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Ongoing fluctuations in neural excitability and in networkwide
activity patterns before stimulus onset have been proposed to
underlie variability in near-threshold stimulus detection paradigms—
that is, whether or not an object is perceived. Here, we investi-
gated the impact of prestimulus neural fluctuations on the content
of perception—that is, whether one or another object is perceived.
We recorded neural activity with magnetoencephalography (MEG)
before and while participants briefly viewed an ambiguous image,
the Rubin face/vase illusion, and required them to report their
perceived interpretation in each trial. Using multivariate pattern
analysis, we showed robust decoding of the perceptual report
during the poststimulus period. Applying source localization to
the classifier weights suggested early recruitment of primary
visual cortex (V1) and ∼160-ms recruitment of the category-sensitive
fusiform face area (FFA). These poststimulus effects were accom-
panied by stronger oscillatory power in the gamma frequency
band for face vs. vase reports. In prestimulus intervals, we found
no differences in oscillatory power between face vs. vase reports
in V1 or in FFA, indicating similar levels of neural excitability. De-
spite this, we found stronger connectivity between V1 and FFA
before face reports for low-frequency oscillations. Specifically,
the strength of prestimulus feedback connectivity (i.e., Granger
causality) from FFA to V1 predicted not only the category of the
upcoming percept but also the strength of poststimulus neural
activity associatedwith the percept. Ourwork shows that prestimulus
network states can help shape future processing in category-
sensitive brain regions and in this way bias the content of visual
experiences.
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Ongoing fluctuations in neural activity interact with percep-
tual and cognitive processes. They help explain why repe-

titions of the same physical stimuli elicit different percepts and
responses from trial to trial in both animals (1) and humans (2–5).
Both local excitability changes in task-relevant sensory regions
(6, 7) and neural network connectivity patterns have been
shown to underlie trial-by-trial fluctuations in perception (8–11).
The paradigms to study the impact of ongoing neural activity

on perception typically involve near-threshold detection and
discrimination tasks, in which prestimulus neural fluctuations
influence the perceptual fate of stimuli—for example, whether
an object is seen (“Hit”) or not (“Miss”; e.g., refs. 8 and 10–19).
Beyond mere stimulus detection and discrimination, one of the
visual system’s essential functions is to identify and categorize
objects and, in this way, construct the content of visual experi-
ences (19–21). Neural correlates of object perception and cate-
gorization have been shown to rely on the information flow
between the occipital and inferior temporal cortical regions (22–
24). Here, we focus on the impact of neural excitability and
connectivity patterns before stimulus onset on the content of
perceptual operations.
Bistable perception paradigms are uniquely suited to address

this question (25). In such paradigms, the brain is conflicted

between multiple possible interpretations of visual content. Typical
examples include the Rubin face/vase stimulus (26), the Necker
cube (27), and binocular rivalry (ref. 28, as cited in ref. 29). Recent
evidence from fMRI studies has shown that rivalry between two
competing percepts is resolved relatively early in the visual hier-
archy (e.g., refs. 30 and 31), such as in category-sensitive inferior
temporal lobe regions (ref. 32, but see refs. 33 and 34 for fMRI and
electrophysiological evidence showing an influence of parietal and
frontal cortices; also see ref. 35 for a recent review). In particular
for the Rubin face/vase illusion, greater blood-oxygen-level–
dependent (BOLD) activity has been observed in the fusiform face
area (FFA) when participants reported seeing faces rather than a
vase (36). Importantly, this BOLD increase in FFA was also ob-
served before stimulus onset (37), possibly because the prestimulus
brain state biased perception toward the “face interpretation.” Still,
a more comprehensive, mechanistic account requires means to si-
multaneously measure neural activity in multiple cortical areas with
high temporal resolution to map out the cortical hubs and their
interareal information flow before and during perception of an
ambiguous stimulus. For example, enhanced BOLD activity in
FFA could be a consequence either of increased feedforward ac-
tivity from earlier visual regions or of increased feedback activity to
earlier visual regions.
In the current study, we used a similar Rubin face/vase para-

digm as in the aforementioned fMRI study (37). Advancing on
previous work, we thoroughly characterized neural activity and
connectivity patterns with high temporal resolution before and
during perception of the ambiguous Rubin stimulus by means
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of magnetoencephalography (MEG). We hypothesized that a
category-sensitive processing region (here, FFA) should exhibit
differential prestimulus connectivity patterns preceding sub-
sequent face vs. vase reports. Based on the “Windows to Con-
sciousness” framework (11, 38), fluctuating connectivity levels of
sensory regions shape upcoming stimulus processing (i.e., whether
a stimulus is perceived or not). We extended these predictions to
visual object perception and investigated whether categorical re-
sponses to the content of the Rubin stimulus were biased by local
excitability, feedforward connectivity, or feedback connectivity
between the primary visual cortex and the FFA.

