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Introduction: Machine learning (ML) methods are being increasingly applied

to prognostic prediction for stroke patients with large vessel occlusion (LVO)

treated with endovascular thrombectomy. This systematic review aims to

summarize ML-based pre-thrombectomy prognostic models for LVO stroke

and identify key research gaps.

Methods: Literature searches were performed in Embase, PubMed, Web of

Science, and Scopus. Meta-analyses of the area under the receiver operating

characteristic curves (AUCs) of ML models were conducted to synthesize

model performance.

Results: Sixteen studies describing 19 models were eligible. The predicted

outcomes include functional outcome at 90 days, successful reperfusion,

and hemorrhagic transformation. Functional outcome was analyzed by 10

conventional ML models (pooled AUC=0.81, 95% confidence interval [CI]:

0.77–0.85, AUC range: 0.68–0.93) and four deep learning (DL) models (pooled

AUC=0.75, 95% CI: 0.70–0.81, AUC range: 0.71–0.81). Successful reperfusion

was analyzed by three conventional ML models (pooled AUC=0.72, 95%

CI: 0.56–0.88, AUC range: 0.55–0.88) and one DL model (AUC=0.65, 95%

CI: 0.62–0.68).

Conclusions: Conventional ML and DL models have shown variable

performance in predicting post-treatment outcomes of LVO without generally

demonstrating superiority compared to existing prognostic scores. Most

models were developed using small datasets, lacked solid external validation,

and at high risk of potential bias. There is considerable scope to improve
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study design and model performance. The application of ML and DL methods

to improve the prediction of prognosis in LVO stroke, while promising,

remains nascent.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42021266524, identifier CRD42021266524

KEYWORDS

ischemic stroke, large vessel occlusion, endovascular thrombectomy, prognostic

prediction, machine learning, deep learning

Introduction

Ischemic stroke caused by large vessel occlusion (LVO)

accounts for 24–46% of ischemic stroke cases (1). Endovascular

thrombectomy (EVT) is currently the standard care for ischemic

stroke patients with occlusion in the anterior cerebral circulation

and salvageable brain tissue within 24 h of symptom onset

(2). However, despite advances in stroke treatment, the rate of

long-term disability/dependency is up to approximately 50%

in LVO patients (3). Further, EVT is resource intensive. Better

identification of the risks and benefits of intervention may be

valuable to optimize patient outcomes and reduce healthcare

and societal costs.

To help improve treatment strategies and clinical decision-

making, prior studies have investigated pre-treatment predictors

of key clinical outcomes following LVO stroke, including

comorbidities, clinical examination, and neuroimaging findings

(4). A number of prognostic scores using simple linear

combinations of these predictors, such as ASPECTS, HIAT,

and MR PREDICTS, have been constructed and validated

in LVO cohorts treated with EVT (4). However, they may

have low clinical utility due to their modest performance in

practice (4). Other barriers of their clinical implementation

include complexity of scoring and the subjective nature of data

acquisition, which are time-dependent with concomitant high

inter-observer variability (5, 6). There is a need for amore robust

and clinically useful prognostic tool.

Machine learning (ML) techniques are being increasingly

applied to clinical tasks (7). These techniques have the potential

to handle a large quantity of data and identify latent patterns and

complex relationships (8). Deep learning (DL), a newer type of

ML technique, can automatically learn useful features at the pixel

or voxel level, which is particularly powerful in processing raw

medical images (9). DL has shown substantial promise in clinical

prognostic prediction based on raw image data (10, 11), and,

therefore, may play a role in predicting stroke outcomes—an

area characterized by rich neuroimaging datasets.

This systematic review aimed to evaluate the performance,

validity, and clinical applicability of published ML-based pre-

thrombectomy prognosticmodels for LVO stroke and to identify

key research gaps.

Methods

This systematic review was registered on PROSPERO (12)

(ID: CRD42021266524) and conducted in line with the PRISMA

guidelines (13).

Eligibility criteria

Publications were eligible for inclusion if the study applied

ML and/or DL algorithms to predict clinical outcomes following

EVT treatment of LVO stroke. Specifically, the studies were

included if: 1) the prediction models were applied to LVO

stroke patients treated with EVT; and 2) the study employed

ML-based algorithms, such as random forest analysis, naive

Bayes classifiers, support vector machines, regression models,

and/or various DL algorithms such as convolutional neural

networks. Standard regression models without penalization

(such as simple logistic regression, linear regression, and cox

regression models) were not considered within the scope of

this review.

Studies were excluded if: 1) the prediction models included

patients with non-LVO stroke such as intracerebral hemorrhage

or lacunar stroke; 2) assessment of the model performance

was not performed; or 3) the prediction models involved post-

EVT information. Conference abstracts, review articles, letters,

comments, editorials, and erratum were excluded due to limited

information contained.

Search strategies

Full details of the search strategies are shown in

Supplementary Table S1. A variety of keywords were selected for

literature search after consultation with an academic librarian.

