures (P < 0.005), whereas the relative TGF-#3 ac- 
tivity is significantly greater (P < 0.05). 

Figure 2. Effect of TGF-/~I on Schwann cell markers. Schwann cells 
were grown in serum containing media supplemented with either 
1 ng/ml of TGF-/~I (T/), 10 ng/ml of TGF-~I (T/0), 10 #M forsko- 
lin (F), or 10 ng/ml of TGF-/~I plus 10 #M forskolin (F+T). Lysates 
were prepared, fractionated by SDS-PAGE, and blotted. The 
nitrocellulose blot was cut into strips that were probed with anti- 
bodies to LI (which recognized bands of 220 and 200 kD), NCAM 
(140 and 120 kD), the NGF receptor (75 kD), SCIP (40 kD), and 
P0 (25 kD). After incubation with the primary antibodies, each 
strip was incubated with t25I protein A and exposed for autoradi- 
ography. 

Einheber et al. TGF-[3 1 Regulates Axon/Schwann Cell Interactions 447 



agents were more polygonal and less spindle shaped in ap- 
pearance than control cells and appeared to be more fre- 
quently in contact with one another (data not shown). In ad- 
dition, although not specifically investigated, Schwann cell 
survival after 1 wk appeared to be better in the defined media 
supplemented with TGF-/31 or forskolin than in the defined 
media alone. At 1 wk, Schwann cell lysates were prepared 
and analyzed by Western blotting to quantitate the effect of 
TGF-/$ and forskolin on the expression of L1, NCAM, the p75 
NGF receptor, the transcription factor SCIP, and the myelin 
protein P0. An example of a typical Western blot is shown 
in Fig. 2, and results from several such experiments are sum- 
marized in Table I. 

In general, addition of TGF-~ appears to promote a pre- 
or nonmyelinating Schwann cell phenotype. Thus, treatment 
with high or low concentrations of TGF-~ resulted in in- 
creased expression of NCAM, which is present on nonmye- 
linating Schwann cells. TGF-/~I also generally suppressed 
the basal expression of the myelin protein P0 and inhibited 
its induction by forskolin. TGF-~I also reduced expression 
of the NGF receptor and of L1 (particularly in serum- 
containing media). The magnitude of the effects of both for- 
skolin and TGF-/31 on Schwann cells was generally not as 
pronounced in the presence of serum, consistent with other 
studies (Morgan et al., 1994). Of particular note, we ob- 
served a consistent and substantial induction of SCIP expres- 
sion by TGF-/31, both in the presence and absence of serum 
(see Fig. 2). The basal level of SCIP expression in Schwann 
cells grown in media without serum appeared to be lower 
than in cells grown with serum which may account, in part, 
for the generally greater induction of SCIP expression ob- 
served with forskolin under defined media conditions (data 
not shown). 

In other studies, we found that TGF-/31 had no effect on the 
expression of NCAM and L1 by neurons that were similarly 
treated (data not shown), indicating that these effects were 
specific to Schwann cells in this system. 

TGF-[3 Inhibits Schwann Cell Myelination 

The effect of TGF-~I on Schwann cell markers described 

Table II. TGF-f31 Inhibits Schwann Cell Myelination 

Number of myelin 
Day of TGF-/31 Concentration of segments per 
addition added TGF-B1 coverslip Inhibition (%) 

ng/ml 

0 0 2,943 5 :567  - 
0 1 671 5 :61  77.2 
0 10 0 5 : 0  100 
2 10 5 5 : 0 , 5  99,8 

The number of myelin segments was determined in Schwann celI/DRG eoeul- 
tures grown in the absence or presence of 1 or 10 ng/ml TGF-/~I. The TGF-/$1 
was either added at the time the cultures were switched to standard media con- 
raining ascorbic acid (day 0) or after the cultures had been maintained in this 
media for 2 d (day 2). After a total of 8 d of growth under myelin-promoting 
conditions, the cultures were fixed and the number of MBP-positive segments 
was determined, The mean values and SEM presented are from the myelin 
counts of four day 0 cultures at each concentration and two day 2 cultures from 
a representative experiment. The number of myelin segments in the day 0 con- 
trol cultures was significantly different from that of the cultures treated with 
TGF-/~I on day 0 and day 2 (P < 0.001). 

above suggested that TGF-~I might antagonize the differenti- 
ation of Sehwann cells toward the myelinating phenotype. To 
investigate this possibility directly, we added TGF-/~I to 
cocultures of neurons and Schwann cells, and we character- 
ized the extent of myelination after 1 wk. Results of a typical 
experiment are shown in Fig. 3, and they are summarized in 
Table II. While untreated cocultures extensively myelinated 
(Fig. 3 A), addition of 10 ng/ml of TGF-/31 completely in- 
hibited myelination (Fig. 3 E). Although no myelin sheaths 
were present in the treated cultures, we often observed a 
small amount of particulate staining for MBP in the Schwann 
cells, suggesting there may be some residual synthesis. In ad- 
dition, as will be considered further below, there appeared 
to be significantly fewer Schwann cells in the treated cultures 
compared to the controls (Fig. 3, F vs B). Even after several 
weeks of TGF-'/~I treatment, no myelin was observed in any 
of the cultures treated with 10 ng/ml (data not shown), indi- 
cating that there was a complete inhibition of myelination. 
This effect was not limited to TGF-/~I, since treatment of 

Table L Effect of TGF-fll and Forskolin on the Expression of Schwann Cell Markers 