Results
Twenty participants took part in the MEG experiment. We
showed them the Rubin face/vase stimulus briefly and asked
them to report whether they had seen faces or a vase in each trial
(SI Appendix, Materials and Methods for details). Vase and face
reports were equally likely [Face mean: 49.9%; SD: 12.47%;
range: 22.6–84.8% (SI Appendix, Fig. S1); t test against chance
(50%) t(19) = 0.04; P = 0.97]. To ascertain that the reported
perception was stochastic trial by trial, we analyzed the se-
quences of reported percepts by binning the trials into a range of
0–10 repetitions. A binomial distribution accounted well for the
binned data for both vase and face trials (goodness-of-fit: R2 =
0.96 for face, R2 = 0.98 for vase) indicative of no systematic
reporting of either percept. That is, during each trial a partici-
pant was equally likely to report faces or vase irrespective of the
previous trial.
In a first step, we aimed to extract category-specific informa-

tion from the recorded MEG data to see whether source local-
ization of this information would yield the regions of interest
(ROIs) found in previous work (i.e., primary visual cortex [V1]

and FFA), and to later use this information to link pre- and
poststimulus neural activity. For this purpose, we trained a clas-
sifier in a cross-validation approach and decoded face vs. vase
reports from the MEG sensor-level data (magnetometers and
gradiometers). The analysis was shifted over time on a sample-by-
sample basis, yielding the temporally resolved decoding results
shown in Fig. 1A. Decoding performance (operationalized as
area under curve [AUC]) gradually increased following stimulus
onset and reached a peak close to the offset of the stimulus mask,
the event which prompted the response query. From there on,
decoding performance gradually decreased, reaching chance
level after approximately 700 ms. Decoding accuracy was sig-
nificantly above chance after 100 ms (pcluster = 9.999e-05; tested
over the first 350 ms after stimulus onset to exclude the
response epoch).
To find the brain regions that provided informative activity, we

adapted a previously reported approach (39) which projects
classifier weights from sensor to source space (for sources see
Fig. 1B). This analysis suggested that the brain regions that
provide informative activity changed over time (Fig. 1A). At
earlier (<120 ms) time intervals, informative activity was pre-
dominantly localized in and around the right V1 (centered on
Montreal Neurological Institute [MNI] coordinates: [12–88 0] mm;
size: 32 grid points; grid resolution: 8 mm). In the subsequent
time interval (120–200 ms), informative activity was predomi-
nantly localized in and around right FFA (MNI coordinates:
[28–64 −4] mm; 1 grid point). Although informative activity
also spread to left V1 and FFA, the locations of maximum
activity, which we used for subsequent analyses, were located
in the right hemisphere. The location, lateralization, and
timing of informative neural activity corresponded well with
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Fig. 1. Poststimulus MEG data contains category-sensitive information with respect to the processing of the Rubin face/vase stimulus. (A) Temporal decoding
of face vs. vase reports. * represents P = 0.0001 significance of decoding accuracy (t test vs. chance) starting at 100 ms poststimulus. (B) Unmasked activation
maps resulting from the source reconstruction of the classifier weights (in arbitrary units [a.u.]), applying a procedure proposed by ref. 39, at different time
points, suggesting temporally changing informative regions (V1 ∼100 ms and FFA ∼160 ms after stimulus onset). While the unmasked plots suggest a larger
spatial spread of activity at 160 ms compared with 100 ms, applying a 95%-maximum activity threshold to extract the ROIs revealed 32 grid points (8-mm
resolution) exceeding the threshold at 100 ms (V1) and 1 grid point exceeding the threshold at 160 ms (FFA). Black dots represent the grid points with
maximum informative activity (V1 and FFA) in the respective time periods. (C) Time-frequency contrast in V1 (face vs. vase reports). Colors represent smoothed
T-values obtained from cluster-based permutation testing of the contrast (face – vase; ns). (D) Time-frequency contrast in FFA (face vs. vase reports). Colors
represent smoothed T-values obtained from cluster-based permutation testing of the contrast (face – vase; pcluster = 0.029). Black lines surround the time-
frequency gamma-range cluster that drove the significant statistical difference.
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reports on the spatiotemporal dynamics of face perception
(40, 41).
Next, we performed time-frequency analysis in FFA after