Systematic searches were conducted in four databases—

PubMed, Embase, Scopus, and Web of Science, from inception

until the 18th February 2022. These databases included related

computer science conferences and journal papers, except the

International Conference on Medical Imaging with Deep

Learning (MIDL), so manual searches in MIDL were conducted
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to supplement the searches in online databases. Searches were

limited to studies published in English.

Study selection

Two reviewers (MZ and ZW) independently conducted

study selection and review. After removing duplicates,

conference abstracts, narrative reviews, comments, letters,

editorial and erratum, the records were screened based on

the titles and abstracts, and subsequently assessed by full-text

reading. Discrepancies between the two reviewers were resolved

by discussion and consultation with a third reviewer (LJP).

Data extraction

Relevant data from the eligible studies were extracted into

a pre-specified form independently by two reviewers (MZ

and ZW). The data extracted were: 1) year of publication; 2)

sample sizes of the training, testing, and external validation

cohorts if applicable; 3) demographic characteristics of the study

population (age, gender, and ethnicity/place of recruitment);

4) vessel occlusion sites; 5) clinical outcomes assessed; 6)

imaging modality used for model development; 7) specific

algorithms used; 8) model performance; and 9) model

validation. Information related to model development and

model performance was restricted to that pertaining to the

“best-performing” model. A third reviewer (LJP) resolved any

disagreements regarding the extracted information between the

two reviewers.

Data synthesis

The model performance was quantified by area under the

receiver operating characteristic curve (AUC), an estimation for

the discriminative capacity of a model. The AUCs and 95%

confidence intervals (CIs) of relevant models were extracted and

synthesized. The standard error of each AUC was calculated

using the actual positive endpoint and actual negative endpoint

based on formula provided in Bradley et al. (14). To make

analyses consistent, 95% CIs were calculated based on the

information available in the reports using the statistical formula

(15): 95% CI = effect size (AUC) ± 1.96 × standard

error. “Significant” statistical heterogeneity was defined using

the Cochran’s Q-test (P ≤0.10) and the I2 statistic (>50%)

(16). AUCs were pooled in a random-effects model if there

was significant heterogeneity suggested by the Q-test or I2.

Otherwise, the AUCs were pooled using a fixed-effects model.

For adequate statistical power, we used Egger’s test with a

funnel plot to detect publication bias only when a meta-analysis

included more than 10 AUCs and had no statistically substantial

heterogeneity suggested by the I2 or Q-test (17, 18). The meta-

analyses were conducted using the MedCalc Statistical Software

(version 20.0.3).

Risk of bias and reporting quality

Assessment of risk of bias was conducted using the

Prediction Model Risk of Bias Assessment Tool (PROBAST)

(19). This tool contains 20 questions covering four domains,

including participants, predictors, outcomes, and analysis.

Assessment of the adherence to reporting standards was

conducted using the Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis Or Diagnosis

(TRIPOD) protocol (20). This checklist contains 22 items (37

points) covering multiple aspects, including title and abstract,

backgrounds and objectives, methods, results, discussion,

supplementary and funding. In TRIPOD and PROBAST, items

related to the details of predictors were not applicable for studies

using DL models. This was because “predictors” in DL models

are usually each pixel or voxel of an image, which are less likely

to be reported in DL models (21). The modified TRIPOD and

PROBAST are shown in Supplementary Tables S2, S3.

Results

Search results

A total of 4,116 records were identified in the initial search.

After the review of titles and abstracts and the screening of full

texts, 16 studies met the inclusion criteria and were included in

the systematic review (Figure 1).

Basic characteristics

The basic characteristics of the eligible studies (22–37) are

summarized in Supplementary Table S4. The mean or median

ages of the study participants ranged from 64.0 to 86.0 years, and

the proportion of male participants ranged from 35.0 to 65.9%.

Only one US study (24) specifically described the self-reported

ethnicity of the patients (63.0–69.0% European ancestry); the

other studies reported the place of patient recruitment [USA: 1

(32); Europe: 10 (22, 23, 26–29, 31, 33–35); Asia: 4 (25, 30, 36,

37)]. The training sample sizes ranged widely, from 109 to 1,401.

Regarding the testing sample, two studies used hold-out test

sets, respectively containing 208 patients (30) and 100 patients

(35). The remaining studies performed cross-validation (23–

26, 28, 29, 31–34, 36, 37) or bootstrap approach (22, 27). The five

studies (23, 29, 31, 34, 35) used data obtained from MR CLEAN

Registry (38). Fifteen studies reported the occlusion sites, of

which 14 studies (22, 23, 25–36) included patients with anterior
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FIGURE 1

Flow chart of study selection.

circulation occlusion and one (24) further included patients with

occlusion in the posterior circulation.