A Defined media 

LI NCAM NGFR SCIP P0 

T1 1.48 5 : 0 . 1 0  3.45 5 : 0 .85  0.76 5 : 0 . 0 6  1.77 5 :0 .42  2.70 5 :0 .9 5  
T I 0  0.87 5: 0.03 6.37 5: 2.31 0.50 5: 0.06 3.10 5: 0.66 0.73 + 0.23 
F 0.53 5 :0 .03  2.85 5 : 1 .05  0.77 5 : 0 . 1 8  35.03 5 :12 .88  8.20 5 : 1 . 1 9  
F + T  0.70 5: 0.12 4.90 5: 1.73 0.73 5: 0.12 13.30 5: 4.40 5.33 + 1.96 

B Serum-containing media 

L1 NCAM NGFR SCIP P0 

TI  0.75 5 :0 .05  1.56 5 : 0 . 0 9  0.84 5 : 0 . 0 4  2.19 5 : 0 . 4 6  0.62 5 :0 .0 3  
T10 0.44 5 : 0 . 0 8  1.63 + 0.15 0.54 5 :0 .04  8.74 5 : 5 . 0 6  0.53 d: 0.11 
F 0.30 5 :0 .01  0.98 5 : 0 . 1 8  1.03 5 :0 .01  8.38 5 :5 .27  2.36 + 0.06 
F + T  0.43 + 0.04 2.07 5 : 0 . 4 7  0.56 5 :0 .02  3.40 5 :1 .45  1.01 5 : 0 . 1 0  

Primary Schwann cells were grown in defined media (A) or media containing 10% fetal calf serum (B) with TGF-/51 at 1 ng/ml (T1) or 10 ng/ml (TIO), 10 tLM 
forskolin (F), or forskolin plus 10 ng/ml of TGF-/31 (F+ T). The expression of LI, NCAM, the p75 NGF receptor, PO, and SCIP were determined by Western 
blotting, and they are given relative to levels in untreated (control) Schwann cells grown in the same media..Mean values and SEM from three to six determinations 
are presented in A, and mean values and range from duplicate determinations are presented in B. 
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Figure 3. TGF-/31 inhibits myelination. A control culture (A and B) and cultures treated with 1 ng/ml of TGF-/31 (C and D) or with 10 
ng/ml of TGF-/31 (E and F)  immediately after adding media that promotes myelination and a culture treated with 10 ng/ml of TGF-/31 
commencing 48 h after adding such media (G and H) are shown. Panels on the left side of the figure (A, C, E, and G) are immunofluorescent 
micrographs of the cultures stained for myelin basic protein; the identical fields demonstrating Schwann cell nuclei stained with a nuclear 
dye are shown on the right (B, D, F, and H). Note that there are significantly fewer Schwann cells in the TGF-/31-treated cultures. Bar, 
100 ~m. 



cocultures with 10 ng/ml of TGF-/32 also resulted in a com- 
plete inhibition of myelination in the coculmres (data not 
shown). Addition of 1 ng/ml TGF-/31 to the cocultures 
significantly inhibited myelin formation as well, although the 
inhibition was incomplete (Fig. 3 C). In three separate ex- 
periments, the average number of myelin segments in cul- 
tures treated with 1 ng/ml was reduced from 66 % to >90 %. 
After several weeks, cultures treated with I ng/ml of TGF-/~I 
did eventually myelinate quite extensively suggesting that, at 
this concentration, the principal effect of TGF-~I is to delay 
the process of myelination. 

To determine whether there was a critical window for the 
inhibitory effects of TGF-/~I on myelination, we added TGF- 
fll at varying times of Schwann cell/neuron coculture. In one 
set of studies, we pretreated the Schwann cells with 10 ng/ml 
of TGF-/31 for 1 wk before adding them to cultures of neu- 
rons. Alternatively, we pretreated the neurons for 1 wk, re- 
moved the TGF-/~I, and then inhibited any residual TGF-/31 
with a pan-TGF-/3 blocking antibody or by brief trypsiniza- 
tion before adding Schwann cells. In both cases, cocultures 
subsequently myelinated comparably to control cultures 
(data not shown). These results indicate that TGF-/31 does 
not irreversibly block the ability of Schwann cells to form 
myelin. We next added TGF-/~I at various times after estab- 
lishment of the cocultures. We previously noted that 3 d after 
switching cocultures to medium supplemented with serum 
and ascorbate, the first myelin sheaths are detectable by im- 
munofluorescence; many of the remaining Schwann cells ap- 
pear to be in an ensheathing or premyelinating relationship 
with axons (Einheber et al., 1993). Strikingly, addition of 10 
ng/ml of TGF-/~I just before the onset of myelination, i.e., 
48 h after switching to media supplemented with serum and 
ascorbate, also effectively blocked myelination in the cocul- 
rares (see Fig. 3 Gand Table H). In preliminary experiments, 
addition of TGF-/31 as late as 5 d after coculture appeared 
to profoundly inhibit myelin formation (data not shown), 
suggesting that Schwann cells in an early stage of myefina- 
tion are still efficiently inhibited by TGF-~I. By contrast, 
once extensive amounts of myelin have formed (i.e., after 1 
wk of coculmre), treatment with TGF-/~I for an additional 
week or longer did not result in appreciable degeneration of 
myelin sheaths that had already formed (data not shown). 
Taken together, these results indicate that TGF-/~I must be 
present during the period of active myelination to inhibit this 
process effectively, pretreatment does not irreversibly inhibit 
Schwann cells from forming myelin, nor does short term 
treatment cause breakdown of mature myelin sheaths that 
have already formed. 

