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Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide. In
adults with NAFLD, fibrosis can develop and progress to liver cirrhosis and liver failure. However,

the underlying molecular mechanisms of fibrosis progression are not fully understood. Using total
RNA-Seq, we investigated the molecular mechanisms of NAFLD and fibrosis. We sequenced liver
tissue from 143 adults across the full spectrum of fibrosis stage including those with stage 4 fibrosis
(cirrhosis). We identified gene expression clusters that strongly correlate with fibrosis stage including
four genes that have been found consistently across previously published transcriptomic studies on
NASH i.e. COL1A2, EFEMP2, FBLN5 and THBS2. Using cell type deconvolution, we estimated the loss
of hepatocytes versus gain of hepatic stellate cells, macrophages and cholangiocytes with advancing
fibrosis stage. Hepatocyte-specific functional analysis indicated increase of pro-apoptotic pathways
and markers of bipotent hepatocyte/cholangiocyte precursors. Regression modelling was used to
derive predictors of fibrosis stage. This study elucidated molecular and cell composition changes
associated with increasing fibrosis stage in NAFLD and defined informative gene signatures for the
disease.

Abbreviations

DE genes Differentially expressed genes
ECM Extracellular matrix

GEO Gene Expression Omnibus
HSC Hepatic stellate cells

LRT Likelihood ratio test

NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
PCA Principal component analysis

scRNA-Seq  Single cell RNA-Sequencing

Non-alcoholic fatty liver disease (NAFLD), or its more severe form, non-alcoholic steatohepatitis (NASH), is a
leading cause of chronic liver disease and liver-related complications worldwide'. However, to date, no agency-
approved treatments exist, and therapeutic trials have been challenging, partly because histologic classifications
from liver biopsies, the gold standard, cannot comprehensively predict disease progression and clinical outcomes
in heterogeneous patient populations®®. Thus, there is an unmet need to understand the underlying molecular
mechanisms of fibrosis in NAFLD and define reliable biomarkers to complement traditional histologic classifica-
tions and inform therapeutic discovery.
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Liver histology Normal histology | NAFLD fibrosis stage 0 | NAFLD fibrosis stage 1 | NAFLD fibrosis stage 2 | NAFLD fibrosis stage 3 | NAFLD fibrosis stage 4
N (%) 31 (21.7) 35(24.5) 30 (21.0) 27 (18.9) 8(5.6) 12 (8.4)
Age, years (SD) 43.7 (11.4) 45.1 (12.7) 44.4 (14.5) 44.0 (13.0) 50.4 (9.7) 60.8 (5.9)
Sex, female—yes (%) 28(90.3) 25(71.4) 20 (66.7) 19 (70.4) 4 (50.0) 7 (58.3)
Site code—MGH (%) 15 (48.4) 26 (74.3) 21 (70.0) 19 (70.4) 8 (100.0) 11 (91.7)
Biopsy type

Explant 0(0.0) 0(0.0) 0 (0.0) 0 (0.0) 0 (0.0) 8 (66.7)
Extra pass (percutaneous

biopsy) 0(0.0) 0(0.0) 1(3.3) 0(0.0) 0(0.0) 1(8.3)
Weight loss surgery

(wedge biopsy) 31 (100.0) 35 (100.0) 29 (96.7) 27 (100.0) 8 (100.0) 3(25.0)
Diabetes mellitus—yes 8(25.8

%) (25.8) 11 (31.4) 12 (40.0) 14 (51.9) 7 (87.5) 9 (75.0)
BMI, kg/m? (SD) 449 (5.9) 46.4 (7.4) 44.0 (7.8) 47.1(7.3) 429 (7.6) 36.7 (4.7)
ALT, U/L (SD) 23.0 (8.8) 36.4 (30.8) 40.2 (19.6) 59.1 (38.9) 53.0 (34.9) 36.8 (20.2)
AST, U/L (SD) 18.5 (8.5) 26.9 (19.6) 29.2 (13.0) 43.7 (23.7) 44.8 (27.6) 50.4 (35.5)
HDL, mg/dL (SD) 47.7 (11.9) 46.4 (12.4) 41.9 (11.3) 38.8(10.3) 32.6(7.2) 422 (18.8)
(Tsrli)‘c”)lyce“des’ mg/dL 106.5 (50.6) 137.2 (70.3) 137.2 (69.3) 180.1 (inf) 166.9 (56.7) 122.6 (35.0)
NASH, N (%) 0(0.0) 9(25.7) 21 (70.0) 26 (96.3) 7 (87.5) 6 (50.0)

Table 1. Characteristics of the patient cohort.

Transcriptomics of bulk tissue samples is a powerful tool for investigating thousands of features of a single
tissue sample concurrently. Consequently, transcriptomics of liver biopsies from cohorts of human NAFLD
patients have revealed molecular profiles that associate with disease progression*®. Yet, these studies are based on
microarray technology, which has been replaced by RNA-Seq as the state-of-the art method for transcriptional
profiling®. Furthermore, these studies and the few existing RNA-Seq studies’® are limited by small sample sizes
which skew toward less advanced fibrosis stages and therefore may not fully represent the hepatic transcriptome
and the complex intercellular molecular dynamics across the full spectrum of NAFLD-related fibrogenesis. The
most comprehensive RNA-Seq study in this regard has just been published very recently’.