stimulus onset to reveal possible oscillatory differences between
face and vase visual processing. We contrasted trials in which
participants reported seeing faces vs. a vase and corrected for
multiple time-frequency samples with a cluster-based permuta-
tion approach (42). We found that face reports showed enhanced
poststimulus gamma activity (pcluster = 0.029) compared with
vase reports, consistent with the functional role of gamma ac-
tivity for visual perception and specifically for face perception
(43, 44). Over time, this cluster covered the entire relevant
poststimulus time range (0–350 ms), and, in terms of frequencies,
the cluster covered a range of 48–93 Hz (Fig. 1D and SI Ap-
pendix, Fig. S2B). In the lower frequencies, there were no clus-
ters in the time-frequency maps, which contributed to the
statistical effect (Fig. 1D). We repeated the same analysis and
contrast in V1 and found no statistical differences (no time-
frequency clusters; see Fig. 1C and SI Appendix, Fig. S2A); we
ran a sensor-wise time-frequency analysis, repeated the same
contrast, and found no statistical differences on the whole-brain
level (no time-frequency-sensor clusters; see SI Appendix, Fig.
S3). Finally, given that the gamma effect cluster included the
time of stimulus onset, we ran control tests to ensure that there

was no prestimulus gamma effect. We found that the width of the
time-frequency analysis window used (300 ms) accounted for the
observed temporal spread of the effect, such that narrower
windows resulted in less spread (SI Appendix, Fig. S4). Using a
time-frequency analysis window width of 100 ms revealed the
gamma effect to be in the poststimulus epoch (Fig. 1D), and
further analyses of the time course of the gamma effect con-
firmed this (SI Appendix, Fig. S5). Overall, this analysis showed
that perceiving the stimulus as faces was accompanied by en-
hanced poststimulus gamma activity in the FFA.
The MVPA analysis yielded favorable ROIs to test whether

prestimulus connectivity dynamics between early visual regions
(V1) and later category-sensitive regions (FFA) bias the report
of upcoming subjective percepts (Fig. 1A). First, we focused on
oscillatory power as an index of local excitability in these regions
and tested whether excitability alone predicted the reported
categories of upcoming stimuli. Oscillations reflect rhythmic
changes in the activity of neural populations and thus reflect
phases of high and low excitability (45). Cluster-based permu-
tation testing revealed no statistical differences in prestimulus
oscillatory power between face and vase trials, neither in V1 nor
in FFA (Fig. 2A; shaded error regions represent SEM for within-
subject designs [46]). Nevertheless, the power spectra in both
conditions showed that prestimulus oscillatory activity was
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Fig. 2. Prestimulus MEG connectivity is predictive of upcoming perceptual decisions. Shaded error regions represent SEM for within-subject designs (46). (A)
No statistical differences in prestimulus spectral power between face and vase trials in either V1 (Left) or FFA (Right). (B) Compared with vase trials, face
trials show increased prestimulus coherence between V1 and FFA in the alpha and beta frequency ranges. (C ) Compared with vase trials, face trials show
increased prestimulus feedback connectivity from FFA to V1 in the alpha range (Right) but no differences in prestimulus feedforward connectivity from
V1 to FFA (Left) (49).
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largely restricted to lower frequencies (5–25 Hz; Fig. 2A) with a
clear peak in the alpha range (∼10 Hz). Since frequency-domain
measures of connectivity (such as coherence or Granger cau-
sality) assume underlying oscillatory activity (i.e., oscillations
with high power), we restricted statistical testing in subsequent
connectivity analyses to this frequency range.
Next, we focused on prestimulus connectivity between V1 and