TGF-{$ Results in IX, fects of Schwann Cell 
Ensheathment and Basal Lamina Formation 

To determine more precisely the effect of TGF-/31 on 
Schwann cell ensheathment and myelination, we performed 
an ultrastructural analysis of cocultures of Schwann cells and 

Figure 4. Ultrastructure of control and TGF-~l-treated cultures. 
Electron micrographs of control (.4) and TGF-B-treated cultures (B 
and C). The culture shown in B was treated with 10 ng/ml of TGF- 
~1 from the time the culture was switched to media promoting my- 
elination; TGF-/~ was added to the culture shown in C 2 d after 

switching to this media. Large neurites (n) that are myelinated or 
loosely wrapped are visible in the control culture; similar sized 
neurites are only partially segregated off in B, or they are en- 
sheathed together with small nerve fibers in C. An area of patchy 
basal lamina present in the TGF-/~-treated culture in B is indicated 
by the arrowheads. Bar, 0.5/tm. 

The Journal of Cell Biology, Volume 129, 1995 450 



Table IlL TGF-(31 Inhibits Schwann Cell Basal 
Lamina Formation 

Day of Number of 
TGF-/~ 1 Concentration Schwann cells 
addition of add~  TGF-BI examined 

Percent of Sehwann cells 
with a basal lamina 

Complete Partial Absent 

ng/ml 

0 0 229 68.6 31.4 0 
0 10 165 15.2 80.6 4.2 
2 10 205 59.5 40.5 0 

The extent of basal lamina formation in Schwann celI/DRG cocultures grown 
in the absence or presence of 10 ng/ml TGF-/~I was determined from electron 
rnicrographs. The TGF-BI was added either at the time the cultures were 
switched to standard media containing ascorbic acid (day 0) or after the cul- 
tures had been maintained in this media for 2 d (day 2). After 8 d of growth 
under myelinating conditions, the cultures were fixed and processed for elec- 
u rn  microscopy. The Schwann cell basal lamina was scored as complete if it 
formed a continuous, uninterrupted layer around Schwann cells associated with 
neurites. The percentage of Schwann cells with complete basal lamina in the 
control cultures and cultures treated with 10 ng/ml of TGF-B1 on day 2 was 
greater than in the cultures treated with TGF-OI on day 0 (P < 0.0(D1). 

neurons maintained with or without 10 ng/ml of'rGF-/~l for 
8 d (see Fig. 4). Cultures treated with 10 ng/ml TGF-B1 
demonstrated a variety of abnormalities when compared to 
control cultures, including defects of ensheathment, com- 
plete failure to form myelin, and partial defects of basal lam- 
ina formation (Fig. 4 B). In the treated cultures, Schwann 
cells typically extended relatively short processes into the 
nerve fiber bundles and only partially separated nerve fibers. 
By light microscopy, this abnormality of ensheathment ap- 
peared to be more prominent in the center of the coverslip, 
where bundles of unensheathed fibers were frequently ob- 
served, than in peripheral regions where there were more 
Schwann cells (data not shown). However, ensheathment was 
clearly abnormal and more rudimentary in the periphery 
compared to control cultures. In addition, the rough ER was 
quite prominent in many of the treated Schwaun cells which 
frequently contained cisternae of swollen ER decorated with 
ribosomes (see Fig. 4 B). Finally, the amount of basal lamina 
formed by TGF-B-treated Schwarm cells appeared to be thin- 
ner and less complete than in control cultures. Schwarm cells 
containing only a partial basal lamina were much more com- 
mon in the treated cultures than in the control cultures, and 
cells devoid of any basal lamina were present in the treated 
cultures, but not in the control sections that were analyzed. 
These effects of'rGF-~l on basal lamina formation are quan- 
titated in Table ill. 

We also examined the morphology of cocnltures treated 
with 1 ng/ml of TGF-/~I, as well as cocultures placed on 10 
ng/ml after 2 d of culture in the presence of serum and astor- 
bate. In general, cultures treated with 1 ng/ml of TGF-/5'I 
demonstrated defects sinailar to those described above, al- 
though the abnormalities were not as pronounced. Ensheath- 
ment of nerve fibers had progressed further, occasional my- 
elinated fibers were encountered, and defects of the basal 
lamina were not as severe (data not shown). Cultures that 
were treated with 10 ng/ml of TGF-~I after a 2-d delay, al- 
though appearing to ensheathe more normally, still con- 
tained very few myelinated fibers. This failure to myelinate 
may reflect the fact that fewer large diameter neurites ap- 
peared to be segregated off in a 1:1 relationship with Schwann 
cells in comparison to control cultures (see Fig. 4 C). Of 

particular note, the Schwann cell basal lamina in these cul- 
tures was comparable to controls (see Table m).  Therefore, 
these results suggest that the ability of TGF-/~I to inhibit my- 
elination in these cultures is likely to be independent of its 
effects on basal lamina formation. 

To analyze further the basal lamina defect in cultures 
treated with TGF-B1, we stained control and treated cultures 
with a polyclonal anti-laminin antibody 1 wk after adding 
ascorbic acid (shown in Fig. 5). In the control cultures, 
Schwann cells were actively myelinating and expressed read- 
ily detectable levels of MAG (Fig. 5 C). Expression of lami- 
nin by these early myelin segments was quite robust, and 
localized at the outer surface of myelin sheaths, as well as 
that of Schwann cells that had just begun to myelinate (Fig. 
5 E); nonmyelinating Schwann cells were also brightly 
stained, demonstrating a more fibrillar pattern of expression 
over their surface. By contrast, the pattern of laminin stain- 
ing in the treated cultures, while generally similar, was nota- 
bly attenuated and less distinct (Fig. 5 F). Schwann cells also 
appeared to be larger and more flattened in the treated cul- 
tures (Fig. 5 B), and they did not stain with MAG antibodies 
(Fig. 5 D). These results suggested that TGF-/3 inhibited 
laminin expression. To quantitate this effect, we analyzed the 
expression of laminin in treated and control cocultures by 
Western blot analysis. As shown in Fig. 6, the total amount 
of laminin present in the treated cocultures was significantly 
reduced. Quantitative analysis indicated that treated cultures 
contained ,~50% of the amount of laminin present in control 
cultures; in contrast, tubulin expression in these cultures was 
comparable (data not shown). It is of interest that the laminin 
antibody only recognized one or both of the laminin/~ chains 
in the treated and control cultures, but not the ~ chain, in- 
dicating that the major laminin component in these cultures is 
not laminin-1, but rather, a laminin isoform. In prelimi- 
nary studies, we have detected both c~2 (merosin) and/~2 
(S-laminin) chains in these cultures, with o~2 levels in partic- 
ular showing a significant decrease in the TGF-B-treated cul- 
tures (data not shown). 