Recent advances in single-cell sequencing (scRNA-Seq) can provide cell type-specific molecular profiles
that contribute to disease progression''. However, their required cell dissociation protocols and analysis can
be technically laborious and costly, making it difficult to scale this process to large patient cohorts. Few studies
have jointly considered bulk and single cell transcriptome profiles from liver samples to examine the complex
molecular cellular dynamics that define disease severity in human NAFLD'>"*. Computational methods can
now integrate smaller single cell transcriptome studies as references to de-convolute cell type composition and
cell type-specific biological profiles of bulk transcriptomic data'®!®. This approach can be reliably scaled to
investigate the dynamics of cellular composition and cell type-specific gene expression across multiple disease
stages and large patient cohorts'*.

To contribute and extend these developments, we hypothesized that the hepatic transcriptome harbors dis-
ease-defining gene signatures that can classify fibrosis severity, and that cell type-specific molecular profiles can
be derived from the bulk transcriptome by computational deconvolution. We probed the hepatic transcriptomes
from a cohort with liver histology across the full spectrum of fibrosis in NAFLD to identify disease-classifying
gene profiles and defined candidate gene signatures. We integrated these profiles with publicly available single-cell
transcriptomic data to characterize changes in cell composition associated with fibrosis severity and evaluated
the contribution of major cell types within the candidate gene signatures. We identified gene signatures and
validated them with an independent NAFLD dataset of comparable histologic spectrum. This study provides
comprehensive insights into molecular, cellular, and functional profiles of fibrosis in NAFLD.

Results

Clinical and histopathologic characteristics. Table 1 summarizes the clinical characteristics of the
study cohort (n=143). Mean patient age (years+SD) ranged from 43.7+11.4 in those with normal histology
(n=31) to 60.8 £5.9 in those with stage 4 fibrosis. (F4=12). Women composed the majority of the cohort, rang-
ing from 90.3% of those with normal liver histology to 50% of those with NAFLD fibrosis stage 3. The mean body
mass index (BMI) in the cohort ranged from 36.7 to 47.1 kg/m?.

As expected, histological scores, including steatosis grade, hepatocyte ballooning grade, lobular inflamma-
tion grade, NAFLD activity score and fibrosis stage correlated with one another. Histologic covariates are also
moderately correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and
other clinical metrics (such as BMI, diabetes or triglyceride level etc., see Fig. S4a).

Morphometric features complement disease staging and cell type composition in tissue. To
complement the histopathology based grading of fibrosis, we generated continuous sample-level fibrosis scores
from digital image features (ImageScore). An overview of the analysis workflow is shown in Fig. S1. The con-
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Figure 1. RNASeq analysis. (A) PCA plot of all samples. Colors represent different fibrosis stages, where N
corresponds to the Normal group. (B) Gene expression patterns of DE genes. The Z-score represents the scaled
transformation of the log2 normalized counts. Only clusters with more than 50 genes are represented.

tinuous fibrosis scores correlated well with the standard ordinal fibrosis scores assigned by histopathologists on
biopsy (Figs. S2, $3). Fig. S2A and S2B depict the PCA score plots of the independent latent variables (tiles) used
to generate the predictive model. The tiles clustered into four groups and the ratio of tiles in two of these groups
associated strongly with fibrosis stage (Fig. S2C). This correlation was driven by the abundance of collagen and
voids (Fig. S2D).

Hepatic gene expression and functional profiles associate with fibrosis. The global data struc-
ture of the 143 samples was examined by PCA. According to Fig. 1A, the first two components of the PCA
explained 17% and 10% of the observed variation in gene expression, respectively. There was a moderate cluster-
ing of samples with regard to fibrosis stage for advanced stage F3 (lower PC1) and F4 (low PC1 and low PC2).
We also checked the correlation of all variables with gene expression by PCA analysis (Fig. S4B) and included the
confounding variables in the DESeq2 model for differential expression (DE) analysis as described in the Meth-
ods. As noted previously, female samples were enriched in the cohort, and although sex was controlled for in the
analysis, identification of DE genes in this study might be biased towards females because of the sex imbalance.
Additionally, as age has a low-degree correlation with fibrosis (Kendall rank correlation coefficient 0.16, P value
0.0065), inclusion of age as one of the control variables may result in some de-regulated genes associated with
fibrosis remaining undiscovered in this study.

We identified a total of 2215 differentially expressed (DE) genes by combining the results of (1) pairwise com-
parisons between various individual stages using fibrosis stage FO as the reference group, and (2) LRT analysis
across fibrosis stages (Fig. 1). While there were no DE genes between F1 and F0, 83 DE genes were identified
between FO and normal liver histology, 66 DE genes between F2 and F0, 65 DE genes between F3 and F0, and 882
DE genes between F4 and FO (see also volcano plots shown in Fig. S5). LRT analysis reported 2008 DE genes, of
which 1198 genes were not found in pairwise comparisons. Clustering analysis identified major gene expression
patterns associated with fibrosis stage as shown in Fig. 1B.

Functional analyses of the upregulated genes (clusters 2 and 3) identified pathways involved in extracellular
structure organization, neutrophil degranulation, integrin signaling, interleukin signaling (IL-4, IL-13, IL-10),
platelet activation and aggregation, and proteoglycan metabolism, among others (Fig. 2). In contrast, the down-
regulated gene profiles (clusters 4 and 15) were enriched in homeostatic hepatic functions, including catabolic
and biosynthetic processes involving small molecules, organic hydroxy compounds, fatty acids and lipids, amino
acids, and bile acids and salts (Fig. 2).