Model development

Conventional machine learning algorithms

Details of model development in 12 studies using

conventional ML algorithms are shown in Table 1. Tree models

(22, 24, 31), random forests (23, 26, 27), and support vector

machines (28, 30, 33) were each proposed by three studies,

regularized logistic regression by two studies (25, 32), and

artificial neural networks by one study (29). To accommodate

missing values, two studies used multiple imputation (23, 29)

and one used singular imputation (31), while other studies

excluded participants with missing data in either predictive

or outcome variables (complete-case analysis) (22, 24–

28, 30, 32, 33). The number of predictive variables used for

model construction varied from 4 (32) to 53 (23). The National

Institutes of Health Stroke Scale and age were commonly ranked

as the important predictors. All studies conducted internal

validation, either by bootstrapping (22, 27), hold-out validation

(30), or k-fold cross-validation (23–26, 28, 29, 31–33).

Deep learning algorithms

Table 2 summarizes the model development of DL

algorithms in four studies. All studies conducted skull stripping,

augmentation, normalization, and imaging resampling (34–37).

Two studies (36, 37) additionally labeled regions of interest in

the scans. All studies used DL algorithms based on supervised

learning (34–37), with one study also using unsupervised

learning (auto-encoder) for model pre-training (34). Regarding

model architectures, Hilbert et al. (34) used a convolutional

auto-encoder to obtain representative imaging features and

applied a 2-D ResNet for fine-tuning in successful reperfusion

prediction, while the auto-encoder was not used in the best

model for functional outcome prediction. The authors utilized

structured receptive field kernels (as opposed to learned

convolutional kernels) to help prevent overfitting. Samak et al.
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TABLE 1 Model development using conventional machine learning algorithms.

References Model Outcomes Missing value Features Important feature identified Validation

Brugnara et al. (22) Tree model:

Gradient

boosting

decision trees

Good functional

outcomes (mRS≤2)

Patients with missing

data were excluded

16 Premorbid mRS, baseline acute ischemic volume, NIHSS, onset to imaging time, baseline

eASPECTS

Bootstrapping (25 bootstrap

sample)

Van et al. (23) RFA a. Good functional

outcomes (mRS≤2)

b. Successful reperfusion

(TICI score≥2b)

Patients with missing

data of main outcomes

were excluded; other

variables, multiple

imputations

53 Age, NIHSS at baseline, duration of onset to groin puncture, Glasgow Coma Scale, systolic BP at

baseline, CRP, creatinine, thrombocyte count, diastolic BP at baseline, baseline ASPECTS,

glucose, clot burden score; feature importance for good functional outcomes only: baseline mRS,

presence of leukoaraiosis, collateral score; feature importance for successful reperfusion only:

occlusion site, hyperdense artery sign, history of AF

Nested cross-validation: 100

repeated random splits;

10-fold cross validation

Alawieh et al. (24) Tree model

(regression tree)

Good functional

outcomes (mRS≤2) *

Patients with missing

data were excluded

12 Age, gender, race, diabetes, hypertension, hyperlipidemia, arterial fibrillation, preceding

intravenous thrombolysis, onset to groin puncture time, NIHSS, baseline mRS, ASPECTS**

10-fold cross-validation

Nishi et al. (25) RLR Good functional

outcomes (mRS≤2)

Patients with missing

data were excluded

16 Care-dependent, age, premorbid mRS, ASPECTS, NIHSS 10-fold cross-validation

Hamann et al. (26) RFA Good functional

outcomes (mRS≤2)

Patients with missing

data were excluded

10 Age, NIHSS at baseline, systolic blood pressure, risk factors (hypertension, diabetes, smoking,

previous ischemic event), preceding intravenous thrombolysis, onset to groin puncture time,

collateralization status, perfusion value of the medial MCA territory, volume of core, and

volume of tissue at risk**

5-fold cross validation

Kerleroux et al. (27) RFA Good functional

outcomes (mRS≤3)

Patients with missing

data were excluded

32 Receiving mechanical thrombectomy, the absence of ICA occlusion, lower HE-I, decreasing age,

and the presence of eloquent mismatch within the following regions: the right thalamus, the left

thalamus, the left superior longitudinal fasciculus, the left post central gyrus, the left

retro-lenticular part of internal capsule, and the left supra marginal gyrus

Bootstrapping

Xie et al. (28) SVM Good functional

outcomes (mRS≤2)

Patients with missing

data were excluded

4 Age, baseline NIHSS score, lesion volume, ischemic percentage in each brain region Nested cross-validation: 100

repeated random splits;

10-fold cross validation

Ramos et al. (29) ANN Poor functional

outcomes (mRS≥5)

Multiple imputation 51 Age, collateral, glucose level, NIHSS, and pre-stroke mRS Nested cross-validation: 10

equally sized splits;

5-fold cross validation

Ryu et al. (30) SVM Poor functional outcome

(mRS≥4)

Patients with missing

data were excluded

6 Age, NIHSS, hypertension, diabetes mellitus, AF, and poor collateral* Hold-out validation

Kappelhof et al. (31) Tree model

(Decision tree)

Poor functional outcome

(mRS≥5)

Singular imputation 6 Age, pre-stroke mRS, start of endovascular thrombectomy, NIHSS at baseline, history of

diabetes mellitus, duration of CTA in first hospital to groin puncture*

5-fold cross-validation

Patel et al. (32) RLR Successful reperfusion at

the first attempt (TICI

score≥2b)

Patients with missing

data were excluded

4 Clot length, clot perviousness, distance from internal carotid artery, angle between the

aspiration catheter and the clot

Nested cross-validation: 100

repeated random splits;

10-fold cross validation

Hofmeister et al.