TGF-[31 is a Mitogen for Purified Schwann Cells, 
but it Inhibits the Proliferation of Schwann Cells in 
Coculture with Neurons 

In view of previous reports that TGF-~ is a Schwann cell 
rnitogen (Eccleston et al., 1989; Ridley et al., 1989), we 
were surprised to note that there were consistently fewer 
Schwann cells in the cocultures treated with TGF-B1 than in 
the control cultures (see Fig. 3). These results suggested that 
TGF-/3 might have a paradoxical inhibitory effect on the 
proliferation of Schwann cells induced by neurons. To test 
this possibility, we compared the effect of TGF-/3 on the 
proliferation of purified Schwann cells to the effect on 
Schwann cells cocultured with neurons. Consistent with ear- 
lier reports, we found that TGF-/~I is a mitogen for purified 
Schwann cells, resulting in a nearly seven-fold increase in 
their labeling index (see Table IV). By contrast, TGF-~I is 
a strong antagonist of the proliferation induced by contact 
with neurites, reducing the labeling index by ,~60% at 1 
ng/ml and by ,x,75 % at 10 ng/ml; a representative experiment 
is shown in Fig. 7, and several such experiments are summa- 
rized in Table V. This inhibition of proliferation in the co- 
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Figure 5. Laminin staining of TGF-Bl-treated cultures. Control cultures (A, C, and E) or cultures continuously treated with TGF-~I at 
10 ng/ml (B, D, and F) were fixed after 1 wk and visualized by Nomarski optics (A and B), or they were immunostained for MAG (C 
and D) or laminin (E and F). Bar, 25/~m. 

cultures was observed when TGF-~ was added in media 
containing serum plus ascorbic acid (SA media) either im- 
mediately upon switching from serum-free media to SA 
media (condition A) or 2 d after such a switch (condition B). 
We also maintained the cocultures in media with serum but 
not ascorbic acid for 1 wk to allow Schwann cells to repopu- 
late neurites partially while preventing basal lamina forma- 
tion or myelination (Fernandez-Vall~ et al., 1993); we then 
added the TGF-BI in SA media (condition C). Under all 
three conditions, TGF-/31 significantly inhibited proliferation 

and any subsequent myelin formation. In addition, prolifera- 
tion of Schwann cells was also reduced in coculmres main- 
rained in serum-free defined media in the presence of TGF- 
/31 (data not shown). Thus the effects of TGF-B1 on Schwann 
cell proliferation strikingly differ, depending on whether or 
not Schwann ceUs are associated with nerve fibers. 

This effect of TGF-BI on Schwann cell proliferation raised 
the possibility that the cultures treated with TGF-~ failed to 
myelinate because of insufficient numbers of Schwann cells. 
In an effort to distinguish between the effect of TGF-~I on 
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Figure 6. TGF-/~I inhibits 
laminin expression. Lysates 
from control neuron/Sehwarm 
cell cultures (b) or cocultures 
treated with 1 ng/ml of TGF- 
~1 (c) or 10 ng/ml of TGF-~I 
for 1 wk (d) were prepared, 
fractionated, and probed with 
an antilaminin polyclonal anti- 
body, incubated with n5I pro- 
tein A, and visualized by auto- 
radiography. In lane (a), 0.4 ttg 
of larninin is shown for com- 
parison. Note that the upper 
band (artvg~ad) correspond- 
ing to the laminin c~ chain, 

which is present in the laminin control, is not expressed by the 
neuron/Sehwarm cell cultures. Also, the 3 chains (asterisk) are of 
lower relative molecular mass in the cocultures. 

Schwann cell proliferation and differentiation, we plated 
Schwann cells onto cultures that contained a third fewer neu- 
rons than our typical paradigm before adding TGF-31. Under 
these conditions, the ratio of Schwann cells to neurons was 
extremely high, and the number of Schwann cells in the con- 
trol and treated cultures were comparable when ceils were 
visualized with a dye that stains cell nuclei (data not shown). 
Nevertheless, no myelin was observed in any of the cultures, 
suggesting the effects of TGF-/~I on myelination are indepen- 
dent of its effects on proliferation. 

Expression of TGF-f3 Receptors in Cocultures of 
Schwann Cells and Neurons 
To identify whether neurons, Schwann cells, or both were 
targets of these effects of TGF-/~, we determined the pattern 
of TGF-3 receptor expression by cross-linking with iodi- 
nated TGF-/~I. Cultures of neurons alone or myelinating 
cocultures were incubated with radioactive TGF-/31 and then 
briefly treated with the homobifunctionai crosslinker BS 3. 
Lysates were then prepared, fractionated by SDS-PAGE, and 
exposed with a Phosphorlmager. Results are shown in Fig. 
8. In the Schwann cell/neuron cocultures, bands correspond- 
ing in size to ,,o70, 85, and a broad band from 200 to 250 
kD were strongly labeled and readily apparent (Fig. 8, lane 
c). These bands correspond in size to TGF-3 type I, type II, 
and type HI receptors, respectively, that were previously 
defined in other systems by similar techniques (Wang et al., 
1991). Specificity of this cross-linking pattern was indicated 
by the ability of excess, unlabeled TGF-31 to block essen- 
tially all labeling (Fig. 8, lane d). By contrast to the strong 
expression of receptors in these cultures, very little labeling 
of receptors was observed in the cultures of neurons alone. 
As most of the neurons are likely to be either ensheathed or 
myelinated by Schwann cells in these mature cocultures, and 
in view of the minimal expression of receptors in the neuron 
cultures, these results suggest that Schwann cells are the 
principal cell type expressing TGF-/~ receptors in the cocul- 
tures. This result is consistent with the effect of TGF-/~I on 
Schwann cell markers (Table I) in contrast to its limited 
effect, if any, on neurons. 