We further investigated and validated clusters 2 and 3 comprised of genes positively correlated with fibrosis
stage (Fig. 1B) by comparing them with fibrosis associated gene lists from five previously published transcrip-
tomic studies on NASH versus Non-NASH>7%1%16 An overview of the identified gene sets is given in Table S1.
Three of these studies have small sample sizes in advanced fibrosis stage and/or are limited to microarray tech-
nology. Accordingly, the size of the gene set that has been reported to be up-regulated with fibrosis is rather
small in these three studies i.e. 86-112 genes. In contrast, the present study and the two published RNA-Seq
studies with reasonable sample sizes in advanced fibrosis stage, report quite large sets of >700 genes that are up-
regulated with fibrosis in F4!° or positively correlated with fibrosis stage FO-F4”. As shown in Fig. $6, more than
50% of the genes from the larger gene sets are exclusively reported by a single study only. However, there is also
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Figure 2. Gene set enrichment analysis. Enrichment of Reactome pathways by up-regulated (clusters 2 and 3)
and down-regulated (clusters 4 and 15) DE genes. Colors represents the adjusted P value and the size of each dot
represents the number of DE genes.

a reasonable overlap of 117 genes that are reported by all three studies and almost 300 genes that are reported
by at least two studies.

We also checked the overlap of all six studies listed in Table S1 and found four genes that are reported by all six
studies namely COL1A2, EFEMP2, FBLN5 and THBS2. All these four genes encode extracellular matrix proteins
with essential functions in connective tissues as indicated by severe human phenotypes i.e. Osteogenesis imper-
fecta 1 (OI1) [MIM:166200] caused by mutations in COLIA2, Cutis laxa, autosomal recessive, 1B (ARCL1B)
[MIM:614437] caused by mutations in EFEMP2, Cutis laxa, autosomal dominant, 2 (ADCL2) [MIM:614434]
caused by mutations in FBLN5, and Intervertebral disc disease (IDD) [MIM:603932] which is associated with
variations in THBS2.

Inferring cell type composition from bulk RNASeq data. We selected MuSiC" for cell type decon-
volution based on recommendations from comprehensive benchmarking studies'”'8. Accordingly, MuSiC does
not require a priori defined gene lists as input and is one of the preferred methods for cell type deconvolution
if suitable reference scRNA-Seq datasets are available. For NASH there are two scRNA-Seq reference datasets
available that cover whole liver cell populations reasonably well in healthy and disease states: One study on
samples from human patients with cirrhotic livers and patients with healthy livers'?, and one study from mice
with AMLN diet-induced NASH and chow-diet controls'®. Figure S7 illustrates the excellent performance of
MusSiC in predicting cell type proportions of major liver cell types from pseudo-bulk samples which have been
resampled from the two single cell reference sets (see method for details). After re-annotation and alignment
of the two reference data sets, we observed good agreement of cell type clustering in both datasets (Fig. 3A). To
validate the integrated reference dataset, we assessed the expression pattern of four well-known marker genes for
major liver cell types. As shown in Fig. 3B, we observed consistent and cell type specific expression patterns for
transmembrane 4 L six family member 4 (TM4SF4), transthyretin (TTR), actin alpha 2 smooth muscle (ACTA2),
and complement component 1 q subcomponent A chain (CIQA) in cell types annotated as cholangiocytes, in
hepatocytes, HSCs, and macrophages, respectively. Expression profiles of additional cell type specific markers
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Figure 3. Cell composition deconvolution of the liver bulk RNA-Seq data. (A) Combined and integrated
single cell reference data set (split UMAP view). The previously published human (11) and mouse (25) data
sets have been re-analyzed, re-annotated, filtered for conserved cell types in both data sets, and finally aligned.
(B) Validation of cell type annotation in the combined single cell reference by cell type-specific marker genes
for Cholangiocytes, Hepatocytes, Hepatic Stellate Cells, and Macrophages. (C) Correlation between predicted
cell type fraction and the continuous fibrosis score (ImageScore). (D) Predicted change of cell type proportions
across observed NASH fibrosis stage.
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Figure 4. Hepatocyte-specific transcriptional up-regulation of apoptosis pathway. (A) Heatmap of cell-type
specific differential expression, which is estimated by using regression based method with R package omicwas
(see method for details), shown as log2 fold change per gene (rows) and cell type (columns) in NASH F3/F4
versus FO/Normal. (B) Heatmap of number of cell type-specific marker genes overlapping with disease clusters
shown in Fig. 1B. (C) Cell type-specific functional annotation. Significantly enriched categories are marked with
asterisk. (D) Enrichment plot of apoptosis pathway obtained from Gene Set Enrichment Analysis. Genes were
ranked by the level of up-regulation (from left to right).

are shown in Fig. S8A. For these four cell types, estimated changes in cell type proportions across fibrosis stage
are shown in Fig. 3C, D. The largest relative variations were seen in the predicted proportions of cholangiocytes
and macrophages across the fibrosis stages, with the largest proportions of these cells seen in advanced fibrosis
(stage 3-4). Overall, the proportions of hepatocytes decreased, whereas proportions of cholangiocytes, HSCs,
and macrophages increased with increasing fibrosis severity, as determined by both the continuous ImageScore
(Fig. 3C) and the discrete fibrosis stage (Fig. 3D). Liver endothelial cells and other cell types with less than 5%
predicted proportion in any fibrosis stage show a very large variability (see Fig. S8B) due to the uncertainty of the
model prediction. Therefore, these cell types have not been further investigated in the present study.