(33)

SVM Successful reperfusion at

the first attempt (TICI

score≥2b)

Patients with missing

data were excluded

9 Large area low gray level emphasis, gray level variance, large dependence emphasis, short run

emphasis, entropy, maximum, run percentage, coarseness, and gray level nonuniformity

normalized*

10-fold cross-validation

AF, atrial fibrillation; ASPECTS, The Alberta stroke program early CT score; BP, blood pressure; CRP, C-reactive protein; HE-I, high-eloquence infarct; MCA, middle cerebral artery; mRS, Modified Rankin Scale; ICA, internal carotid artery; NIHSS, The

National Institutes of Health Stroke Scale; RFA, random forest analysis; RLR, regularized logistic regression; TICI, thrombolysis in cerebral infarction score; n.a., not available; ANN, artificial neural networks; CTA, computed tomography angiography;

mRS, Modified Rankin Scale; SVM, support vector machine; TICI, thrombolysis in cerebral infarction score. *Study used regression tree model to predict continuous multiclass mRS (0, 1, 2, 3, 4, 5, 6) and also dichotomized multiclass mRS (“good” vs.

“poor” function) for model prediction and comparison. **Features used in final model were listed here as feature importance ranking analysis was not conducted in the included study.
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(35) and Jiang et al. (37) both used a 3-D CNN feature encoder

and incorporated imaging and clinical data using metadata

fusion technique. The former additionally used self-attention

technique (squeeze and excitation modules) in their encoders,

while the latter is based on pre-trained Inception V3 encoders.

Additionally, the latter built the encoder individually on

multiple imaging modalities (Diffusion Weight Imaging [DWI],

Mean Transit Time map, and Time To Peak map). Nishi

et al. (36) used a U-net for predicting ischemic core lesion

segmentation to derive feature representations and used a

2-layer neural network on top of feature representations for fine

tuning. Two studies used saliency c-map for imaging feature

visualization (34, 36). All four studies excluded patients with

missing values in either imaging data or outcome measures.

Three studies conducted k-fold cross-validation (34, 36, 37) and

one used hold-out validation (35).

Model performance

Conventional machine learning algorithms

Model performance of the 13 conventional ML models was

summarized in Table 3. Ten models predicted the functional

outcome at 90 days post-stroke defined by the mRS (39)

(pooled AUC=0.81, 95% CI: 0.77–0.85, AUC range: 0.68–

0.93, Figure 2A). Seven of these models used imaging features

selected from computed tomography (CT) (pooled AUC=0.82,

95% CI: 0.78–0.86), and three involved features identified in

magnetic resonance imaging (MRI) (pooled AUC=0.77, 95%CI:

0.70–0.85) (Supplementary Figure S1). Three models predicted

successful reperfusion defined by the Thrombolysis in Cerebral

Infarction Score (pooled AUC=0.72, 95% CI: 0.56–0.88, AUC

range: 0.55–0.88; Supplementary Figure S2). Three models were

validated (24, 25, 33) in external datasets.

Deep learning algorithms

The six DL models were summarized in Table 4. Good

functional outcome defined as mRS≤2 was analyzed in three

models (pooled AUC=0.75, 95% CI: 0.70–0.81; Figure 2B),

among which two were CT-based (AUC range: 0.71–0.75)

and one was MRI-based (AUC: internal, 0.81; external, 0.73).

The outcomes predicted in the other three models include:

each of the seven mRS points (accuracy=0.35), successful

reperfusion (AUC=0.65, 95% CI: 0.62–0.68), and hemorrhage

transformation (AUC=0.95, 95% CI: 0.87–1.00). Two models

conducted external geographic validation (36, 37).

Risk of bias

Three ML-based studies (23, 29, 31) and one DL-based

study (34) were considered at low risk of bias in all domains

(Supplementary Table S5). The remaining studies were at high

risk of bias in at least one domain (22, 24–28, 30, 32, 33, 35–37).

Risk of bias mostly occurred in handling missing data. Risks of

bias in other items, including standard outcome definition and

internal validation techniques, was also identified.

Reporting quality

All studies were rated as “good” in terms of overall

adherence (>70% items reported) (Supplementary Table S6).

However, several items remained rarely reported, including

sample size calculations, how risk groups were defined, the

detailed parameters of the prediction models and how to use the

prediction model.

