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Abstract: Continuous ceramic fiber comprising silicon carbide–zirconium carbide (SiC–ZrC) binary
phases was obtained through melt spinning, electron-beam curing and pyrolysis of a pre-ceramic
precursor of polyzirconocenecarbosilanes (PZCS). After pyrolysis and heat treatment, ZrC particles
with mean diameters of 15–20 nm were formed and homogeneously dispersed in a matrix of fine
crystalline β-SiC with an average grain size of 6–10 nm. Concentration of Zr in the fiber varies
from 14.88% to 17.45% by mass. Fibers consisting of near-stoichiometric ZrC and SiC with little
free carbon can be obtained through pyrolysis decarbonization of the as-cured fiber in hydrogen
from room temperature to 1000 ◦C, and subsequently heat treatment in argon up to 1600 ◦C for 1 h.
High-temperature treatment of these amorphous inorganic fibers leads to crystallization of the binary
phases of β-SiC and ZrC. The removal of free carbon under hydrogen results in more rapid growth
of β-SiC and ZrC crystals, in which obvious aggregation of the dispersed ZrC particles among the
continuous β-SiC matrix can be ascribed to a fast migration of Zr cation.

Keywords: ceramic fiber; silicon carbide; zirconium carbide

1. Introduction

Silicon carbide (SiC) fiber synthesized from polycarbosilane is one of the most important
reinforcements for ceramic matrix composites (CMCs), which are now finding more and more
applications to meet harsh environments of high temperature and air-oxidation such as turbo-engine
blades in aerospace industry [1–5]. Polycrystalline SiC fiber exhibits brittle fracture behavior at room
temperature but being ductile under applied certain stress at temperatures above 1200 ◦C. In fact,
plastic deformation and rupture caused by creep has become a key limitation of this material for any
possible long-time applications at temperatures above 1200 ◦C under loading [6–9].

In general, SiC does not melt at any known temperature and its high decomposition temperature
(approximately 2700 ◦C) makes it natural candidates for high temperature applications without the
risk of creep failure under temperatures of 1200 ◦C (~0.5Tm, in K) [10,11]. However, a recent research
showed that a cavitation-governed creep of crystalline SiC fine fibers with diameters smaller than
15 microns occurs dramatically at 1200 ◦C [5]. Amorphous silica (glass phase) and crystalline oxides
(alumina or titanium oxide) with low melting points existing along grain boundaries (GBs) of SiC
fine grains enhance creeping. Therefore, larger grain size in stoichiometric SiC fibers leads to both,
minimum numbers and high viscosity of GBs, which results into suppressing cavitation movement
and GBs sliding. On the other hand, the larger crystalline size of SiC in a continuous fiber results in
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extremely high modulus (about 440 GPa for H-Nicalon type S) with decreased tensile strength and
toughness. Thus, the rigid SiC fibers increase difficulties in weaving quite as well as a rise of the
cost caused by purification and growth of SiC grains at higher temperatures and extended retention
time [12,13].

Crystallization and strengthening of GBs in polycrystalline SiC can also be achieved via
precipitation or introduction of non-soluble secondary phase with a higher melting point and modulus
than SiC. Creep in SiC fiber can be retarded by introduction TiB2 with only 2.4% in mass. It was
found that the incorporated ~50 nm TiB2 particles reside in triple point of SiC GBs which limits
the sliding of SiC [14,15]. Thus, some high-melting carbides and borides such as zirconium and
hafnium are an essential prerequisite for using as resistance to creep in SiC fiber. With this attempt,
direct polymerization of 1-methylsilene into polycarbosilanes has been investigated using various
metallocenes as catalyst during surface dechlorination of dichloromethylsilanes by sodium [16]. For the
first time, we have shown a metallocene catalytic insertion polymerization of tautomeric 1-silene into
polycarbosilanes as analogs of polyolefins [16,17]. The polycarbosilanes synthesized through this
molecular insertion process is suitable for spinning into SiC–ZrC composite ceramic fibers. These
transition metal carbides may act as reinforcements that improve the creep resistance as well as the
thermal and oxidation resistance of the SiC ceramic [18].