Differential expression of cell type-specific profiles in the bulk RNA-seq data. We determined
cell type-specific differential expression patterns between advanced fibrosis (F3/F4, N=20) and non-fibrotic
NAFLD (F0, N=66) as shown in Fig. 4. There was a dominant cluster of HSC specific up-regulated genes, with
only a few down-regulated genes in F3/F4 compared to FO (Fig. 4A). As shown in Fig. 4B, 34 of the HSC marker
genes were enriched in cluster 3 from the bulk analysis (Fig. 1B) showing a positive correlation with fibrosis
stage. On the other hand, the hepatocyte specific fraction was enriched in the bulk gene clusters 1 and 4 that
are negatively correlated with fibrosis, except for F4 in cluster 1 (Fig. 1B). There is also a small set of genes that
shows hepatocyte-specific up-regulation in F3/F4 versus normal liver histology according to the deconvolu-
tion model. Interestingly, the functional enrichment analysis indicated that this signature is enriched with pro-
apoptotic genes as shown in Fig. 4C, D. This pathway is also moderately enriched in the HSC specific signature.
Meanwhile, the cholangiocyte specific signal inferred by the deconvolution method showed no enrichment in
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Figure 5. Gene signature. (A) Relationship between composite sample score and fibrosis stage in the NASH
data. Validation of 26- (B) and 98-gene (C) signatures using data from Hoang et al. (7).

Signature Genes

AKRIB1, AL035706.1, ARL4C, ARRDC2, BTG2, COL4A1, COL4A2, CYTOR, EHD4, ERVW-1, FTOP1, GSN,
HTR2A, IER5, IL27RA, INMT, LINC01725, LPAL2, NFKB2, PKM, S100A4, SOX5, TPM4, TRBC2, VIM, XYLB

AC004022.2, AC007370.2, AC009974.1, AC093797.1, AC099509.1, ACOX2, ADAMTSL2, ADHFEI, AEN, AIMP1P1,
AKRI1B1, AL035706.1, AL121988.1, AL354890.1, AL359715.1, AL589880.1, AL591848.4, AL713866.1, APOBEC3C,
ARL4C, ARRDC2, BICD2, BTG2, C20rf91, CDC42SE1, CDNF, COL4A1, COL4A2, COL5A1, CTD-2369P2.2,
CXCL6, CYP51A1P2, CYTOR, DCAF6, DDI2, DTNA, EHD4, ERVW-1, F11, GLIPR2, GPNMB, GSN, H1-3, HK1,
98-gene signature HTR2A, ICOS, IERS5, IL32, INMT, IRF8, ITGAX, KPNA2, LAMC3, LCP2, LINC00939, LINC01725, LPAL2, MEAF6,
MICALI1, MIR4435-2HG, NFKB2, NFYC-ASI, PGP, PIK3IP1, PKM, PLK3, PVT1, RASSF2, RGPD3, S100A11,
S100A4, SERPINBY, SH2D2A, SLC16A10, SLC1A3, SLC1A7, SLC38A11, SMLR1, SOX5, STMN2, STX17-AS1,
SWAP70, TAGLN2, TCEAL9, THBS2, THEMIS, THRB-IT1, TMEM51, TMSB4XP6, TNFAIP8, TOMMA40L, TPM4,
VIM, VOPP1, VWA7, WIPF1, XYLB, YWHAH

26-gene signature

Table 2. Candidate fibrosis signatures.

the bulk gene clusters. Macrophage specific signals showed general up-regulation of genes but were not enriched
in specific bulk gene clusters.

Candidate hepatic gene signatures predict fibrosis and related biological profiles. To define
candidate fibrosis signatures from the bulk data, we determined that the composite sample-level gene scores
from ordinal logistic modelling showed consistency with histological assessment of fibrosis severity (Kendall
rank correlation coefficient of 0.57 as shown in Fig. 5A). We derived two gene signatures by selecting lambda
values (the penalty parameter) that resulted in the minimum (98 genes) and a low (26 genes) mean squared
error in the tenfold cross-validation of lasso regression (Fig. SOA). The two lambdas were validated using fivefold
cross-validation (Fig. S9B, S9C).

Table 2 contains the two lists of signature genes. The predicted scores for fibrosis severity (referred to as sig-
nature Scores) showed high correlation with the composite sample-level gene scores (Fig. 5B, D for the 26-gene
and 98-gene signatures, respectively). Additionally, we validated the two progression signatures with the data
from Hoang et al.”, which comprised a similar spectrum of disease severity. The correlation between the signature
Scores using the 26-gene signature and histological fibrosis stage was strong and further increased using the
98-gene signature. Furthermore, 20 genes from the 26-gene signature and 63 genes from the 98-gene signature
belong to the up-regulated and down-regulated clusters, namely 30 genes from cluster 3, 19 genes from cluster
2 and 15 genes from cluster 4. We noted few overlapping genes including THBS2 between our candidate signa-
tures and previously reported signatures in NAFLD’, HIV associated NAFLD?, and hepatocellular carcinoma?.