Discussion

The application of ML techniques in prognostic prediction

for LVO stroke is evolving. CT images have been more

commonly used than MRI images in model development. Most

studies used short-term reperfusion and functional outcomes at

90 days post-stroke as the prognostic endpoints. Conventional

ML and DL models showed similar performance, but neither

significantly outperformed existing prognostic scores. Also,

many studies exhibited a high risk of potential bias and few

studies adequately reported details of the models developed.

Image data

Most studies selected CT over MRI as the imaging modality,

in keeping with clinical practice (40). MRI may offer superior

outcome prediction because of more precise measurement of

early stroke damage, but its availability, acquisition speed and

frequent contraindications have proven formidable barriers to

routine use (41). Meanwhile, the performance of CT imaging has

been improving over time, reducing the diagnostic precision gap

(41). Indeed, our review suggests thatMRI did not show superior

performance to CT in prognostication, bolstering the rationale

for developing CT-based prognostic models.

Predicted outcomes

Our review identified clear gaps regarding the outcomes

investigated. The only “long-term” outcome investigated was the

mRS score at 90 days. This outcome was analyzed as a binary

variable in all studies (dichotomized at two or three for good

vs. moderate-to-poor outcome; or at four or five for poor vs.

moderate-to-good outcome). However, such dichotomization

might be arbitrary and inconsistent, which may have introduced
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TABLE 2 Model development using deep learning algorithms.

References Outcomes Missing value Major imaging pre-processing Model architecture Feature

visualization

Validation

Hilbert et al. (34) a. Good functional

outcome (mRS≤2)

b. Successful

reperfusion

(TICI score≥2b)

Patients with

missing data were

excluded

a. Brain extraction (50–400 HU)

b. Rigid registration to a template

c. Computing maximum intensity

projection from 3D to 2D scans

d. Normalization

e. Imaging resampling (368× 432)

a. Functional outcome: supervised

2D-ResNet architecture with structured

receptive field kernels model

b. Successful reperfusion: a stacked

denoising convolutional auto-encoder

(2D-ResNet architecture with structured

receptive field kernels) and fine-tuned

model

Gradient-weighted

Class Activation

Mapping

4-fold cross

validation

Samak et al. (35) a. Good functional

outcome (mRS≤2)

b. Individual mRS

scores (0–6)

Patients with

missing data were

excluded

a. Brain extraction (40–100 HU)

b. Data augmentation (flip, rotations,

elastic deformations, Gaussian noise)

c. Normalization

d. Imaging resampling (192x192x32)

a. Multimodal model: image feature

encoder, clinical metadata encoder,

image and clinical metadata fusion

b. 3D-convolutional kernels, attentional

block

n.a. Hold-out validation

Nishi et al. (36) Good functional

outcome (mRS≤2)

Patients with

missing data were

excluded

a. Brain extraction

b. Data augmentation (rotations,

translation, spatial scaling)

c. Normalization

d. ROIs labeling (ischemic core lesion)

e. Imaging resampling (128× 128× 32)

a. Multi-output model: A U-net

segmentation task for imaging feature

derivation, a 2-layer neural network for

fine-tuning

b. 3D-convolutional kernels

Gradient-weighted

Class Activation

Mapping

5-fold cross

validation

Jiang et al. (37) Hemorrhagic

transformation

(including HI1,

HI2, PH1, and

PH2)

Patients with

missing data were

excluded

a. Brain extraction

b. Data augmentation (rotations,

spatial scaling)

c. ROIs labelling

d. Imaging resampling (randomly

cropped from ROIs)

a. Multimodal model: multiple imaging

feature encoders (DWI, MTT, and

TTP), clinical metadata encoder, image

and clinical metadata fusion

b. 3D-based convolutional kernels,

Inception V3 architecture

n.a. 5-fold cross

validation

mRS, Modified Rankin Scale; HI, hemorrhagic infarction; HU, Hounsfield Units; PH, parenchymatous hematoma; DWI, diffusion-weighted imaging; MTT, mean transit time; ROI: regions of interest; TTP, time to peak; TICI, thrombolysis in cerebral

infarction score; n.a., not available.
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TABLE 3 Model performance of conventional machine learning algorithms.

Clinical outcome Imaging

modality

Clinical

variable

Model References Sample size

(T/EV)

Model performance Validation

AUC (95% CI) Others Internal External

Good functional

outcome at 90 days

(mRS≤2 or mRS≤3)

NCCT and CTA Yes Gradient boosting

decision trees

Brugnara et al. (22) 246 0.74 (0.73–0.75) ACC,0.71 Yes No

Yes RFA Van et al. (23) 1,383* 0.79 (0.79–0.79) n.a. Yes No

NCCT Yes Regression trees Alawieh et al. (24) 110/36 Internal: 0.93 (0.85–1.00)†

External: n.a.

