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Simple Summary: Colorectal cancer is one of the most common cancers and the third leading cause
of cancer-related deaths in the United States. As a non- or minimally invasive cancer treatment,
photothermal therapy (PTT) has been widely used to generate irreversible thermal injuries in tumors.
However, conventional PTT employs an end-firing flat fiber to deliver laser energy, leading to the
incomplete removal of tumor tissues due to an uneven beam distribution over the tumor surface.
Multi-lens arrays (MLA) generate multiple micro-beams to uniformly distribute laser energy on the
tissue surface. Therefore, the application of MLA for PTT in cancer affords a spatially enhanced
distribution of micro-beams and laser-induced temperature in the tumor. The purpose of the current
study is to computationally and experimentally demonstrate the therapeutic benefits of MLA-assisted
fractional PTT on colorectal cancer, in comparison to flat fiber-based PTT.

Abstract: Conventional photothermal therapy (PTT) for cancer typically employs an end-firing
flat fiber (Flat) to deliver laser energy, leading to the incomplete treatment of target cells due to a
Gaussian-shaped non-uniform beam profile. The purpose of the current study is to evaluate the
feasibility of multi-lens arrays (MLA) for enhanced PTT by delivering laser light in a fractional micro-
beam pattern. Computational and experimental evaluations compare the photothermal responses
of gelatin phantoms and aqueous dye solutions to irradiations with Flat and MLA. In vivo colon
cancer models have been developed to validate the therapeutic capacity of MLA-assisted irradiation.
MLA yields 1.6-fold wider and 1.9-fold deeper temperature development in the gelatin phantom
than Flat, and temperature monitoring identified the optimal treatment condition at an irradiance of
2 W/cm2 for 180 s. In vivo tests showed that the MLA group was accompanied by complete tumor
eradication, whereas the Flat group yielded incomplete removal and significant tumor regrowth
14 days after PTT. The proposed MLA-assisted PTT spatially augments photothermal effects with the
fractional micro-beams on the tumor and helps achieve complete tumor removal without recurrence.
Further investigations are expected to optimize treatment conditions with various wavelengths and
photosensitizers to warrant treatment efficacy and safety for clinical translation.

Keywords: fractional laser therapy; photothermal therapy; micro-lens array; colon cancer; can-
cer treatment

1. Introduction

Colorectal cancer (CRC) is the fourth most common cancer in women and the fifth
most common cancer in men, and is attributed to poor diet, smoking, excessive drinking,
and obesity [1]. It is also the third leading cause of cancer-related deaths in the United
States. Most CRCs develop from polyps in the colon, which are easily removable, but
if left untreated, can change into malignant cancer with time [2]. Despite conventional
treatments, such as radio- and chemotherapy, CRC remains associated with high mortality
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and recurrence as a result of incomplete treatment of the tumor region [3,4]. Therefore,
the development of a novel therapeutic modality for CRC is pivotal in advancing clinical
outcomes and improving treatment safety.

Photothermal therapy (PTT) has been widely studied as a non- or minimally invasive
and effective cancer treatment. The primary purpose of applying PTT is to locally deposit
volumetric heat in tumor tissue upon light absorption, leading to irreversible thermal injury,
cell apoptosis, and necrosis [5]. Photothermal agents are often used to selectively absorb
incident light and confine the induced thermal effects specifically to the targeted tissue. A
number of research studies have reported various nanomaterials to enhance photother-
mal effects during tumor treatment. For instance, the application of gold nanoparticles
can induce a temperature increase in the tissue in terms of exclusive surface modifica-
tions and high light absorption at a wavelength of 532 nm [6–8]. Functionalized carbon
nanomaterials have been widely investigated as drug delivery vehicles, biomedicine, and
photothermal agents [9–11]. A bare-cut flat fiber (Flat) is typically employed to deliver
laser light to tumor tissue for PTT. However, owing to a Gaussian beam profile, tumors
with a three-dimensional irregular shape often experience non-uniform distributions of
light and laser-induced temperature during Flat-based irradiation [12]. Consequently, the
inhomogeneous temperature in the tumor weakens therapeutic effects and eventually leads
to the incomplete treatment of target cancer cells. Hence, the remaining cancer cells can
regrow, thereby causing the tumor to recur, which decreases the survival rate.