Cell type and functional enrichment in the 98-gene signature. Within the larger fibrosis signa-
ture, 62 genes demonstrated cell type-specific differential expression in advanced fibrosis (F3/F4), compared to
non-fibrotic stages (F0). As shown in Fig. 6, two subsets of these genes showed up-regulation in macrophages
or HSCs, respectively, whereas only two signature genes (MICALI and STMN2) showed cholangiocyte-specific
up-regulation. The largest subset of cell type-specific differential expression was observed in hepatocytes which
comprised almost exclusively down-regulated genes. Functionally, the signature genes are involved in biological
pathways annotated in focal adhesion, PI3K-AKT pathway, and PDGF signaling, among others (see Table S3).
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Figure 6. Cell type-specific differential expression of the 98-gene signature. The 98-gene signature includes 62
genes that are included in the cell type-specific marker genes with information on cell type-specific differential
expression. Color code shows the cell type-specific log2 fold change in NASH F3/F4 versus Non-NASH as

inferred from the deconvolution analysis. The annotation column on the right indicates the log2 fold change in
the bulk RNASeq data.
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Discussion

Standard histologic and non-invasive NAFLD indices do not fully capture the complex biological spectrum and
the heterogenous clinical outcomes in liver fibrosis. Though the underlying biological mechanisms are incom-
pletely understood**?, studies using transcriptome sequencing have provided some molecular insights in NAFLD
and fibrosis”*?. Similarly, advances in single cell technologies allow for unprecedented molecular characteriza-
tion of specific cell types in murine models and human samples from NAFLD'>!31%2%_In this study, we attempt
to complement previous work (see Table S1) by including a large cohort of adults with advanced NAFLD, provid-
ing balanced representation across fibrosis stages, and leveraging relevant liver scRNA-Seq studies to identify
disease-classifying molecular and cell type profiles associated with histologic fibrosis stage. We observed four
extracellular matrix protein encoding genes (COL1A2, EFEMP2, FBLN5 and THBS2) being up-regulated with
fibrosis in NASH across all transcriptomic data sets that we have used for comparison with our data (Table S1).
Interestingly, EFEMP2 (alias FBLN4) and FBLN5 are paralogous genes from the fibulin-like extracellular matrix
protein family sharing 48% protein sequence identity. The fibulins protein family has five members which are
characterized by the presence of EGF2-like domains and a C-terminal fibulin-type module. Fibulin-3,-4,-5 have a
modified calcium binding EGF-like module at their N-terminus and are much smaller compared to fibulin-1 and
fibulin-2%. Both, EFEMP2 and FBLNS5 are essential for elastic fiber formation in connective tissues?>%°. Proteom-
ics studies have also shown increased fibulin-5 protein levels with hepatic fibrosis*” and recent functional studies
show that fibulin-4 is essential for elastin and collagen fiber crosslinking and extracellular matrix assembly via
lysyloxidase (LOX)?. THBS2 (thrombospondin-2) also encodes a secreted ECM glycoprotein, which modestly
correlates with histologic severity of NASH and fibrosis in a recent study?.

We deconvolved the hepatic transcriptome with a newly derived scRNA-Seq reference dataset. This compu-
tational approach showed increasing proportions of HSCs, macrophages, and transdifferentiated cholangiocytes
with disease severity while hepatocyte proportion decreased in converse. Two candidate gene signatures reliably
predicted fibrosis stage and reflected known and plausible biological mechanisms of disease progression. This
study provides novel molecular insights into NAFLD pathogenesis and surrogates for patient stratification,
prognosis, and therapeutic discovery.

The hallmark of fibrosis is an aberrant deposition of extracellular matrix (ECM) in response to hepatocyte
injury through complex molecular processes, which are less understood. These fibrosis-associated molecular
signals maintain profibrotic cell niches during disease progression'?*’. In this study, the global hepatic transcrip-
tome demonstrated molecular changes associated with fibrogenic processes in NAFLD (Fig. 1). The genes that
positively correlated with increasing fibrosis stage (i.e. clusters 2 and 3) involved ECM activation and collagen
processing, angiogenesis, cytoskeletal interactions, immune cell trafficking and inflammation, and platelet acti-
vation/signaling (Fig. 2). Conversely, the genes that inversely correlated with fibrosis stage (clusters 4 and 15)
involved hepatocyte-specific functions such as metabolism of lipids, fatty acids, and small molecules (Fig. 2).
These findings underscore important roles for immune cell trafficking®, platelets activation/signalling*’, and
EMC biology in fibrosis progression and point to a concomittant supression of hepatocyte function as fibrosis
progressess®>.

Cell type deconvolution with suitable scRNA-Seq reference data demonstrated that these bulk transcriptional
profiles are driven in large part by changes in the proportions of liver parenchymal and non-parenchymal cell
populations. The activated gene profiles were largely represented by genes associated with increasing proportions
of macrophage and HSC whereas the down-regulated genes, functionally enriched with hepatocyte-specific
pathways are consistent with a continous loss of hepatocyte cell proportions across fibrosis stages (Fig. 3B, C).
Cell type-specific differentially expressed gene profiles were mostly observed in severe fibrosis F3/F4 compared
to non-fibrotic patients FO/normal histology (Fig. 4A, B) and enriched in the candidate hepatic gene signatures
as noted in Fig. 6 and Table S2.