Internal: n.a. External:

PV+: 0.60, NV-: 0.95

Yes Yes

Yes RLR Nishi et al. (25) 387/115 Internal: 0.86 (0.78–0.94)†

External:0.90 (0.83–0.97)†

Internal: ACC,0.75;

SEN,0.59; SPE,0.86;

External: n.a.

Yes Yes

MRI (DWI and

PWI)

Yes RFA Hamann et al. (26) 222 0.68 (0.61–0.76) n.a. Yes No

Yes RFA Kerleroux et al. (27) 133 0.83 (0.74–0.92)† ACC,0.73; SEN,0.69;

SPE,0.76

Yes No

MRI(DWI) Yes SVM Xie et al. (28) 143 0.82 (0.75–0.89)† ACC,0.77 Yes No

Poor functional outcome

at 90 days (mRS≥5 or

mRS≥4)

NCCT and CTA Yes ANN Ramos et al. (29) 1,401* 0.81 (0.79–0.83) ACC, 0.65; SEN, 0.53;

SPE,0.89; PV+, 0.69;

NV-,0.80

Yes No

CTA Yes SVM Ryu et al. (30) 482 (hold-out

testing: 208)

0.82 (0.76–0.87) n.a. Yes No

n.a. Yes Decision trees Kappelhof et al. (31) 1,090* n.a ACC,0.72 Yes No

Successful reperfusion

(TICI score≥2b)

NCCT and CTA Yes RFA Van et al. (23) 1,383* 0.55 (0.55–0.56) n.a. Yes No

Successful reperfusion at

the first attempt (TICI

score≥2b)

NCCT and CTA No RLR Patel et al. (32) 119 0.77 (0.54–0.90) ACC, 0.74 Yes No

NCCT and CTA No SVM Hofmeister et al.

(33)

109/47 External: 0.88 (0.75–1.00)† External: ACC, 0.85;

SEN, 0.50; SPE, 0.97,

PV+, 0.86; NV-,0.85

Yes Yes

ANN, artificial neural networks; AUC, area under the Receiver Operating Characteristic curve; ACC, accuracy; CTA, computed tomography angiography; DWI, diffusion weighted imaging; EV, external validation dataset; MRI, magnetic resonance

imaging; NCCT, non-contrast computed tomography; NV-, negative predictive value; PWI, perfusion weighted imaging; PV+, positive predictive value; RFA, random forest analysis; RLR, regularized logistic regression; SVM, support vector machine;

SEN, sensitivity; SPE, specificity; T, training dataset; n.a., not available/not applicable. Note: *model derived from patients registered in MR CLEAN Registry (38). †95% CI was estimated based on normal distribution.
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FIGURE 2

Meta-analysis of the area under the receiver-operating characteristics (ROC) curves (AUC) of models predicting functional outcome: (A)

conventional machine learning models (pooled AUC = 0.81, 95% confidence interval: 0.77–0.85); (B) deep learning models (pooled AUC = 0.75,

95% confidence interval: 0.70–0.81). Note: Meta-analysis did not include the model developed by Kappelhof et al. (31), as the AUC was not

reported.

a biased assessment of model performance if different thresholds

were testedmultiple times to obtain the “best” performance (19).

Two studies (24, 35) also predicted each mRS point without

dichotomizing the score, which may address a broader spectrum

of functional status. On the other hand, a key outcome of clinical

interest that remains un-investigated is futile recanalization,

defined as poor functional outcomes at 90 days despite successful

recanalization after EVT (42). Identification of those at high

risk of futile recanalization is clinically and economically

important, as an accurate prediction of this outcome would

help avoid needless treatment and contribute to better resource

allocation (42).

Accurate prediction of surrogate short-term outcomes

may also help balance risk and benefit, and guide treatment

approaches. There are two short-term outcomes investigated in

the included studies—successful reperfusion and hemorrhagic
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TABLE 4 Model performance of deep learning algorithms.

Clinical outcome Imaging

modality

Clinical

variable

Model References Sample size

(T/EV)

Model performance Validation

AUC (95% CI) Others Internal External

Good functional

outcome at 90 days

(mRS≤2)

CTA No DL (RFNN) Hilbert et al. (34) 1,301 0.71(0.68–0.74)† n.a. Yes No

NCCT Yes DL (CNN) Samak et al. (35) 400 (hold-out

testing: 100)

0.75 (0.63–0.87)† ACC,0.77 Yes No

MRI (DWI) No DL (CNN) Nishi et al. (36) 250/74 Internal: 0.81

(0.70–0.92)†

External:0.73

(0.61–0.85)†

Internal: SEN,0.76;

SPE,0.76; ACC,0.72;

External: SEN,0.72;

SPE,0.60; ACC,0.65

Yes Yes

Multiclass mRS (0, 1, 2,

3, 4, 5, 6) at 90 days

NCCT Yes DL (CNN) Samak et al. (35) 400 (hold-out

testing: 100)

n.a. ACC, 0.35 Yes No

Successful reperfusion

(TICI score≥2b)