Table IV. TGF-f31 Stimulates Schwann Cell Proliferation 
in the Absence of Neurons 

Concentration 
of added TGF-~ 1 Percent of BrDU-positive cells 

ng/ral 

0 0.9 5 :0 .4  
1 6.3 5:1.4 

10 5.9 5:1.2 

Proliferation assays were performed on cultures of Schwarm cells maintained 
for 72 h in standard media with or without TGF-~I. The percent of BrDU- 
positive cells after a 3-h pulse was determined from three or four coverslips 
per condition from a representative experiment; mean values and SEM are 
shown. The percent of BrDU-positive cells in the control cultures was sig- 
nificantly different from that of the cultures treated with 1 ng/ml and 10 ng/ml 
TGF-~I (P < 0.05). 

Table V. TGF-[31 Inhibits Schwann Cell Proliferation 
Induced by Coculture with Neurons 

Concentration of added 
Condition TGF-/31 Percent of BrDU-positive cells 

ng/ml 

A 0 22.4 + 0.3 
1 7.7 5 :1 .0  

10 6.4 5 :0 .6  

B 0 13.5 5 :3 .2  
1 6.1 5:1 .5  

10 3.0 5:0.7 

C 0 9.0 5:0.5 
10 1.5 5:0.3 

The effect of TGF-/}I on the proliferation of Schwann cells in coeuiture with 
neurons was determined under three different culture conditions. In condition 
A, neurons seeded with Schwann cells were maintained in a defined media for 
3 d, and then switched to standard media containing ascorbic acid with or 
without TGF-#1 for 20 h. In condition B, Schwann cell/neuron cocultures were 
grown in a defined media for 3 d and standard media containing ascorhic acid 
for 2 d before addition of the TGF-#I. In condition C, the cocultures were 
maintained in standard media for 7 d, and then switched to standard media con- 
taining aseorbic acid with or without TGF-B1. The percent of BrDU-positive 
cells after a 3-h labeling period was determined from duplicate or triplicate 
coverslips from representative experiments for conditions A and B and from 
six coverslips for condition C; mean values and SEM are presented. In all three 
conditions, the percent of BrDU-positive cells in the control cultures were sig- 
nificantly different than those of cultures that were treated with 10 ng/ml 
TGF-/~I (P < 0.05). 

Discussion 

In this paper, we have investigated the expression of TGF-/3 
by neurons and Schwann cells, and we have characterized the 
effect of TGF-ffl, an abundant isoform produced by Schwann 
cells, on their proliferation and differentiation. We have 
found that TGF-/31, which induces the proliferation of 
Schwann cells grown alone, dramatically inhibits the prolif- 
eration, myelination, and basal lamina formation of Schwann 
cells in coculture with neurons. These results suggest that 
TGF-B1 may be an important mediator of axon/Schwann cell 
interactions, regulating Schwann cell proliferation and dif- 
ferentiation during development and, as will be discussed, 
after nerve injury. 

Expression of TGF-[3 Isoforms by Schwann Cells 
and Neurons 

We have obtained compelling evidence that both Schwann 
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Figure 7. TGF-B1 inhibits Schwarm cells proliferating on neurites. Schwann cells were seeded onto cultures of sensory neurons, maintained 
in defined media, and then switched to SA media without TGF-B1 (A and B) or with 1 ng/ml of TGF-B1 (C and D) or 10 ng/ml of TGF-B1 
(E and F). After 24 h, BrDU was added for 3 h and cultures were fixed and stained with an anti-BrDU antibody (A, C and E), or the 
same fields were visualized with a nuclear dye (B, D, and F). Bar, 100 #m. 

cells and sensory neurons synthesize all three TGF-# iso- 
forms, although the proportions vary by cell type. Thus, 
Schwarm cells secrete a higher proportion of TGF-~I and -/32 
compared to neurons that express relatively more TGF-/32 
and -/33. This work significantly extends previous investiga- 
tions on the expression of TGF-/3 isoforms by neurons and 
Schwarm cells in the peripheral nerve (Flanders et al., 1991; 
Unsicker et al., 1991; Scherer et al., 1993) and in vitro 
(Mews and Meyer, 1993; Rogister et al., 1993). By using a 
bioassay, we also determined the amount of total vs active 

TGF-/$ for each isoform. In each case, the majority of the 
TGF-/3 detected was latent, with active levels in the 3-5 
pg/ml range. This concentration of TGF-/~ has significant 
biological effects in many systems (reviewed briefly in Abe 
et al., 1994). Whether these levels are biologically sig- 
nificant for Schwann cells is not yet dear. It should be 
noted that we have measured the amount of TGF-/$ present 
in the culture media, and we do not yet know whether this 
accurately reflects the levels of TGF-/$ associated with the 
cells and their extracellular matrix. Moreover, the concen- 
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Figure 8. Expression of TGF-~ receptors in cocultures. Iodinated 
TGF-/31 was cross-linked to cultures of neurons alone (lanes a and 
b) or heavily myelinated neuron/Schwann cell cocultures (lanes c 
and d) in the absence (lanes a and c) or presence (lanes b and d) 
of an excess of unlabeled TGF-~. Cell lysates were prepared, frac- 
tionated by SDS-PAGE, and they were exposed with a Phos- 
phorlmager. The major bands that are visible in the myelinating 
cocultures correspond in size to the three major classes of TGF-~ 
receptors as indicated to the right; molecular weight markers are 
provided on the left. 

tration of TGF-• present in the periaxonal space could be 
higher than the amounts detected in the media, particularly 
if TGF-/5 is released into this site by neurons or Schwann 
cells, as may be the case for other growth factors, notably 
acidic FGF that has been localized immediately subjacent 
to the axolemma (Elde et al., 1991). Immunolocalization of 
TGF-/3 and its receptors should clarify this issue. 