Although the deconvolution model predicted a continous loss of hepatocytes versus other cell types with
advanced fibrosis stage (Fig. 3B, C) as the major cause of the global downregulation of their metabolically-
related functions (Fig. 2B), a small subset of the hepatocyte-defined genes was differentially up-regulated in
severe fibrosis (Fig. 4A). This subset was functionally enriched in apoptotic pathways (Fig. 4C, D), which may
partially explain the observed depletion of hepatocytes in worsening fibrosis. NAFLD results in toxic accumula-
tion of metabolites and unhealthy organelles that drive programmed cell death in hepatocytes®****. In addition
to cell death, it is possible that the observed hepatocyte depletion is secondary to transdifferentiation into
cholangiocytes®® or represents a relative reduction versus other cell types i.e. infiltrating immune cells and/or
increase of hepatic stellate cells. Together, these observations are consistent with recent reports that fibrosis is
also characterized by distinct niches of bipotent hepatocytes or biphenotypic progenitor cells whose fate depends
on molecular cues within the diseased liver®’.

We derived two predictive gene signatures that reliably reflected these biological profiles and correlated with
histologic severity of fibrosis (Fig. 5 and Fig. S9). We focused our functional analyses on the 98 gene signature
which largely included the 26 set signature as a subset (23 of 26 genes, see Table 2). Over 60% of the signature
genes showed cell type-specific differential expression (Fig. 6), which underscores its inherent biological and
predictive potential. The gene signatures were predictive of fibrosis stage when applied to two publicly available
human NAFLD datasets”. We also compared our candidate signatures with two other published NAFLD fibrosis
signatures: Only a single gene, ADHFE], overlaps with the 18-gene fibrosis signature reported by’, while three
genes overlap with the 25-genes progression signature derived by'® i.e. IL32, STMN2, and DTNA. Between the
two published gene signatures there is one overlapping gene, TNFRSFI2A. Interestingly, IL32 has been previ-
ously reported as the top up-regulated liver transcript in NAFLD?*. We also checked the 25-gene signature from!°
in our cluster analysis, with 17 of the 25 genes corresponding to cluster 2 (CCL20, CEAP221, DTNA, DUSPS,
IL32, ITGBL1, STMN2, TNFRSF12A), cluster #3 (COL1A1, COL1A2, LTBP2, PDGFA, RGS4, THY1) and cluster
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5 (AKRIBI0, CLIC6, TYMS) of up-regulated genes. PDGFA and AKRIBIO are also the among the top three
marker genes reported in this study.

Notably, the cell type resolved fibrosis signature shown in Fig. 6 underscores previously described molecular
influences on the fibrotic microenvironment'>. Molecular cues from damaged hepatocytes activate aberrant
intercellular cross-talk between heterogenous monocyte-derived macrophage subpopulations® and hepatic cells
to orchestrate a progressive fibrotic niche'>'**. Our data identified potential key drivers of these pathways within
the deconvoluted macrophage, cholangiocyte, HSC, and hepatocyte specific genes in the signature. For example,
the functional analysis revealed a potential role of pERK-vimentin-KPNA2 signaling genes (VIM and KPNA2)
within the disease progression signature (see Table S2). This pathway was recently characterized in hepatic
fibrogenesis, where VIM mediates cytoskeletal crosstalk and signal transduction through the ERK/AKT pathway
to activate HSCs in fibrosis*’. Consistent with our findings (Fig. 6), monocyte-derived macrophages express
reasonably high KPNA2 and VIM*, which suggests that infiltrating macrophages also employ this pathway and
its member genes to promote fibrogenesis'>?*. Other macrophage-annotated genes may play additional roles in
hepatic cell stemness during persistent inflammatory injury (S100A4)*>*.

Moreover, the most robust functional profiles among these signatures included genes coding for ECM pro-
teins and membrane receptors (Fig. 6 and Table S2), which were largely represented in HSCs (CXCL6, COL4A2,
COL4A1, LAMC3, BTG2, THBS2) and which are also members of the overrepresented PDGF signaling path-
way (see Table S2) which is known to activate epithelial-mesenchymal transition (EMT) in HSCs and promote
fibrogenic signals*.

Together, the hepatic transcriptome revealed DE gene profiles and candidate gene signatures, which were
highly enriched in pathways that plausibly reprogram HSCs, macrophages, cholangiocytes and hepatocytes
toward fibrotic states in NAFLD. These proposed dynamics are not well understood and need to be further
characterized.

We noted that the cell composition changes in this study do not fully reflect the heterogenous plethora of
additional cell types that drive fibrosis in NAFLD, including liver sinusoidal endothelial cells (LSECs) (13), T
and B lymphocytes, and other immune cells. Practically, our analysis focused on cell types that were reliably
represented in the single cell reference datasets as well as the deconvoluted cell type proportions of the bulk
samples. As scRNA-Seq gains momentum in hepatologic studies to generate more reference datasets, future
efforts may reliably improve the sensitivity of deconvolution methods and thus resolve additional cell types and
sub-populations in disease progression. Also, this will allow to replace the mouse single cell reference data by
human single cell reference data once these are available for all cell types and disease conditions at reasonable
coverage and resolution. However, this computational approach demonstrates dynamic cell compositions (Fig. 3),
which define some of the transcriptional and functional profiles associated with fibrosis within our dataset.