Laser treatments in dermatology often employ multi-lens arrays (MLA) for the de-
livery of fractional laser light to uniformly distribute micro-beams on the skin tissue.
Fractional laser treatment with MLA is a minimally invasive treatment method that entails
microscopic thermal lesions on the tumor with minimal thermal injury to surrounding
tissue [13]. MLA delivers multiple micro-beams at high fluences, whereas Flat transmits a
single macro-beam at low fluences [14]. Thus, unlike Flat-based irradiation, MLA-assisted
irradiation can accompany wide and uniform distributions of the temperature in the tissue
upon light absorption. In fact, fractional skin treatment with micro-beams can accelerate
skin rejuvenation and the recovery of the treated skin by preserving healthy surrounding
tissue, compared to the flat-beam skin treatment [15].

The aim of the present study was to demonstrate the therapeutic capacity of MLA-
assisted fractional laser treatment in tumors, and compare it to conventional Flat-based
laser treatment. We hypothesized that the MLA-assisted irradiation provides spatially
wide and uniform temperature profiles in the tumor to effectively eradicate cancer cells
by generating microscopic thermal lesions in the tissue. Continuous laser irradiation in
conjunction with a photothermal agent was employed to augment the coupling efficiency
and conversion of optical into thermal energy during PTT [16]. The proposed treatment
method was validated theoretically and experimentally to confirm laser-induced thermal
responses of in vivo tumor models to MLA-assisted irradiation. Histological analysis was
performed to assess the degree of thermal damage to warrant treatment efficacy and safety
of the proposed MLA-assisted PTT.

2. Materials and Methods
2.1. Light Source

This study employed a 1064 nm laser system (FC-W-1064B-30W, CNI, Changchun,
China) to induce photothermal effects. A 600-µm multimode end-firing flat fiber (Flat;
multimode optical fibers; 600 µm core diameter, Thorlabs Inc., Newton, NJ, USA) and
multi-lens arrays (MLA; fused silica; focal length = 40 mm; 145 micro-beams; micro-beam
diameter = 350 µm; macro-beam diameter = 8 mm; Bluecore company, Busan, Republic
of Korea) were used to deliver laser light (Figure 1a). For direct comparison, an identical
beam diameter of 8 mm was applied for both Flat-based and MLA-assisted irradiation. The
applied power ranged from 0.5–1.5 W (irradiance = 1–3 W/cm2), and the irradiation time
was 180 s. A power detector (PD-300-3W, Ophir, Jerusalem, Israel) in conjunction with a
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power meter (Nova II, Ophir, Jerusalem, Israel) measured the laser power from Flat and
MLA before and after each test to replicate identical experimental conditions.
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Figure 1. Schematic representations of (a) laser irradiation with flat fiber (Flat) and micro-lens arrays
(MLA) on in vivo tumor model and (b) geometry of gelatin phantom (20 mm in diameter and 11 mm
in thickness) for numerical simulation of laser irradiation with Flat and MLA (D = micro-beam
diameter of 350 µm; P = distance between two consecutive micro-beams of 500 µm).

2.2. Temperature Assessments

We initially performed numerical simulations on the photothermal responses of gelatin
phantoms to compare the effects of Flat and MLA on spatial distributions of temperature
and experimentally validated the simulation results. IR 1061 dye was used as a chro-
mophore to absorb 1064 nm laser light for thermal assessment.