2. Materials and Methods

2.1. Polymeric Precursors

Polyzirconocenecarbosilane (PZCS) was synthesized from dimethyldichlorosilane, zirconocene
dichloride and metallic sodium in toluene and used as precursor for the fabrication of the SiC–ZrC
composite fiber. The synthesis procedure and pyrolysis behavior of PZCS polymer have been
reported in detail [16,17], which was a product of zirconocene catalytic insertion polymerization of
1-methylsilene transient intermediates (CH2=SiHCH3) with a molecular Equation (1) [13], herein
R = CH3 and n = 10–25. The polymer has an average molecular weight of 1080 g/mol, as determined by
a gel-permeation chromatography (GPC) using toluene as the eluent and polystyrene as the calibration
standard. The softening point of PZCS for melt spinning is around 120 ◦C and the ceramic yield in Ar
at 1000 ◦C is 58%.
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2.2. Fabrication of Fibers

PZCS about 40 g was charged into the spinning can and heated to the spinning temperature
(135–140 ◦C) under a nitrogen atmosphere and then extruded through a single-hole spinneret with
a diameter of 0.25 ± 0.05 mm. The PZCS green fibers were cured in a flow reactor in argon by
electron-beam irradiation (beam current of 1.0–2.5 mA, retention time of 3–5 h and dose for the curing
is about 5–8 MGy). The as-cured fibers were heated to 1000 ◦C under H2 or Ar atmosphere, then
heated to 1600 ◦C under Ar atmosphere and maintained at 1600 ◦C for 1 h. In above-mentioned two
cases, a heating and cooling rate is 2 ◦C/min. For ease of description, the former was marked as H2–Ar
process fiber and the latter was marked as Ar–Ar process fiber.

2.3. Characterizations

The elemental contents in the fibers were analyzed, in which the contents of Si and Zr were measured
by ICP-OES in a Thermo Fisher ICAP6300 spectrometer (Waltham, MA, USA), the contents of carbon and
hydrogen were acquired by an Elementar Vario EL determinator (Langenselbold, Germany). The TC-436
N/O analyzer was used to determine the content of oxygen element (LECO, St. Joseph, MI, USA).
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The phase compositions in the pyrolysized fibers were identified by X-ray diffraction (XRD,
PANalytical X’Pert-PRO diffractometer, Eindhoven, Netherlands) at 2θ = 10◦–90◦ with Cu Kα radiation
(λ = 0.15406 nm at 40 kV and 30 mA).

Free carbon in the fibers was examined with a Raman micro-spectrometry (Horiba Jobin-Yvon,
Paris, France), using the green line of a He-Ne laser (632.8 nm) as excitation source and scattering was
measured in the first-order spectrum ranging 900–2000 cm−1.

The microstructures and elemental concentrations of the particles in the fibers were characterized
with scanning electron microscopy (SEM, S4800, Hitachi, Tokyo, Japan) and transmission electron
microscopy (TEM, TecnaiG20, FEI, Hillsboro, OR, USA) equipped with an X-ray energy dispersive
spectrometer (EDS). The samples were sprayed with a carbon film and then observed with SEM.

3. Results and Discussion

3.1. Morphologies of the Polymeric and Ceramic Fibers

The used precursor PZCS is a thermoplastic polymer, which shows excellent spinnability around
150 ◦C, but the derived green fiber will undergo remelting and lose their fabric shape before
thermosetting and pyrolysis into inorganic fiber. Therefore, curing or aging of this green fiber
into thermosetting one is the first key step herding the following inorganic chemical transformation.
It was well known that a traditional polycarbosilane can be cured by oxidation in hot air or oxidized
gases such NO2, which happens via chemical reactions between Si-H with oxygen into Si-O-Si linkage
and water [1,12,14]. This curing clearly occurs starting from the surface of the fiber and goes slowly
into deeper site governed by oxygen diffusion. Oxidation curing will inevitably and in-homogenously
introduce oxygen into the polymeric fibers, which leads to a silicon-carbon-oxygen complex formation
in the organic fiber after pyrolysis. Therefore, irradiation of the fiber by electron-beams (EB) with
high energy was applied for a homogeneous curing of the green fiber without introducing of oxygen
contamination, which is also applied in this study. Mechanisms of this thermosetting process based on
elimination reaction between two Si-H into Si-Si linkage and hydrogen releasing has been investigated
and discussed by Takeda et al. [13].

Surface and cross-section morphologies of the EB-cured PZCS fiber are shown in Figure 1a,b,
which shows a smooth surface and very dense cross-section fracture morphology of the green fiber
after EB-curing in argon. The EDS images of Si and Zr distribution from the surface to core are shown
in Figure 1c,d. No aggregation of zirconium phase is observed on the surface and cross-sectional parts
of the as-cured fiber.
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Figure 1. Scanning electron microscopy (SEM) images of the surface (a) and cross-section (b) of the
electron-beams (EB)-cured polyzirconocenecarbosilanes (PZCS) fiber and X-ray energy dispersive
spectrometer (EDS) images (c) and (d) from surface to core of the fiber.