Current fibrosis staging standards do not capture the full histologic continuum of liver fibrosis, particularly
at the boundaries between stages (e.g., F2-F3) where cellular and phenotypic changes cannot be assessed by
discrete scores. Our digital pathology model supported the deconvolution method by providing continuous
morphometric scores, which reliably predicted fibrosis stage (Fig. S3) and allowed advanced statistical methods
to correlate the cell type proportions with histologic stages (Fig. 3C). We acknowledge that digital pathological
staging is an emerging deep learning technology, which would require larger image sample sizes beyond the
scope of this study*.

Given the limiting challenge of acquiring clinically and demographically representative biopsy specimens for
this observational study, our findings may only reflect the degree of variability and clinicopathologic classifica-
tions within this study cohort. Also, there is a risk of sampling bias due to different types of biopsies in FO-F3
(mostly derived from wedge biopsies) versus F4 (8 of 11 samples are explant). Nonetheless, compared to prior
studies, the inclusion of samples from fibrosis at the most advanced stage of the disease improved histologic
heterogeneity, which provides confidence that our approach has substantial potential to identify and reflect
targetable pathways in NAFLD.

We are aware that the present study is descriptive and mainly based on the newly generated bulk RNASeq
and histology data. Some of the observed transcriptional signals are in very good agreement with previously
published data but the functional consequences of these findings remain to be clarified, as validation using
orthogonal methods such as single cell RNASeq, RNA or protein in situ, and/or protein quantification assays on
liver samples from appropriately-powered NAFLD patient cohorts would be required. Nonetheless, based on
our data, we believe that the RNASeq method is sufficiently robust to not require additional RNA quantitation.
It will be important for future studies in NASH to provide additional lines of evidence to strengthen the findings
from the present study.

Herein, we characterized hepatic transcriptional and cell-composition profiles that coordinately associate with
the histologic continuum of NAFLD fibrosis, to identify hepatic gene signatures that correlate with disease sever-
ity. This study provides an integrated framework to understand cellular and molecular perturbations underlying
NAFLD fibrosis and inform the discovery of new biomarkers and disease therapies.

Material and methods

Sample collection and histologic evaluation. Subjects were selected from the Massachusetts Gen-
eral Hospital (MGH) NAFLD Cohort. The MGH NAFLD Cohort includes adults with suspected or established
NAFLD based on imaging or liver histology. Individuals are recruited from the MGH Fatty Liver Clinic, the
MGH Weight Center in Boston, MA and from the Bon Secours Health System in Richmond, VA. Subjects
include adults with a standard of care liver biopsy performed at the time of bariatric surgery, adults under-
going a percutaneous liver biopsy for evaluation and staging of NAFLD and patients with NAFLD cirrhosis
with liver tissue available from liver explant at the time of transplantation. Individuals in the current study
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were recruited between December 2010 and December 2015. Inclusion criteria were the following (1) men and
women age > 18 years; (2) alcohol use <20 g daily for women or <30 g daily for men and (3) sufficient liver tis-
sue available for RNA sequencing. Those with other causes of chronic liver disease or those with chronic use
of steatogenic medications including methotrexate, amiodarone, corticosteroids or tamoxifen were excluded.

The majority of subjects (N =133) underwent bariatric surgery and had standard of care wedge liver biopsies
performed intra-operatively, 8 subjects had NAFLD cirrhosis and underwent liver transplantation with tis-
sue taken at the time of surgery and 2 underwent a second pass at the time of clinically indicated liver biopsy
(Table 1). Half of each tissue biopsy was either immediately flash frozen or stored in RNAlater and stored
at—_80 °C, while the remaining tissue was formalin-fixed and paraffin embedded for pathologic evaluation. A
single hepatopathologist evaluated most biopsies (N=117) in a blinded manner while 26 were read by clinical
pathology. Normal liver histology was defined as < 5% steatosis without evidence of inflammation, hepatocyte
ballooning or fibrosis. NASH was defined by the predominance of zone 3 macrovesicular steatosis, hepatocyte
ballooning grade > 1 with or without lobular inflammation as defined by the NASH Clinical Research Network
(NASH CRN). Patients with steatosis grade >1 (=>5%) not meeting criteria for NASH were diagnosed with
NAFL. The NASH CRN system was used to stage fibrosis on a scale from 0 (absent) to 4 (cirrhosis).

Written informed consent was obtained from each patient included in the study and the study protocol con-
forms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the Mass
General Brigham Human Research Committee.

Morphometricimage analysis. Histological liver images were broken down to tiles using Halcon Version
18 (MVTec Munich). Due to type of biopsy, the number of tiles ranged from less than 10 to more than 500 per
biopsy image. For each tile, parameters to be used as features were recorded to train the predictive model, includ-
ing compactness of the tissue, compactness of the voids, number of voids, equivalence radius, area of collagen,
collagen area per tissue area, collagen area per section and void area. A Support Vector Regression (SVR) model
was fit using the package €1071*. The model was trained using a 20-fold cross-validation round. Observed
fibrosis scores for normal Stage (N), and FO to F4 were set to discrete values of — 1, 0.4, respectively. Given that
each sample image had a variable number of tiles, we down-sampled the number of tiles to six tiles per image.
To avoid a selection bias, we repeated the down-sampling 100 times. Tiles that were not selected to train the
algorithm were reserved for the validation stage. For each cross-validation round, we extracted patient-wise
features by performing PCA using the tiles and taking the median of the PCA scores of the tiles that correspond
to that patient. The PCA model was trained using the pcaMethods R package®. During this stage, a fibrosis score
(designated as imageScore) for each patient was predicted using the tiles of the validation set. Therefore, after the
training stage of the model, each sample had 100 different predicted imageScores. We used the median of these
100 values as the final imageScore for the assessment of fibrosis severity (see Figs. S2, $3). We used the continu-
ous score from the morphometric image analysis to check the consistency of the pathologist-assigned fibrosis
score and to assess the change in predicted cell type decomposition by deconvolution. For differential expression
analysis, we used the pathologist assigned fibrosis scores.