It is of particular interest that there is a specific decrease 
in the amount of TGF-~I in the conditioned media from the 
cocultures, particularly in comparison to the Schwann cell 
cultures. By contrast, TGF-ff2 levels in the cocultures re- 
main essentially unchanged and TGF-/33 levels may even in- 
crease in comparison to the Schwann cell cultures. This 
reduction in the amount of TGF-81 occurs despite the in- 
creased number of cells present in the cocultures (i.e., both 
neurons and Schwann cells). Also, this decrease was ob- 
served in cocultures maintained without ascorhic acid, 
which therefore lacked a basal lamina to which TGF-/31 
might bind. These results indicate that expression of TGF-~I 
is reduced as a result of neuron/Schwann cell interactions. 
Strong support that TGF-BI levels are indeed regulated by 
Schwann cell/neuron interactions was provided by a recent 
report that TGF-/51 mRNA levels increase dramatically after 
sciatic nerve crush, and that they fall again as nerve fibers 
regenerate and contact the Schwann cells again (Scherer et 
al., 1993); interestingly, a converse pattern of expression 
was noted for TGF-/53. Similarly, TGF-131 protein levels were 
noted to increase substantially at the site of sciatic nerve 
crush by immunocytochemistry (Register et al., 1993). Fi- 
nally, treatment of Schwann cells with forskolin, which 
mimics many of the effects of axonal contact, downregulates 
the expression of TGF-/31 (Mews and Meyer, 1993; Scherer 
et al., 1993). Taken together, these findings indicate that ex- 
pression of'IGF-/31 by the Schwann cell is significantly and 

specifically downregulated by axons, and that it increases 
substantially after peripheral nerve injury. As will be dis- 
cussed further, these findings and the effects of TGF-/31 on 
Schwann cells support a role for TGF-B1 during Wallerian 
degeneration. 

TGF-[3 Has Dual Effects on Schwann Cell 
Proliferation That Depend on Neuronal Contact 

TGF-BI and -/32 were previously reported to be Schwann cell 
mitogens (Eccleston et al., 1989; Ridley et al., 1989; Davis 
and Stroobant, 1990; Schubert, 1992; Register et al., 1993) 
in contrast to their inhibition of cell proliferation in many 
other cell types (Massagut, 1990; Sporn and Roberts, 1992). 
We have confirmed these results, observing an approximate 
seven-fold increase in the labeling index of Schwann cells 
treated with TGF-B1. It is not yet known whether TGF-/3 acts 
directly as a mitogen or, alternatively, promotes Schwann 
cell proliferation by inducing expression of another growth 
factor, as has been reported in the case of its mitogenic effect 
on aortic endothelial cells (Leof et al., 1986). In striking 
contrast to its mitogenic effect on purified Schwann cells, we 
found that TGF-B1 is a potent inhibitor of the Schwann cell 
proliferation engendered by neurons. Because Schwann cells 
are normally quiescent unless they are in contact with axons 
(Wood and Bunge, 1975; Salzer et al., 1980), this TGF-/3 
effect could reflect a direct inhibition of Schwann cell 
proliferation or, an indirect effect, i.e., interfering with the 
ability of the axon to deliver its mitogenic signal. The rapid 
inhibition of proliferation in the Schwann cell/neuron cocul- 
tures and the apparent lack of significant numbers of TGF-/3 
receptors on neurons, however, suggest that this is a direct 
effect on Schwann cell proliferation and is not caused by inhi- 
bition of the expression of the neuronal mitogen. These re- 
sults also emphasize that the response of Schwann cells to 
polypeptide growth factors can dramatically differ depend- 
ing on their association with nerve fibers. 

TGF-[3 Regulated Schwann Cell Differentiation 

A major finding of this study is that TGF-/3 appears to drive 
Schwann cells towards a non- or premyelinating phenotype, 
inhibiting the expression of the p75 NGF receptor and par- 
tially blocking the forskolin mediated induction of P0. These 
findings confirm recent reports that TGF-/5'I inhibits p75 
NGF receptor mRNA (Mews and Meyer, 1993; Register et 
al., 1993), as well as the forskolin induction of P0 protein 
and mRNA (Mews and Meyer, 1993; Morgan et al., 1994). 
The effects of TGF-/~I on cell adhesion molecule expression 
by Schwann cells are more complex. We found that TGF-/~ 
treatment of Schwann cells results in a consistent increase in 
NCAM expression that ranged from 1.6-fold in the presence 
of serum to 6-fold in serum-flee media (Table 1). By con- 
trast, TGF-/5'I, particularly at high concentrations in the 
presence of serum, significantly suppressed L1 expression 
whereas at low concentrations in defined media, TGF-#I had 
a minimal or even a stimulatory effect on L1 expression. 
These latter results may be compared to previous reports that 
TGF-/~I increases the expression of NCAM protein and 
mRNA by two- to three-fold in the 3T3 fibroblast line 
(Roubin et al., 1990), and that it upregulates L1, but not 
NCAM, protein and mRNA in a population of postnatal mu- 
rine cerebellar glial cells (Saad et al., 1991). Taken together, 
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these findings indicate that TGF-/~I has complex effects on 
adhesion molecule expression that vary by cell type, and they 
demonstrate that expression of NCAM and L1 can be in- 
dependently regulated in Schwann cells. Although we have 
not specifically investigated the functional significance of the 
changes in cell adhesion molecule expression induced by 
TGF-B, we have noted that treated Schwarm ceils tend to ag- 
gregate more readily after trypsinization than control cells 
(Einheber, S., and J. Salzer, unpublished observations), sug- 
gesting that TGF-~I promotes adhesive interactions. 