2.2.1. Numerical Simulation

Numerical simulations were conducted to predict instant thermal responses of gelatin
phantoms mixed with IR 1061 dye to laser irradiations with Flat and MLA using COMSOL
software (5.3, COMSOL Multiphysics, COMSOL Inc., Burlington, MA, USA). Figure 1b
displays the geometry of the phantom model (20 mm in diameter and 11 mm in thickness).
A 1-W 1064 nm laser light was perpendicularly irradiated on the top surface of the phantom
for 15 s. Flat delivered a Gaussian beam distribution with a diameter of 8 mm in a single
beam spot, whereas MLA had 145 uniformly distributed micro-beams in an 8 mm macro-
beam spot (micro-beam diameter = 350 µm and distance between two consecutive micro-
beams = 500 µm). The corresponding irradiance was 1 W/cm2. The volumetric heat
generation (Q, W/cm3) induced by light absorption is described as follows [17]:

Q = µa·I(r,z), (1)

where µa, I, r, and z are the absorption coefficient (mm-1), fluence rate (W/cm2), radial
distance (mm), and depth (mm), respectively. For the Flat irradiation, I(r,z) is described
as follows:

I(r,z) = P/(π·r0
2)·exp(−µa·z) (2)

where P and r0 are the laser power (W) and irradiated beam radius (mm), respectively. For
the MLA irradiation, I(r,z) reflected uniform distributions of multiple micro-beams on the
phantom surface (rθ-plane; Figure 1b) as follows:

I(r,z) = P/(π·r0
2)·exp(−r2/r0

2)·exp(−µa·z) (3)
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The Pennes’ bio-heat transfer equation was then used to describe temperature devel-
opment in the phantom model [17]:

ρCP · ∂T/∂t + ρCP ·
→
u ·∇T = ∇·(k∇T) + Q (4)

where ρ, Cp, T, t,
→
u , and k, are the density of the phantom (kg/m3), specific heat for the

phantom (J/kg·K), temperature (K), time (s), normal vector for heat transfer, and thermal
conductivity of the phantom (W/m·K). The initial temperature of the gelatin phantom was
set to 5 ◦C. Convective heat transfer was applied on the top surface of the phantom using
the following equation [17]:

−→n ·(−k∇T) = h(T − Tair) (5)

where n, h, and Tair are normal vectors of heat flux, convective coefficient (W/m ·K), and
ambient air temperature (20 ◦C). The rest of the phantom surfaces were assumed to be
insulated (n·k·∇T = 0 according to Neumann boundary condition). Table 1 summarizes all
the physical properties used in the numerical simulations.

Table 1. Summary of thermo-physical properties used for numerical simulation [18–20].

Parameters Value

Absorption coefficient (µa, mm-1) 1
Density (ρ, kg·mm-1) 1060

Thermal conductivity (k, W/m·K) 0.303
Specific heat (Cp, J/kg·K) 3600

Beam radius (r0, mm) 8
Convective heat coefficient (h, W/m2·K) 10

Air temperature (Tair, K) 293.15
Laser power (P, W) 1

2.2.2. Phantom Evaluations

Gelatin-based phantoms were fabricated and tested to validate numerical simulations
of the spatial distributions of temperature after Flat-based and MLA-assisted irradiation.
Gelatin powder (10% [w/v], Sigma Aldrich, St. Louis, MO, USA) was mixed with distilled
water at 70 ◦C until the powder completely melted. Then, 0.03% (w/v) IR 1061 dye (Sigma
Aldrich, St. Louis, MO, USA) was added to the prepared mixture as a chromophore to
absorb the incident 1064 nm laser light. The final mixture was poured into a six-well
culture plate, and the plate was stored at 5 ◦C overnight to achieve sufficient solidification.
The 1064 nm laser light was irradiated at 1 W/cm2 for 15 s with Flat and MLA on the
prepared phantoms (20 mm in diameter and 11 mm in thickness). Each test was repeated
four times (n = 4). Both the top surface and cross-section of each treated phantom were
photographed to assess the extent of gelatin removal as a result of Flat-based and MLA-
assisted photothermal interactions. Image J (National Institute of Health, Bethesda, MD,
USA) was used to measure the physical dimensions of all ablated craters and to estimate
the corresponding ablation volume for quantitative comparison.