RNA-seq analysis. Total RNA was extracted using MagMax AM1830 kit (Fisher Scientific GmbH, Schw-
erte, Germany) and reverse-transcribed with 100 ng RNA using TruSeq Stranded Total RNA LT Sample Prep
Kit with Ribo-ZeroTM H/M/R (Order # RS-122-2202, Illumina Inc, San Diego, CA, USA). This kit transcribes
protein coding, non-coding and non-polyadenylated RNAs while cytoplasmic ribosomal RNA is depleted. The
sequencing libraries were built according to manufacturer’s procedures. Sequencing was carried out at a depth
of 50-55 million reads on two Illumina HiSeq systems (HiSeq 3000 for batch 1-3; HiSeq 4000 for batch 4 and 5).
The Illumina TruSeq methods (cluster kit TruSeq SR Cluster Kit v3-cBot GD-410-1001, sequencing kit TruSeq
SBS Kit HS- v3 50-cycle FC-410-1001) were applied as 85 bp, single reads and 8 bases index read.

The sequencing data were processed using the bebio-nextgen RNA-Seq analysis pipeline?. Reads were
mapped to reference genome hg19 using STAR® for quality assessment and to the transcriptome using Salmon®
for quantification. Covariates with significant correlations with gene expression variation based on principal
components analysis (PCA) (Fig. S4) were identified and controlled for further downstream analysis. Accord-
ingly, batch, site code, age, sex, race, intergenic rate, rRNA rate, and RNA integrity number (RIN) were included
in the linear model for differential expression (DE) analysis, which was restricted to protein coding genes. DE
genes were identified using DESeq2°! in comparisons between fibrosis stage 0 and Normal liver histology, and
between each fibrosis stage of 1, 2, 3, 4 and stage 0. In addition, a likelihood ratio test (LRT) was performed using
the fibrosis stage as a model variable to detect genes only explained when the fibrosis stage variable was included
in the model. Gene expression patterns for DE genes were computed and visualized using the DEGreport R
package®?. Functional analysis was performed in R using ReactomePA®, clusterProfiler* for the DE genes, and
g:Profiler for the signature gene set®, using a false discovery rate (FDR) threshold of less than 0.05 for statistical
significance. Sequencing raw data is available at the GEO with accession number GSE162694.

Cell type deconvolution of liver bulk RNASeq. Based on the performance of the cell type proportion
predictions from pseudo-bulk mixtures’, we employed MuSiC'>"7, which applies weighting of genes according
to cross-subject and cross-cell consistency. We validated the deconvolution method and generated a combined
human and mouse single cell reference data set for our approach as described in the Supplemental method sec-
tion. To estimate cell type-specific differential expression based on predicted cell type proportions, we applied
a regression-based method implemented in the omicwas R package®®. We combined fibrosis stages 3 and 4 as
the disease group denoting advanced fibrosis, and stage 0 fibrosis and normal liver histology as the control,
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non-fibrotic group. With raw expression as TPM, cell type-specific differential expression between disease and
control groups was identified by the ctassoc function, while controlling for sex as a confounder.

Identification of gene signatures associated with fibrosis stage. We adapted the method by Hoang
et al.” to define a gene signature that associates with fibrosis stage. Briefly, we modelled the relationship between
the clinical classification of fibrosis stage and each gene’s expression level by fitting an ordinal logistic regression
model using the variance stabilizing transformation (VST) data from DESeq2°'. In contrast to the differential
expression and functional analysis, we included also non-coding genes in this model. A weighted gene-level
score was calculated based on the fitted model for each gene and each sample. Genes were ranked by the coef-
ficient of variation of the gene-level scores, and the mean of the top 1000 genes was calculated to obtain a sample-
level score indicative of fibrosis severity. Next, the composite sample-level scores were used to fit a lasso regres-
sion against gene expression. Lambda, the regularization penalty parameter was chosen to achieve a desirable
number of predictor genes based on the results of k-fold cross-validation. We verified that the gene signatures
were predictive of fibrosis stage using independent NAFLD RNA-Seq data sets from Hoang et al.” and Fourman
et al*® (data not shown). We also assessed the extent of enrichment of the deconvolved cell type-specific genes
within the signatures.

For systematic review of previously published sets of genes that are up-regulated with fibrosis in NASH we
screened the literature and gene expression repositories (GEO and ArrayExpress). We included all studies with
reasonable sample size of biopsy confirmed patients with NASH and fibrosis and accessible primary data.

Data availability

Raw RNASeq bulk data of the human NASH samples from the present study is available under the Gene Expres-
sion Omnibus (GEO) deposition number GSE162694. In addition, we re-processed data from the following
previously published data sets: Single cell reference data set for Human liver cirrhosis (12): GSE136103. Single
cell reference data set for mouse NASH model (18):(18): GSE129516. Source code to run the morphometric
image analysis and cell type deconvolution can be obtained on request to the authors.
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