We have also characterized the effects of TGF-BI on the 
expression of the Schwann cell transcription factor SCIP. 
TGF-ffl increased SCIP expression from two- to eight-fold 
in the presence of 1 or 10 ng/ml of TGF-BI, respectively. 
Since SCIP expression has been correlated with the premye- 
linating phenotype (Monuki et al., 1990), these results pro- 
vide additional evidence that TGF-~I promotes the transition 
of Schwann cells to an early, nonmyelinating phenotype. 
TGF-~, together with agents that elevate intracellular 
cAMP, represent independent mechanisms for elevating 
SCIP expression in Schwann cells. However, although both 
TGF-/31 and forskolin induce SCIP expression, they have 
contrasting effects on the Schwann cell phenotype, with 
TGF-BI suppressing and forskolin promoting the myelinat- 
ing phenotype. Because SCIP has been demonstrated to re- 
press transcription of the P0 and NGF receptor promoters 
(Monuki et al., 1990; He et al., I991), these findings raise 
the possibility that the inhibition of P0 and NGF receptor ex- 
pression by TGF-BI is related to this increased SCIP expres- 
sion. (The effect of TGF-B1 on SCIP does not explain its abil- 
ity to antagonize the forskolin induction of P0 expression, 
since SCIP levels in Schwann calls treated with both forsko- 
lin and TGF-BI were lower on average than the levels in cells 
treated with forskolin alone.) The relationship of this in- 
crease in SCIP expression, if any, to the observed changes 
in NCAM and L1 levels, remains to be determined. 

TGF-{31 Inhibits Schwann Cell Myelination and Basal 
Lamina Formation 
One of the most dramatic findings of this paper, the essen- 
tially complete inhibition of myelination in the cocultures 
treated with TGF-~I and -~2, also supports a role for TGF-/~ 
in promoting a pre- or nonmyelinating phenotype. Thus, in 
the presence of 1 ng/rnl, there is a substantial reduction in 
the extent of myelination, and at 10 ng/ml of TGF-ffI and -/~2, 
there is a complete inhibition of myelination. The inhibitory 
effect of "I'GF-/31 appears to require its presence during the 
period of active myelination; pretreatrnent of Schwann cells 
with TGF-ffl, or treatment with TGF-ffl after myelin seg- 
ments had already formed, appeared to have minimal effects 
on myelination. This inhibition is likely to be a direct effect 
of TGF-fl on the Schwann cell rather than an indirect effect 
on the neuron. This is consistent with the high level expres- 
sion of TGF-~t receptors by myelinating Schwann cells, but 
not by neurons (see Fig. 8), and the striking effects of TGF-/3 
on Schwarm cell proliferation and cell adhesion molecule 
expression in contrast to any obvious effects on neurons. 
The mechanism by which TGF-~ inhibits myelination by 
Schwann cells is not yet known. We observed that although 
no myelin segments form in the treated cocultures, Schwann 
cells display detectable and particulate staining for MBP 

(see Fig. 3 E). This result suggests that MBP, and perhaps 
other myelin components, may continue to be synthesized at 
low levels in the presence of TGF-B, but cannot be assembled 
into a myelin sheath. Additional studies will be required to 
clarify this point. 

We have also found that TGF-ffl inhibits assembly of the 
basal lamina. In particular, the basal lamina appeared patchy 
and thin in cocultures treated with TGF-B in comparison to 
untreated cultures (see Fig. 4). These findings are also sup- 
ported by the attenuated laminin staining and reduced 
amount of laminin detected in the treated cultures. The inhi- 
bition of Schwann cell proliferation by TGF-~ with the con- 
sequent reduction in the number of Schwann cells may have 
accentuated this reduction). Of note, the major laminin iso- 
form in these cultures is not laminin-1, but appears to be 
laminin-2 and/or laminin-4, consistent with previous studies 
on the expression of these isoforms in peripheral nerve in 
vivo (Sanes et al., 1990). These effects of TGF-~I on the 
Schwann cell basal lamina appear to contrast with its effects 
on Schwann cells grown alone. Specifically, TGF-BI has 
been reported to increase the expression of collagen type IV, 
but not laminin, mRNAs by adult Schwann cells and to de- 
crease the secretion of tissue-type plasminogen activator and 
increase the secretion of PAI by adult Schwann cells 
(Rogister et al., 1993). These results suggest that it promotes 
extraceUular matrix accumulation in purified populations of 
Schwann cells. Thus, the effect of TGF-B1 on the synthesis 
of the Schwann cell extracellular matrix may also depend on 
axonal interactions. 