2.3. Aqueous Solution Experiments

To identify the appropriate treatment conditions for in vivo testing, we tested four
different concentrations of IR 1061 dye in PBS (0, 100, 200, and 300 µg/mL in PBS) in 24-
well cell culture plates with three different irradiances (1, 2, and 3 W/cm2 and irradiation
time = 180 s). The solutions were poured into 24-well cell culture plates (volume in each
well: 500 µL). A 1064 nm laser light was irradiated perpendicularly onto the solution
surface by means of Flat and MLA. Each test was repeated four times (n = 4). A thermal
imaging infrared (IR) camera (A325, FLIR, Wilsonville, OR, USA) was used to monitor the
spatiotemporal development of the temperature on the solution surface during the laser
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irradiation. After 180-s of irradiation, IR images were captured from the two conditions.
The temperatures at the central (TC) and peripheral (TP) regions were measured from
IR images for direct comparison. TC represents the maximum temperature after laser
irradiation, and TP indicates the temperature at the outmost boundary of the beam spot
(r = 4 mm). Based on the dosimetry findings, in vivo experiments selected the following
conditions: dye concentration = 300 µg/mL in PBS: laser irradiance = 2 W/cm2 and
irradiation time = 180 s).

2.4. In Vivo Validations

CT26 murine colon cancer cells were used to fabricate in vivo tumor models for the
comparison of both irradiation modes. CT26 cells were obtained from the Korean Cell Line
Bank and cultured in Dulbecco’s modified Eagle’s medium (DMEM, Corning, NY, USA)
with 10 % fetal bovine serum (FBS, Corning, NY, USA) and 1 % antibiotic-antimycotic
(Gibco, Grand Island, NY, USA). The prepared cancer cells were kept in a humidified
incubator at 37 ◦C in a 5 % CO2 atmosphere.

In total, 12 BALB/c female mice (age: 5 weeks; weight: 20–25 g) were procured from
Hana Biotech (Suwon, Korea) to create tumor models. All animals were individually
housed in a pathogen-free cage at the Animal Research Centre facility under standard
conditions. The mice were acclimated for a week, and subsequently, the prepared CT26
cancer cells (3 × 105 cells) were injected into the back of each mouse and incubated for
one week to grow the tumors. Each mouse was randomly sorted into three groups for
comparison (n = 4 per group): control, Flat, and MLA. Before conducting the experiments,
the mice were anesthetized in a chamber using a respiratory anesthesia system (Classic
T3, SurgiVet, Minneapolis, MN, USA) with 3 % isoflurane (TerrellTM isoflurane, Piramal
Critical Care, Bethlehem, PA, USA) in oxygen (0.6 L/min). A week after injection of the
cancer cells, diluted IR 1061 dye (concentration = 200 µg/mL in PBS) was administered
into each animal intra-tumorally to selectively absorb the incident 1064 nm laser light for
PTT. Then, two hours after the dye injection, the tumor-bearing models were irradiated
with 1064-nm laser light at 2 W/cm2 for 180 s (selected from solution experiments) using
Flat and MLA. The current study applied a single treatment to all animals. A thermal
imaging IR camera was used to monitor temperature elevations in the tumor during laser
irradiation. Thereupon, all the treated tumors were monitored and photographed using a
digital camera (D5100, Nikon, Tokyo, Japan) at four different time points: 0 (D 0), 3 (D 3),
7 (D 7), and 14 (D 14) days after laser treatment. Image J was used to estimate tumor
size by measuring its length (l in mm) and width (w in mm). The tumor volume (V in
mm3) was calculated using the formula V = (l × w2)/2 [21]. All animal experimental
procedures were implemented in accordance with a standard experimental setup following
the Korean National Institutes of Health (KNIH) guidelines. The protocol was approved by
the Institutional Animal Care and Use Committee at Pukyong National University (Permit
Number: PKNUIACUC2019-30).