The as-cured fibers are then transferred into a thermosetting state that does not undergo remelting
during pyrolysis up to 1000 ◦C either in H2 or in Ar atmosphere. Pyrolysis of the PZCS in Ar
finally leads to formation of ZrC, SiC and free carbon in the residual inorganic fibers after releasing
of complicated gaseous species such as methane, hydrogen and silanes [18]. The surface and
cross-sectional morphologies of the ceramic fibers treated by H2–Ar process or Ar–Ar process at the
temperatures of 1200, 1400 or 1600 ◦C show minor differences from each other. Figure 2 shows SEM
images of the surface and cross section of the fibers obtained by H2–Ar process 1200, 1400 or 1600 ◦C for
1 h. In all three cases, the ceramic fibers show very dense and homogeneous microstructures without
any visible cracks, voids or other flaws.

The backscattered electron (BSE) image mainly reflects the distribution of elements on the sample
surface. The brighter the region, the higher the atomic number. BSE images of the fibers at 1200 ◦C
(Figure 2b) and 1400 ◦C (Figure 2d) show a bright image, from which the SiC and ZrC in the fibers
cannot be distinguished. The contrast of bright and dark regions are observed in the image at 1600 ◦C
(Figure 2f), wherein Zr-rich brighter spots with the diameter of about 200 nm are dispersed in darker
Si-rich matrix. It can be seen that obvious aggregation of Zr in the fibers is more likely to occur at
1600 ◦C, which may be ascribed to the faster migration of Zr cations at higher temperatures.
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3.2. Phases Composition in the Ceramic Fibers

XRD analysis of the above ceramic fibers annealed by H2–Ar process at 1200, 1400 and 1600 ◦C for
1 h is shown in Figure 3a. It is indicated that ZrC is the only crystalline phase existing in the ceramic
fibers after annealing at 1200 ◦C. With the temperatures up to 1400 and 1600 ◦C for 1 h, both of the
crystalline phases of ZrC and SiC are identified in the ceramic fibers. The sharper diffraction peaks at
1600 ◦C than those at 1400 ◦C indicate a better crystallinity, which is in accordance with the SEM results.

XRD analysis of the other ceramic fibers by Ar–Ar process up to various temperatures of 1200,
1400 or 1600 ◦C is given in Figure 3b. According to the XRD patterns, the major phase existing in the
ceramic fibers obtained at 1200 and 1400 ◦C is also only ZrC. When the annealing temperature is up to
1600 ◦C, both crystalline phases of ZrC and SiC can be identified in the ceramic fibers, which indicates
that the crystallinity of ZrC and SiC increases with increasing temperatures.
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Figure 3. XRD patterns of SiC–ZrC ceramic fibers through (a) H2–Ar process and (b) Ar–Ar process up
to various temperatures of 1200, 1400 or 1600 ◦C.

Compared the results shown in Figure 3a,b, it is concluded that the diffraction peaks of crystalline
SiC formed by the Ar–Ar process at 1200 ◦C are close to those appeared by the H2–Ar process. With
the temperature up to 1400 ◦C or 1600 ◦C, the diffraction peak shapes of crystalline ZrC formed via the
H2–Ar process become sharper than those formed via the Ar–Ar process. It is also very clear that the
crystallinity of SiC formed via the H2–Ar process is better than that via Ar–Ar process when the heat
treatment is up to 1600 ◦C. That is, the introduction of H2 atmosphere below 1000 ◦C has effect on the
growth of ZrC and SiC grain sizes at 1600 ◦C, which is got to know via the following analysis.

Table 1 lists the elemental compositions and C/(Si + Zr) Atomic ratio of different fibers. Compared
with green fibers, the fibers after pyrolysis at 1000 ◦C in Ar or H2 atmosphere consist of Zr, Si, C and
O elements. With the pyrolysis atmosphere changing from Ar to H2 below 1000 ◦C, the Si content
increases from 43.82% to 51.95%, the Zr content from 14.88% to 17.10%, and the carbon content
decreases by about 10%, which results in the decrease of the C/(Si + Zr) atomic ratio from 1.90 to 1.15.
After the Ar–Ar process or H2–Ar process at 1600 ◦C, the contents Si and Zr slightly increase while
the carbon content further decreases, which can be ascribed to carbothermal reduction of C and O
elements. The C/(Si + Zr) atomic ratio in the fibers by H2–Ar process at 1600 ◦C is 1.11, which means
the fibers consist of near-stoichiometric ZrC and SiC.

Table 1. Content and C/(Si + Zr) Atomic ratio of different fibers.