It should be noted that, because TGF-I3 has pleiotropic 
effects on Schwann cells, including effects on proliferation 
and basal lamina production, the inhibition of myelination 
may be multifactorial. Nevertheless, we were able to distin- 
guish the inhibitory effects of TGF-B1 on Schwann cell 
proliferation and basal lamina production from those on my- 
elination by seeding excess Schwann cells on neurons and by 
adding TGF-B1 to the cocultures after a basal lamina had 
formed, respectively. In addition, the ability of TGF-B1 to 
antagonize the forskolin-mediated induction of P0 protein 
(see Fig. 2) and mRNA in Schwann cells maintained under 
culture conditions that preclude basal lamina formation and 
proliferation (Morgan et al., 1994), also argues that TGF-BI 
can directly inhibit Schwann cell differentiation into the my- 
elinating phenotype. 

The Potential Role of TGF-[31 in Development 
and Degeneration 
These studies raise the possibility that TGF-ffl may function 
as a negative regulator of Schwann cell proliferation and 
differentiation during peripheral nerve development. Poten- 
tiaUy, once an appropriate complement of cells is generated, 
TGF-/3 could terminate further proliferation of Schwann 
cells and/or maintain Schwann cells in an ensheathing state 
in unmyelinated nerves. We do not favor this model for sev- 
eral reasons. In the studies reported here, rather than finding 
an increase in the levels of TGF-~ in the mature cocultures 
at a time when Schwann cell proliferation is markedly re- 
duced, we observed the reverse. In addition, anti-TGF-fl an- 
tibodies that neutralize all three isoforms of TGF-B had no 
discernible effect on Schwann cell proliferation in the eocul- 
ture system (Lin, J., and J. Salzer, unpublished observa- 
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tions), nor did they result in a significant increase in the num- 
ber of myelinated fibers that formed when Schwann cells 
were cocultured with either sensory or sympathetic neurons. 
Rather, we suggest that during development, expression of 
TGF-/31 is normally downregulated as a result of axonal con- 
tact, thereby allowing Schwann cell proliferation and dif- 
ferentiation to progress. 

The regulated expression of TGF-/31 and its effects do sug- 
gest a role for TGF-Aq during Wallerian degeneration. As 
noted, TGF-~I levels increase dramatically after peripheral 
nerve injury (Rogister et al., 1993; Scherer et al., 1993). In 
addition, many of the changes that occur in Wallerian de- 
generation are consistent with the effects of TGF-/3 on 
Schwann cells (see also discussion in Scherer et al., 1993). 
Thus, an increase in TGF-/3 would be expected to induce 
proliferation of isolated Schwann cells in the distal stump 
and increase their expression of NCAM, although perhaps 
not L1. Also, the increase in TGF-/31 levels that accompany 
Wallerian degeneration may account for the modest, tran- 
sient increase in SCIP expression that has been observed sev- 
eral days after nerve transection (Monuki et al., 1990; 
Scherer et al., 1994). In addition, TGF-/~ is chemotactic for 
macrophages (Wahl et al., 1987); its increase during Wal- 
lerian degeneration would therefore be expected to promote 
infiltration of macrophages into the distal stump. Macro- 
phages release interleukin-1 in response to TGF-/~ (Wahl et 
al., 1987) which, in turn, has been implicated in the in- 
creased expression of NGF and the NGF receptor by non- 
neuronal cells during Wallerian degeneration (see Brown et 
al., 1991; Matsuoka et al., 1991). Macrophages may further 
amplify the response to TGF-/~I by activating latent TGF-/31 
(Wahl, 1992), as well as releasing other soluble factors that 
are mitogenic for Schwann cells (Baichwal et al., 1988). 
TGF-~l promotes the survival of motor and sensory neurons 
(Martinou et al., 1990; Chalazonitis et al., 1992), suggest- 
ing it may have neurotrophic activity itself. Finally, TGF-B 
stimulates the synthesis of tenascin-C by fibroblasts (Pearson 
et al., 1988; Tucker et al., 1993), an extracellular matrix 
component that regulates nerve fiber outgrowth and that is 
known to increase after peripheral nerve injury (Martini et 
al., 1990). 

These effects of TGF-/31 may be important to the ability 
of nerve fibers to regenerate in the peripheral nervous sys- 
tem. Myelinated nerve fibers (Bedi et al., 1992) and myelin 
components such as MAG (Mukhopadhyay et al., 1994) are 
nonpermissive substrates for the regeneration of adult neu- 
rons. By recruiting macrophages, which scavenge myelin de- 
bris (Stoll et al., 1989; Brown et al., 1991), and by promot- 
ing the transition of Schwann cells from a myelinating to a 
nonmyelinating phenotype, increased TGF-/31 levels would 
be expected to enhance nerve fiber regeneration in the distal 
stump. Elevated levels of TGF-/~I might also delay myelina- 
tion in the distal stump as nerve fibers begin to grow back, 
thereby preventing the generation of a nonpermissive sub- 
strate. Once a full complement of nerve fibers have grown 
back into the distal stump, TGF-/51 is downregulated (Scherer 
et al., 1993), presumably allowing subsequent ensheathment 
and myelination to ensue. By contrast, TGF-~l does not ap- 
pear to cause breakdown of myelin that has already formed 
(data not shown) or to induce the proliferation of Schwann 
cells already associated with neurites. The apparent absence 
of effects on mature myelin sheaths may ensure that unin- 

jured fibers proximal to the site of injury, or in close prox- 
imity in the case of a partial nerve injury, are not adversely 
affected by TGF-B. 

In summary, we have provided evidence that TGF-~ has 
profound effects on axon/Schwann cell interactions that differ 
from its effects on Schwann cells alone. These data suggest 
an important role for TGF-B in the regenerative responses 
that follow peripheral nerve injury, as well as a possible role 
as a negative regulator of Schwann cell proliferation and 
differentiation during development. 
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Note Added in Proof. A similar inhibitory effect of TGF-/~ on Schwann cell 
myelination in vitro was recently reported (Gudnard, V., L. A. Gwynn, and 
P. Wood. 1995. J. Neurosci. 15:419-428). 
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