2.5. Histological Analysis

To evaluate the in vivo photothermal treatment efficacy, all the treated tumor-bearing
mice were euthanized in a chamber with an overdose of CO2 gas for 14 days (D 14) after
laser irradiation with Flat and MLA. The tumor tissue samples were harvested aseptically
and fixed in 10% neutral formalin solution (Sigma Aldrich, St. Louis, MO, USA) for three
days. After fixation, each sample was sectioned at 4–5 µm for slide preparation. The
prepared sections were stained with standard hematoxylin and eosin (HE) and TUNEL
staining assay (TumorTACS In situ Apoptosis Detection Kit, R&D Systems Inc., Minneapo-
lis, MN, USA) to confirm the extent of irreversible thermal coagulation in the treated tumor
tissue. All histological slides were photographed using optical microscopy (20X for HE and
100X for TUNEL; Motic easyscan, Motic, Kowloon, Hong Kong, China). Subsequently, a
pathologist conducted gross examinations on the histology slides of three groups (control,
Flat, and MLA; n = 4 per group) and scored the histological responses of the random spots
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in the slides semi-quantitatively [22,23] in a score range between 1 and 3, where 1 (absent or
minimal) represents no or minimal thermal damage to tumor tissue and negative response
of TUNEL staining (blue-green color); 2 (moderate) represents mild cellular shrinkage
resulting from laser-induced injury and positive reaction of TUNEL staining (brown color);
3 (severe) represents severe thermal injury induced by the laser irradiation and positive
reaction of TUNEL staining (brown color) in the same area.

2.6. Statistical Analysis

All data are expressed as mean ± standard deviation for four independent experi-
ments. Statistical analysis was performed using SPSS software 22 (SPSS Inc., Chicago, IL,
USA). For nonparametric statistical analysis, the Kruskal–Wallis (KW) and Mann–Whitney
U tests with Bonferroni correction (MU) were performed to compare multiple and two
groups, respectively, and statistical significance was considered at p < 0.05.

3. Results
3.1. Temperature Assessments

Numerical simulations and experimental validations were performed to estimate
the temperature distributions after 180 s laser irradiation with Flat and MLA (Figure 2).
Figure 2a presents cross-sectional temperature distributions in gelatin phantom models
after 180 s irradiation with Flat (left) and MLA (right) from the simulations. Under the same
irradiation conditions, the Flat-based irradiation showed a narrower and shallower profile
of the laser-induced temperature. In contrast, the MLA-assisted laser irradiation entailed a
deeper and wider distribution of the laser-induced temperature in the simulation model.
Radial distributions of the surface temperature (obtained from Figure 2a) demonstrate
that MLA induced a 7.1 ◦C higher peak temperature in a flatter top profile, compared to
Flat (Figure 2b). Axial temperature distributions (obtained from Figure 2a) confirm that
MLA induced a higher temperature distribution along the z-axis with a higher surface
temperature than Flat (Figure 2c). The extent of thermal deformation in the gelatin phantom
was estimated by considering the melting point of the phantom at 35 ◦C (dashed line).
According to Figure 2c, MLA produced a 1.4-fold deeper deformation compared to Flat
(i.e., zFlat = 0.8 mm vs. zMLA = 1.1 mm, corresponding to 35 ◦C). Figure 2d displays cross-
sectional and top-view images of the gelatin phantoms irradiated with Flat and MLA.
Compared to Flat, MLA created a deeper and wider ablation profile. The ablated phantom
volumes were quantitatively compared between Flat and MLA (Figure 2e). MLA ablated
a five-fold larger ablation volume than Flat (4.9 ± 1.1 mm3 for Flat vs. 24.9 ± 2.5 mm3

for MLA; p < 0.05). Both numerical simulations and experimental validations are in good
agreement in the estimated volumes.