CTA No DL (RFNN) Hilbert et al. (34) 1,301 0.65 (0.62–0.68)† n.a. Yes No

Haemorrhagic

transformation

(including HI1, HI2,

PH1, and PH2)

MRI (DWI and

PWI)

Yes DL (CNN) Jiang et al. (37) 338/54 Internal: 0.95

(0.87–1.00)†

External:0.94

(0.85–1.00)†

Internal: SEN, 0.86;

SPE,

0.90; ACC,0.89;

External: SEN,0.86;

SPE,0.89; ACC,0.88

Yes Yes

ANN, artificial neural networks; AUC, area under the Receiver Operating Characteristic curve; ACC, accuracy; CTA, computed tomography angiography; CNN, convolutional neural network; DWI, diffusion weighted imaging; EV, external validation

dataset; HI, hemorrhagic infarction; PH, parenchymatous hematoma; MRI, magnetic resonance imaging; NCCT, non-contrast computed tomography; NV-, negative predictive value; PWI, perfusion weighted imaging; PV+, positive predictive value;

RFA, random forest analysis; RLR, regularized logistic regression; RFNN, receptive field neural networks; SVM, support vector machine; SEN, sensitivity; SPE, specificity; T, training dataset; n.a., not available/not applicable. Note: *model derived from

patients registered in MR CLEAN Registry (38). †95% CI was estimated based on normal distribution.
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transformation (HT). The model predicting HT (37) labeled all

classes of HT as one category. However, it did not differentiate

the symptomatic HT classes (i.e., PH2) from those classes

without substantive mass effect (i.e., HT1 and HT2), and

therefore may be of limited clinical utility. Also, there remains

a gap in other relevant early outcomes. For example, occlusion

at 24 h post-stroke, due to persistently failed recanalization or re-

occlusion, has shown to be a predictor of longer-term outcomes

in LVO patients (43) and may warrant investigation.

Missing data

Missing data has been a general problem in medical

datasets and was the most common potential cause of bias in

the reviewed studies. Potential bias may be introduced when

data are missing conditional on the observed data (44), so a

systematic approach to dealing with missing data will improve

the quality of a study, and hence should be considered. For a

MLmodel, data may be missing in outcomes (labels), covariates,

and medical images. For the former two, there is substantial

knowledge regarding how to deal with missing data (45).

Multiple imputation is generally recommended, as it leads to

minimum bias by imputing missing values while preserving the

original data characteristics (19, 44). In terms ofmissing imaging

data, there are currently no generally accepted mitigatory

methods, although this is an area of active methodological

research (46).

Model performance and limitations

Although conventional ML models can utilize a large

quantity of clinical information, they have so far not

demonstrated significant advantages against pre-treatment

prognostic scores in predicting LVO outcomes (prognostic

scores, AUC range: 0.61–0.80) (4). In contrast, a larger

number of variables required in these models may limit the

flexibility of their application in different clinical settings.

Several conventional ML models achieved high performance

values (AUCs: 0.86–0.93) (24, 25), but they were developed

and validated in small datasets (sample size: development, 109–

387; validation, 36–115) drawn from similar sampling frames

(i.e., patients recruited in the same hospital at different time

periods). ML models developed using small samples tend to be

unstable and are likely to demonstrate substantially degraded

predictive performance when applied to independent clinical

populations (47). Overall, conventional ML models did not

exhibit significant superiority when compared with prognostic

scores for LVO outcome predictions.

Unlike conventional ML models that require variable

selection, DL models are capable of analyzing raw imaging data

in a “hypothesis-free” framework (9). However, the DL models

in this review did not show superior performance to prognostic

scores either. Most of these models were developed using small

datasets, which may fail to capture the diverse features required

to develop an accurate prognosis prediction model (48). This

may also be one possible reason for the underwhelming

performance. A few training schemes that suit clinical logics

may help mitigate this issue (9). For example, augmenting

data by mirroring CT images and inputting mirrored images

with non-mirrored images enables the comparison between

the affected side and the contralateral normal side, providing

added information for model learning. Transfer learning from

a clinically relevant task could also be a useful training scheme,

e.g., pre-training the main task on an auxiliary task such as

predicting occlusion of the left or right hemisphere. Further,

multimodal data with richer information allows a model to

capture diverse features and therefore may augment model

performance. For example, multiple imaging modalities can

provide diverse information, such as spatial information of

hyperdense arteries, abnormal gray-white matter differentiation

region and collateral supply (49). Similarly, non-imaging data

can provide clinical-pathological features (i.e., blood glucose)

that are associated with infarct progression and poor stroke

outcomes (50). However, using multimodal imaging requires

more computational resources, which may be a limiting factor

for some research groups. Moreover, leveraging expert clinical

knowledge is important to help augment model performance.