Content (wt %) Si C Zr O H Cl C/(Si + Zr) Atomic Ratio

Green fibers 32.94 44.37 6.80 1.21 12.66 2.02 2.96
Fibers in Ar (1000 ◦C) 43.82 39.51 14.88 1.89 / / 1.90
Fibers in H2 (1000 ◦C) 51.95 28.32 17.10 2.63 / / 1.15

Ar–Ar process fiber at 1600 ◦C 45.19 38.82 14.93 1.16 / / 1.82
H2–Ar process fiber at 1600 ◦C 52.73 27.68 17.45 2.10 / / 1.11

It was known that pyrolysis of PZCS in Ar led to the formation of ZrC, SiC and free carbon in
the resultant fiber [18]. Then free carbon remaining in the fibers obtained at 1600 ◦C is analyzed and
determined by its micro-Raman spectra (Figure 4). For the fibers obtained via the Ar–Ar process,
the strong and sharp peaks at 1358 and 1590 cm−1 are recorded. The scattering peak at 1590 cm−1 is
ascribed to the E2 g mode of the graphene layers and usually labeled as G band (name after “graphite”),
while the scattering peak at 1358 cm−1 is designated to the D band of pyrolytic carbon (named after
“defect”). The ratio of intensities of D band and G band is larger than 1, which means a large amount
of free carbon exists in ceramic fiber obtained in argon at 1600 ◦C. In the fibers obtained via the H2–Ar
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process, the intensities of both peaks at 1358 and 1590 cm−1 become very weak, which means free
carbon in the SiC–ZrC ceramic fibers is almost removed by H2.
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From the elemental analysis and Raman spectra, it is found that a larger amount of carbon can be
removed from the as-cured fibers by the introduction of H2 atmosphere below 1000 ◦C. Benefiting
from the decarbonization of H2, the production of free carbon in the ceramic fibers is reduced and
the crystallinity of ZrC and SiC grain sizes is increased, as well as stoichiometric ZrC and SiC can
be obtained.

Figure 5 shows high-resolution TEM (HR-TEM) images of the as-cured fibers after the Ar–Ar
processes up to 1400 or 1600 ◦C. It can be seen that amorphous carbon is observed around ZrC and
SiC nanocrystallites. In contrast, the ceramics fibers obtained via the H2–Ar process consist of two
clearly defined phases of SiC and ZrC while free carbon is hardly observed in Figure 6a,b. These results
confirm the analysis of Raman spectra.
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Based on the data of X-ray powder diffraction and the Debye-Scherrer formula, the average grain
sizes of SiC and ZrC in the ceramic fibers heated at various temperatures are computed, as shown in
Figure 7. When the heat treatment temperature at 1200–1300 ◦C, ZrC crystals are formed first with the
size of about 2–4 nm. With the heat treatment temperature from 1400 up to 1600 ◦C, the grain size
of ZrC is up to 10 nm or even larger. The crystalline grain size of ZrC at 1600 ◦C is around 8–10 nm
larger than that of SiC, which may be related to the fact that Zr cations aggregate in the fibers at higher
temperatures. After heat treatment at 1600 ◦C via the H2–Ar process, the average crystalline grain
size of ZrC is about 18 nm (Figure 7a) and the size of SiC is also increased to about 8 nm (Figure 7b).
The crystalline grain sizes of ZrC and SiC obtained at 1600 ◦C via the H2–Ar process are 3–5 nm more
than those via the Ar–Ar process. From this tendency, it is supposed that the rapid growth of ZrC
and SiC crystalline grains obtained via the H2–Ar process will be kept and the growth of ZrC and SiC
grains obtained via the Ar–Ar process will become lower.
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4. Conclusions

A composite ceramic fiber of SiC–ZrC was fabricated from a single polymeric precursor of
polyzirconocenecarbosilane, and it was shown that both of stoichiometric β-SiC and ZrC in the fibers
could be formed through decarbonization of the electron-beam cured green fiber in hydrogen up to
1000 ◦C and subsequently annealing the inorganic fiber in argon up to 1600 ◦C. The microstructures of
the SiC–ZrC fibers exhibited homogenously dispersion of nano-sized ZrC crystallites (~18 nm) in a
matrix of β-SiC with smaller grain size (~8 nm). After pyrolysis in hydrogen below 1000 ◦C, a more
rapid growth of ZrC and SiC crystalline grains occurred in Ar up to 1400 or 1600 ◦C. In the same
ceramic fiber, the crystalline grain size of ZrC was larger than that of SiC and the aggregation of Zr
became apparent at 1600 ◦C.
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