3.2. Dosimetry Tests

To identify the appropriate conditions for in vivo laser treatment, 1064 nm laser light
with Flat and MLA was tested on an IR 1061 aqueous solution at various laser irradiances
and concentrations (Figure S1). The maximum temperature increases up to 38.5 ◦C for
Flat and 44 ◦C for MLA at 3 W/cm2 irradiance and dye concentration of 300 µg/mL.
As the tissue temperature reaches 60 ◦C, collagen and protein denaturation commence,
leading to irreversible thermal coagulation. Thus, considering the initial temperature of
in vivo tissue (~37 ◦C), we selected an irradiance of 2 W/cm2 and a dye concentration of
300 µg/mL to warrant photothermal effects in in vivo experiments. The temperatures at
the central (TC) and peripheral (TP) regions on the solution surface were measured and
compared between Flat and MLA (Figure 3a,b). Regardless of the irradiation method, the
temperatures (TC and TP) gradually increased with irradiation time, and TC was higher
than TP because of spatial distributions of the incident laser beam. Notably, the difference
between TC and TP was evidently smaller in MLA (~8%) than in Flat (~16%) because of
the uniform distributions of the micro-beams. At 180 s irradiation time, MLA yielded a
higher TC (56.9 ◦C for Flat vs. 62.9 ◦C for MLA) and TP (49.4 ◦C for Flat vs. 57.9 ◦C for
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MLA, p < 0.005; Figure 3c). IR imaging confirmed rapid and widespread developments of
the surface temperatures during the MLA-assisted irradiation, compared to the Flat-based
irradiation (Figure S2). Figure 3d displays the 3D temperature profiles acquired from the IR
images after 180 s irradiation. MLA exhibited a relatively flat top temperature distribution
than Flat that showed a Gaussian distribution. Similar to Figure 1b, the radial distributions
of the solution temperature confirmed that MLA was accompanied by an approximately
5.2 ◦C higher temperature increase along with a 29 % wider distribution, compared to Flat
(Figure 3e). It should be noted that the peak temperature from MLA was slightly off-center
because of oblique IR imaging to have a full view of the irradiated area and to avoid any
thermal damage during the irradiation.
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3.3. In vivo Treatment

Figure 4a presents IR images of tumor regions treated at various times from the Flat
(left) and MLA (right) groups (2 W/cm2 for 180 s; 360 J/cm2). All groups showed a
temperature increase in the tumor during laser irradiation. At 180 s, the MLA irradiation
exhibited a higher maximum temperature in a wider thermal region than the Flat irradi-
ation. Figure 4b compares the temporal elevations of the peak temperature at the tumor
surface. Both Flat and MLA irradiations demonstrated that the tumor temperature initially
increased with the irradiation time but became saturated around 60 s after irradiation. At
the end of the irradiation, MLA reached a higher maximum temperature than Flat (55.2 ◦C
for Flat vs. 62.4 ◦C for MLA; p < 0.005). The treated regions with a temperature of 50 ◦C or
higher were also compared between the two groups at various times (Figure 4c). Regardless
of irradiation time, MLA created around 1.5-fold larger regions than Flat, implicating a
wider temperature distribution attributed to the uniform delivery of micro-beams (i.e.,
22.2 ± 3.1 mm2 for Flat vs. 33.1 ± 2.2 mm2 for MLA at 180 s; p < 0.005).

All treated tumors were monitored for 14 days to characterize the treatment efficacy
of Flat and MLA irradiations (Figure 5). According to Figure 5a, the tumor size from the
control (no treatment) slightly increased for three days after the treatment but showed
a significant increase afterwards. The Flat group maintained the tumor size for seven
days, but the tumor rapidly increased with a scab on the treated surface. On the contrary,
the MLA group had a slightly larger treated lesion (D 0), and the tumor size noticeably
decreased over time. Figure 5b compares the quantified tumor volumes at various times
among the three groups. Evidently, the MLA group exhibited a continuous reduction in the
tumor size with healing time, unlike the control and Flat groups. At D 14, the tumor from
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the MLA group was almost eradicated (p < 0.005 vs. control and Flat; Figure 5c). Figure 5d
presents histological images of the treated tumor tissue at D 14 to validate the antitumor
effects of Flat and MLA. The control group showed no significant disorganization of the
tumor tissues and no morphological changes in tumor cells. Conversely, the tumor tissues
treated with Flat and MLA showed distinct cellular death in the irradiated regions as a
result of photothermal effects (top row). According to TUNEL staining (bottom row), the
Flat and MLA groups demonstrated apoptotic cell death in the treated lesions. However,
it was noted that the Flat group was associated with smaller areas of irreversible thermal
damage, leading to regeneration of the tumor tissue, even in the treated area. Consequently,
the overgrowth of the tumor caused tumor hypoxia during the healing period (Figure 5a).
Based on the pathologic scoring, the MLA group showed more significant histological
responses (severe thermal injury and positive reaction of TUNEL staining) than the control
(p < 0.005) and Flat groups (p < 0.05; Figure 5e).
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Figure 4. In vivo thermographic measurements with Flat-based and MLA-assisted irradiations at
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bearing mouse model captured at various irradiation times, (b) temporal developments of maximum
temperature measured from irradiated area in tumor (white dashed lines in (a)), and (c) comparison
of treatment areas with temperature of 50 ◦C or higher (T > 50) at three irradiation times (n = 4 per
group; scale bar = 5 mm; * MU p < 0.005 vs. Flat).
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Figure 5. In vivo photothermal treatment of CT26 tumor-bearing mouse models with Flat-based
and MLA-assisted irradiations at 2 W/cm2 for 180 s (dye concentration = 300 µg/mL in PBS): (a)
compilation of images of tumor model at various time points after laser irradiation (TM = tumor
region; scale bar = 5 mm), (b) comparison of tumor growth after laser treatment, (c) statistical
comparison of tumor volumes at D 14, (d) HE-stained (top row; 20× scale bar = 600 µm) and TUNEL-
stained (bottom row; 100× scale bar = 50 µm) images of treated tumor cross-sections at D 14, and (e)
semi-quantitative evaluations of histopathological responses from treated tumor tissue. Note that
black dashed and yellow solid lines in (d) represent the laser-treated area and the observed area for
TUNEL analysis, respectively (n = 4 per group; KW p < 0.01; ## MU p < 0.005 vs. control; ** MU
p < 0.005 and * MU p < 0.05 vs. Flat).