FFA. Specifically, we hypothesized that increased prestimulus
coherence between V1 and FFA would precede face reports. A
cluster-based permutation test in the frequency range of 5–25 Hz
revealed that prestimulus coherence between V1 and FFA was
significantly greater in face vs. vase trials (pcluster = 0.0036). This
increase was most pronounced in a cluster of frequencies ranging
8.5–16.5 Hz (Fig. 2B). A time-resolved contrast of the coherence
effect within these frequencies showed that the relative increase
in face vs. vase trials was most pronounced 400–200 ms before
stimulus onset (SI Appendix, Fig. S5). To control for spurious
coherence as a result of field spread (47), which might explain
the high-frequency noise in Fig. 2B, we repeated the coherence
analysis using the imaginary part of coherency (48). We obtained
qualitatively and quantitatively similar results but with far less
high-frequency noise (SI Appendix, Fig. S6).
To further characterize the observed connectivity effect, we

used Granger causality to resolve the question of whether in-
creased connectivity before face reports represented an in-
creased feedforward drive from V1 to FFA or an increased
feedback drive from FFA to V1. We contrasted face and vase
trials separately for the feedforward and feedback directions
(49). The cluster-based permutation test revealed no statistical
differences between face and vase reports in the prestimulus
Granger causality estimates in the feedforward direction (V1 to
FFA; Fig. 2 C, Left); however, for feedback connectivity, we
found significantly greater prestimulus Granger causality esti-
mates during face trials compared with vase trials (FFA to V1,
pcluster = 0.0115). This increase was most pronounced in a cluster
of frequencies ranging 5–10.5 Hz (Fig. 2 C, Right). The direc-
tionalities of the Granger estimates were reversed for time-
reversed data (i.e., the feedforward Granger estimates of the
original data resembled the feedback Granger estimates of the
time-reversed data and vice versa; see SI Appendix, Fig. S7),
thereby confirming our results (50). Given the interindividual
variability in participants’ behavioral reports (22.6–84.8% face
reports), we were concerned that the Granger results might re-
flect some participants’ predispositions to report one or the
other percept. However, we found no correlation between
Granger strength and report percentages (r = 0.22; P = 0.35; see
SI Appendix, Fig. S8), making this possibility unlikely. In sum, we
show that face reports (vs. vase reports) were preceded by in-
creased connectivity between V1 and FFA, and that this relative
connectivity increase was predominantly driven by an increase in
feedback connectivity (FFA to V1).
Finally, we focused on the relationship between prestimulus

connectivity and poststimulus activity. We extracted for each
participant the maximum decoding accuracy (AUC), FFA
gamma-band effect (from the 300-ms window data), and presti-
mulus feedback connectivity. The maximum FFA gamma effect
(maximum face – vase power over time and frequencies) and
maximum decoding accuracy were correlated (r = 0.58; P =
0.008; Fig. 3C), despite the gamma band having been excluded
from the frequency range that went into the decoder. Crucially,
we found that maximum prestimulus feedback connectivity was
correlated with maximum decoding accuracy (r = 0.48; P = 0.034;
Fig. 3B) as well as maximum gamma effect (r = 0.57; P = 0.009;
Fig. 3A). The FFA gamma-band effect from the 100-ms window
data was not correlated with any of the other variables (SI Ap-
pendix, Fig. S9), but this short time window would not be ideal
from a signal-processing perspective. In sum, we found that
prestimulus feedback connectivity strength predicted not only

the category of the upcoming percept but also the strength of
poststimulus neural activity associated with the percept.

Discussion
While most studies investigating the effects of prestimulus ac-
tivity on perception have been concerned with determining the
requisites of successfully detecting stimuli at the perceptual
threshold (near-threshold paradigms; e.g., ref. 11), our main
interest was with the requisites of perceiving one or another
content of perception. We found that before Rubin face/vase
stimulus onset, FFA was more strongly connected to V1 when
faces rather than vase was subsequently reported, specifically in
the feedback direction of FFA to V1. Connectivity between these
two regions was concentrated in the alpha and beta frequency
bands (∼5–25 Hz). Further, prestimulus feedback connectivity
strength was correlated with poststimulus neural activity strength
as well as decoding accuracy. Taken together, our findings suggest
that fluctuations in neural activity in the absence of stimulation
can bias the perceptual content of subsequently presented stimuli.
The connectivity pathway we identified, specifically the in-