For example, segmentation of hyperdense arteries or lesion and

penumbra regions by experts allows additional information to be

utilized in model development so that models can be trained to

learn not only global features (i.e., location) but also fine details

of the abnormal regions (i.e., boundary and shape).

Barriers to real-world implementation

There are several barriers currently that may impede

the clinical utilization of the models described in the

current review. Firstly, only five models (26.3%) reviewed

were validated externally. External validation in an out-of-

distribution population tests the robustness and stability of

model performance across different populations. For example,

model performance may be impacted when the imaging data

for model development have certain characteristics derived from

different scanners and image acquisition protocols. Indeed,

a study focusing on predicting retinopathy showed that the

model performance degraded significantly when images were

taken under poor lighting conditions and with lower imaging

resolution (51). External validation can help verify that model

performance is not impacted by unexpected factors and

can identify models that are more generalizable to diverse

populations of LVO patients—this is critical information for

implementation in a local clinical setting (21, 52). Conversely,

it is not sufficient to demonstrate performance without external
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validation (including prospective external validation) in a

similar patient cohort. Over time, there are likely to be shifts

in demographic composition and disease characteristics, as

well as changes in new types of imaging scanners and image

acquisition methods, even in the same center where that model

was developed. A model tested only on an internal dataset may

be brittle to these kinds of changes and see a drop in performance

when used clinically. Secondly, only one study (32) published

sufficient details of the models, including hyperparameters,

coefficients (weights) and model equations, and only three

studies (23, 26, 29) made the codes available online. Without

the publication of sufficient details for independent model

validation, it is difficult to directly implement publishedmachine

learning models in either validation studies or pre-clinical

evaluation in local clinical environments. Current guidelines

recommend the publication of “sufficient” details for validation,

such as model structure, components, and values that used

to control the learning process (hyperparameters) with code

(19, 20, 53). For a deep learning model, it is difficult to publish

millions of internal parameters in the paper, while it could be

valuable to save files containing these parameters for future

tasks as pre-trained weights. Thirdly, DL algorithms are usually

described as “black box,” which may limit their explainability

and acceptability for patients, clinicians, and policymakers (54).

Visualization techniques such as saliency maps (55, 56) are

used to aid in model interpretability in two included studies

(34, 36) and do so by highlighting the regions of an image

that contribute most to a classification decision. However,

these techniques themselves require cautious interpretation as

they can highlight portions of an image with both clinically

relevant and irrelevant information, and an image can still be

misclassified based on such information (54). Explainability

techniques are prone to offer false reassurance that a model

is behaving in an appropriate manner, and we should instead

depend on thorough performance evaluation to engender trust

in DL systems (54).

Limitations and strengths

There are several limitations of our review. Firstly, we only

included studies looking at LVO ischemic stroke treated with

EVT treatment and did not examine studies including EVT for

distal occlusion. However, as EVT is currently not a proven

treatment for distal occlusion, any assessment of outcome

prediction in this cohort is premature. Secondly, we have utilized

re-calculated CIs for model comparisons and meta-analysis to

ensure the similarity of the methods used. While most of the re-

calculated 95% CIs are close to the original 95% CIs reported

by included studies, we did note a significant deviation in the

95% CIs of two models (22, 32). We believe it is reasonable to

rely on our wider estimate of CI compared to that provided in

Brugnara et al. (22), as this original CI was extremely narrow

based on a bootstrapping method and was much narrower than

other 95% CIs reported on similar sized datasets. For the re-

calculated CI that was narrower than the original report in

Patel et al. (32), we again feel that the re-calculated version

is more comparable to other studies as the small sample size

resulted in less than 15 patients for the validation set, likely

exaggerating the variability across cross-validation samples. This

is the first comprehensive systematic review of ML and DL

studies designed to predict clinical outcomes in LVO patients

following EVT. Strengths of this review include a comprehensive

literature search, independent screening and data extraction,

as well as detailed quality assessment, all following PRISMA

guidelines. More importantly, we conducted meta-analyses to

quantitatively synthesize model performance, which has not

been done in previous research that focused on ML and/or DL

models for stroke prognostic prediction.

Conclusions

ML and DL algorithms have been evolving rapidly and

are being increasingly applied to prognostic prediction of LVO

patients treated with EVT. However, the application of ML and

DL to this field is at an early stage. The outcomes investigated

so far are limited, and further studies may consider additional

clinically important outcomes, such as futile recanalization and

post-treatment complications. High risk of potential bias due

to missing data and lack of reporting details of prediction

models were seen in most studies. Following PROBAST and

TRIPOD guidelines can help improve study quality and

reporting transparency. The performance of conventional ML

and DL models did not substantially differ from each other or

from the performance of pre-existing simple prognostic scores.

Although a few ML models achieved high performance, most

were developed using small datasets and lacked solid external

validation. There is potential for ML outcome prediction

techniques to be superior to conventional techniques, though

larger/diverse datasets, more rigorous data preprocessing, and

solid external validation, are required before incorporation into

clinical practice.
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