4. Discussion

Ablative fractional laser (AFL) treatment has been widely studied for skin cancer
therapies by removing the entire epidermis in the targeted area [24,25]. Several previous
AFL studies reported the feasible inhibition of tumor growth at an early stage of cancer
or dysplasia [26,27]. However, AFL treatment is often limited to the mere removal of
the epidermis, which is unable to reach deeply or widely positioned tumor tissue [15].
Therefore, spatially enhanced distributions of optical energy during laser treatment are
pivotal in attaining complete tumor inhibition and suppression of tumor recurrence. The
current study verified the feasibility of MLA-assisted PTT with collective microthermal
effects on tumors both by simulation and experiment, in comparison to Flat-based PTT.
Given the same irradiation conditions, MLA produced a deeper and wider temperature
development than Flat, indicating that it can develop high-irradiance micro-beams during
irradiation [14]. In fact, the applied irradiance of each MLA-induced micro-beam was
72 mW/mm2 (72 mW/mm2 = 2 W/ (145 micro-beams and 96-µm2 micro-beam area)),
whereas the irradiance of the Flat-induced macro-beam was 20 mW/mm2 (2 W/50.24 mm2

macro-beam area). Thus, by applying the collective thermal effects from a higher density
of the micro-beams during the treatment (Figures 2 and 3), the MLA-assisted irradiation
widely generated irreversible thermal damage in the entire tumor tissue (Figure 5). In
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contrast, on account of a Gaussian-shaped beam profile, distributions of Flat-induced
temperature became centric, which resulted in non-uniform and narrow treatment that
is suitable for treating small and shallow tumors (Figures 2 and 3; [28]). Therefore, the
MLA-enhanced PTT exhibits therapeutic potential of achieving fractional treatment of
wide and deep tumors by developing a more uniform and wider distribution of thermal
energy after delivery of the micro-beams at high fluences for fractional cancer treatment.