volvement of FFA, is well in line with work that has localized
face responses using ambiguous stimuli (e.g., refs. 36 and 51).
While this particular pathway is likely specific to face stimuli, the
involvement of functionally specialized extrastriate regions in the
subjective perception of ambiguous stimuli is firmly established
(52). Indeed, processing semantic content typically relates to
ventral stream activity, so this activity is also expected to play a
crucial role in perceiving ambiguous images of semantic content,
such as the Rubin vase image (53). That the connectivity pathway
is in both the feedback direction and the lower frequencies is also
well in line with the finding that alpha/beta oscillations subserve
feedback connectivity among human (54) and monkey (55) visual
cortical areas. Additionally, occipital alpha oscillations have
been shown to predict the persistence of bistable perception
(56), and bistable percept-dependent changes in occipital oscil-
latory activity have been suggested to reflect top-down modula-
tions of V1 by extrastriate areas (57). Our findings therefore
suggest that, in the absence of visual stimulation, mechanisms
that mimic the known dynamics of unambiguous as well as am-
biguous visual object perception are at play.
MEG studies on face perception have reported gamma re-

sponses to faces starting 100 ms after stimulus onset (e.g., refs. 58
and 59), yet we observed a statistical difference between face and
vase gamma responses in FFA starting at stimulus onset. To
confirm that this was genuinely a poststimulus effect, we analyzed
the time-frequency data with time windows shorter than 300 ms.
The analysis revealed that the early differences were strongly
influenced by the width of the analysis window, as the temporal
spread decreased with shorter analysis windows (SI Appendix, Fig.
S4). Specifically, the gamma contrast from the 100-ms window
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data (Fig. 1D) illustrated that the effect was clearly poststimulus
onset. The original gamma effect using the 300-ms window in FFA
correlated with both the strength of prestimulus feedback con-
nectivity and poststimulus decoding accuracy (Fig. 3). This cor-
relation was not significant with the shorter, 100-ms window (SI
Appendix, Fig. S9) given that shortening the time window impacts
frequency resolution and can adversely affect the stability of the
analysis when averaging induced responses over trials. It should be
emphasized that this issue does not affect the correlation between
prestimulus connectivity and poststimulus decoding effects which
is central to our reasoning. Given that the prestimulus connectivity
pathway was in the feedback direction from FFA to V1, one might
additionally hypothesize that the strength of feedback connectivity
correlates with V1 gamma activity. But V1 gamma modulations
have been shown to depend on stimulus features (e.g., ref. 60), and
the stimulus was unchanged throughout our experiment. Indeed,
we did not observe any gamma effects in V1 (Fig. 1C and SI
Appendix, Fig. S2A), so we could not test this hypothesis.
A recent fMRI study employing the Rubin face/vase stimulus

(37) found that pre- and poststimulus neural activity was pro-
nounced in the FFA and interpreted the observed prestimulus
BOLD signal differences as differences in baseline excitability.
This interpretation is consistent with a large body of work that
shows that alpha-band activity in task-sensitive sensory regions,
an index of neuronal excitability in those regions, predicts be-
havioral outcomes (8, 10, 11, 61). However, we found no dif-
ferences in prestimulus alpha activity that could account for
the behavioral outcome. Local excitability as indexed by al-
pha oscillations might therefore be behaviorally relevant in
near-threshold cases but not in cases where the stimuli are
suprathreshold and the task requires object perception rather
than stimulus detection or discrimination. Taken together, these re-
sults show that measures of local activity paint an incomplete
picture of the underlying dynamics of object perception, and that
the connectivity between regions of interest must be considered
for a more comprehensive account.
Given the nature of this and similar experiments (e.g., ref. 37),

it is difficult to connect distinct cognitive processes to our effects
with certainty. However, our findings appear to be in line with
predictive processing notions that hierarchically downstream
regions predict activity in upstream areas via feedback connec-
tions. The reported frequency band conforms to the assumptions
and findings of this framework (62, 63). Indeed, our findings
seem to add to a recent and fast-growing literature converging
toward the idea that low-frequency oscillations carry top-down
context (64), category information (65), anticipation (66), and
expectations or predictions (67, 68). That cognitive, top-down
influences might come into play leaves open the possibility that
the reported connectivity effects are not strictly spontaneous and
might be voluntarily driven to some extent, or that the effects
reflect an expectation of the content of the upcoming stimulus.
These possibilities cannot be entirely ruled out, although they
are unlikely given that our design (short, temporally difficult-to-
predict interstimulus intervals of 1–1.8 s) and our behavioral
analysis ruled out systematic reports of one percept. Such in-
terpretations could also be supported if we were to observe a
prestimulus gamma effect, as this might indicate that the percept
was fixed before stimulus onset. However, our control analyses
showed that the gamma effect was in the poststimulus interval
(SI Appendix, Figs. S4 and S5). An alternative explanation could
be that stronger connectivity relates to a stronger predisposition
to perceive faces. However, connectivity strength was not cor-
related with the percentage of face reports (SI Appendix, Fig.
S8), making this interpretation unlikely, too.
Our results are in line with the Windows to Consciousness

framework, which emphasizes the influence of preestablished
connectivity patterns of relevant sensory regions to downstream
processing regions on upcoming perceptual processing (11, 38).