The Flat group demonstrated that seven days after PTT, the tumor volume started to
increase drastically, and at D 14, tumor necrosis occurred on the tumor surface (Flat) due
to abnormal and uncontrollable regrowth (Figure 5c). The incomplete tumor treatment
with non-uniform beam distributions from Flat could be responsible for stimulation of
tumor growth and generation of the eventual necrosis [28]. Recently, a number of stud-
ies have reported rapid cancer cell proliferation and tumor growth as a result of laser
stimulation [29,30]. Bamps et al. tested a 830 nm laser wavelength on head and neck squa-
mous cell carcinoma and found cell proliferation with upregulation of phospho-protein
kinase B (akt), phosphor-ERK, and Ki67 markers, evidencing the facilitated cancer aggres-
siveness [31]. Various studies also demonstrated that photobiomodulation with low laser
light could proliferate cancer cells, including anaplastic thyroid cancer, oral carcinoma,
and cervical cancer [32–34]. In addition, as the tumor grows excessively, tumor hypoxia
can occur due to the lack of oxygen and insufficient blood supply [35]. The abnormal and
rapid proliferation of the tumor can easily outgrow from marginal vasculature, decreasing
the oxygen level to below 2 %. Consequently, the occurrence of tumor hypoxia leads
to tumor necrosis [35,36]. Therefore, the marginal cancer cells after laser treatment can
undergo photobiomodulative stimulation and eventually increase cell proliferation and
cancer aggressiveness. Hence, to ensure treatment safety, adverse effects of PTT must be
validated with a wide range of laser parameters (irradiance, irradiation time, and beam
spot size) in in vivo cancer models in terms of cell proliferation, extent of complete tumor
removal, and correlation with tumor regrowth.

Although MLA yielded more uniform and wider distributions of temperature on the
tumor compared to Flat, the micro-beams emitted from MLA were still distributed in a
Gaussian profile owing to their inherent optical nature (Figure 3). In turn, the uneven
distribution of different micro-beam energy levels may lead to incomplete eradication
of peripheral regions, particularly in large tumors. To achieve a more flat-top beam
distribution consisting of comparable micro-beam energy on the tumor surface, diffractive
optical elements (DOE) can be employed as an alternative to MLA for effective PTT. Unlike
MLA with a Gaussian profile, DOE can yield flat-top distributions of the micro-beams by
means of a homogenization process that overlaps the diffraction patterns [37]. Although
energy loss (~20%) occurs during the homogenization process, DOE is hardly affected by
fluctuations in the applied laser power and thus can deliver more uniformly stable micro-
beams to the target than MLA. Therefore, further investigations will examine the feasibility
of DOE-assisted PTT for effective cancer treatment in comparison to the current findings.

The current study used murine colon cancer cells (CT26) to perform preclinical val-
idations of MLA-assisted PTT on tumors. The rapid growth and rich blood supply of
CT26 cells in an in vivo xenograft model can emulate the pathological characteristics of
human colon carcinoma [4,38]. Further studies will examine various cancer cells, such as
breast cancer, liver cancer, and pancreatic cancer, to validate the therapeutic capacity of
the MLA-assisted PTT in metastatic cancer and confirm acute and chronic responses of
wound healing in the treated lesions. Furthermore, the current study selected a wavelength
of 1064 nm and the IR1061 dye to facilitate photothermal effects during laser irradiation.
For clinical translation, treatment conditions for MLA-assisted laser irradiation must be
further optimized with various laser wavelengths (ultraviolet, visible, and infrared) and
photothermal agents (IR 780 dye, carbon nanomaterial, and gold nanoparticle) to ensure
the efficacy and safety of the MLA-assisted PTT on tumors [5]. Additionally, the present
study merely used IR1061 dye as an absorbing agent for tissue phantom. Therefore, a
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tissue-mimicking phantom mixed with both absorbing and scattering agents should be
tested to elucidate the distribution of optical fluence [39].

5. Conclusions

The current study demonstrates the feasibility of MLA-assisted PTT for the effective
treatment of colon cancer on in vivo murine models. Collective photothermal effects from
MLA-induced micro-beams account for the spatial enhancement of thermal damage in the
irradiated tumor, as well as complete tumor treatment without recurrence. Future studies
are expected to investigate the proposed therapeutic capacity with various wavelengths
and photothermal agents to further warrant efficacy and safety of MLA-assisted PTT on
cancer for clinical translation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/5/1146/s1, Figure S1: Comparison of temperature rises measured from PBS and IR 1061
aqueous solution with various concentrations (0 for PBS, 100, 200, and 300 µg/mL) after laser
irradiation at three irradiances (1, 2, and 3 W/cm2) for 180 s, Figure S2: Infrared thermographic
compilations of laser irradiation on IR 1061 solution with Flat and MLA for 180 s (scale bar = 3
mm), Video S1: Temperature developments of tumor during laser irradiations with Flat and MLA (2
W/cm2).
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