We offer a mechanistic account defined in time, space, oscilla-
tory frequency, and directional connectivity. Our account pro-
poses a key role of prestimulus neural fluctuations in activating
connectivity pathways and biasing categorical percepts. Specifi-
cally, prestimulus feedback connectivity in the alpha range from
FFA to V1 represents such a connectivity pathway that biases
toward face perception in the Rubin face/vase stimulus.

Conclusion
By recording MEG signals at high temporal resolution before
and while people were exposed to an ambiguous stimulus, the Rubin
face/vase illusion, we showed that the content of visual perception is
critically shaped by ongoing network states—in this case, feedback
alpha-band connectivity between face-sensitive FFA and the early
visual cortex. Our work bridges object perception–related pre- and
poststimulus effects and shows how a prestimulus network state can
shape future processing in a category-sensitive brain region.

Materials and Methods
20 volunteers participated in thisMEGexperiment. The Ethics Committeeof the
University of Trento approved the experimental procedure, and all participants
gave written informed consent before taking part in the study. At the be-
ginning of each trial, a fixation cross appeared at the center of the screen for 1–
1.8 s. After this jittered period, the Rubin vase picture appeared at the center
of the screen for 150 ms (Fig. 4). A mask stimulus then appeared for 200 ms,
after which we asked participants to report whether they saw the faces or the
vase. The experiment consisted of 400 trials in total.

To test for the stochastic nature of responses, we binned the data for each
participant according to howmany trials in a row he or she responded to with
the same perceptual report. We broke this down in 11 bins with 0 to 10
repetitions, averaged the number of repetitions within each bin across
participants, and then fit the averaged data to a binomial distribution across
the 11 bins before calculating goodness of fit.

We performed the decoding analysis on the broadband 1–33-Hz time-
domain signal. We implemented a fourfold cross-validation procedure
within each subject. The analysis was shifted over time on a sample-by-sample
basis. For each time point at each sensor, we Z-normalized the MEG data,
trained a logistic regression classifier on three folds, and tested on the left-out
fold. To find out which brain regions contributed most to above-chance
decoding performance, we used the weights that the classifier used to sepa-
rate face reports from vase reports and projected them into source space (39).
Finally, we averaged the source-level weights across the intervals 50–120 and
120–200 ms and applied a 95%-maximum threshold to mask our ROIs.

We performed the poststimulus time-frequency analysis on V1, FFA, and
the whole-brain average in source space. We estimated power using mul-
titaper fast Fourier transform (FFT) with discrete prolate spheroidal sequences
(DPSS) tapers (69). We calculated power, coherence, and nonparametric
Granger causality (70) in the prestimulus period between FFA and V1 in
source space. We used multitaper frequency transformation to obtain
Fourier coefficients in the prestimulus period (−1 to 0 s), after which we
extracted power and computed coherence and bivariate Granger causality.
This gave us separate estimates of connection strengths from FFA to V1
(feedback) and vice versa (feedforward). We repeated the same Granger
causality analysis on time-reversed data, expecting reversals in the direc-
tionalities of the estimates to rule out spurious connectivity results (50).

We tested decoding performance against chance level (50%) using one-
sided dependent-sample t tests. For all remaining statistical analyses, we
used nonparametric cluster permutation tests (42). We used two-sided t tests
for the poststimulus time-frequency contrasts and prestimulus power con-
trasts, and one-sided t tests for the coherence and feedforward and feedback

What did
you see?

1 - 1.8 sec 200 ms 2 sec

Baseline Rubin vase Mask Response

150 ms

Fig. 4. Trial structure.
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connectivity contrasts, as we had hypothesized greater values of these mea-
sures on face trials compared with vase trials. We restricted the statistical
testing window of coherence and Granger to the frequency window 5–25 Hz.

More details about the participants, experimental procedure, MEG data
acquisition, MEG preprocessing and source projection, and all reported
analyses are available in the SI Appendix, Materials and Methods section.
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