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Lyssavirus matrix protein 
cooperates with phosphoprotein to 
modulate the Jak-Stat pathway
Florian Sonthonnax1,2, Benoit Besson1,2, Emilie Bonnaud1, Grégory Jouvion3, David Merino1, 
Florence Larrous1 & Hervé Bourhy1

Phosphoprotein (P) and matrix protein (M) cooperate to undermine the immune response to rabies 
virus (RABV) infections. While P is involved in the modulation of the Jak-Stat pathway through the 
cytoplasmic retention of interferon (IFN)-activated STAT1 (pSTAT1), M interacts with the RelAp43-
p105-ABIN2-TPL2 complex, to efficiently inhibit the nuclear factor-κB (NF-κB) pathway. Using 
transfections, protein-complementation assays, reverse genetics and DNA ChIP, we identified a role of 
M protein in the control of Jak-Stat signaling pathway, in synergy with the P protein. In unstimulated 
cells, both M and P proteins were found to interact with JAK1. Upon type-I IFN stimulation, the M 
switches toward pSTAT1 interaction, which results in an enhanced capacity of P protein to interact 
with pSTAT1 and restrain it in the cytoplasm. Furthermore, the role for M-protein positions 77, 100, 
104 and 110 was also demonstrated in interaction with both JAK1 and pY-STAT1, and confirmed in 
vivo. Together, these data indicate that M protein cooperates with P protein to restrain in parallel, and 
sequentially, NF-κB and Jak-Stat pathways.

Rabies virus (RABV), a neurotropic virus belonging to the Lyssavirus genus of the Rhabdoviridae family, causes 
an invariably fatal encephalitis in humans and animals1. Prophylaxis is highly effective but control of the disease 
in developing countries is difficult due to economic and political factors. Hence, this zoonotic infection is respon-
sible for about 60,000 deaths/year, mainly in Asia and Africa2.

The principal host-cell response to viral infections is activation of the innate immune response medi-
ated by type-I interferon (IFNα/β)3. Following cell infection, viral RNA is detected by receptors (e.g. reti-
noic acid-inducible gene I (RIG-I)), which activate several signaling pathways, including through the nuclear 
factor-kappa B (NF-κB) family proteins. NF-κB dimers translocate into the nucleus and activate specific genes 
under the regulation of κB promoters, including tripartite motif protein-25 (TRIM25) and IFNα/β. Subsequent 
binding of IFNα/β to IFNα/β receptor 1 (IFNAR1) and IFNAR2C activates Janus kinase-1 (JAK1) and tyros-
ine kinase-2 (TYK2). Signal transducers and activators of transcription (STAT)-1 and -2 are then phosphoryl-
ated at residues Y701 and Y690, respectively. Dimers of activated STAT1/2 interact with IFN-response factor-9 
(IRF9) to form the IFN-stimulated gene factor-3 (ISGF3) complex, which translocates to the nucleus to activate 
IFN-stimulated genes (ISGs) regulated by IFN-stimulated response-element (ISRE) promoters, including ISG15 
and MxA4.

Viruses have evolved powerful countermeasures to evade host innate immunity5. Some viral proteins act 
as NF-κB pathway inhibitors, including vaccinia virus K1 protein6 and human immunodeficiency virus Vpu 
protein7. STAT proteins are major targets of many viral IFN antagonists, including those of measles virus (V pro-
tein)8, Sendai virus (C protein)9, dengue virus (NS5 protein)10 and influenza virus (NS1 protein)11. Polyomavirus 
large T12 inhibits signal transduction through JAK1, and Marburg virus matrix protein VP4013,14 targets JAK1 to 
inhibit its phosphorylation and the subsequent activation of STAT1/2.

RABV encodes only five proteins (nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein 
(G) and viral polymerase (L)) but is able to potentialy subvert the biology of infected cells. This derives from 
the multifunctional nature of several of the proteins including P and M proteins, which, other than conserved 
roles in viral replication and assembly, are both involved in evading the host’s innate immune responses through 
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regulation of cell signaling. Lyssavirus interference with the Jak–Stat pathway has been extensively characterized 
over more than a decade15,16, including the roles of P protein and its isoforms in the cytoplasmic retention of 
STAT proteins. The P-protein C-terminal domain and particularly residues W265 and M287 are involved in 
the interaction with IFN-activated STAT1 (pSTAT1) and cytoplasmic retention of pSTAT1 to evade the host 
innate immunity17,18. M protein and particularly residues R77, D100, A104 and M110 plays a pivotal role in 
immune-response inhibition by targeting a NF-κB complex involving RelAp43, a splice variant of RelA(p65)19,20.

Herein, we used an RABV street isolate from a dog in Thailand (Tha) that is representative of currently 
circulating RABVs21, to study the effects of M and/or P proteins on the Jak-Stat pathway. Based on previous 
results17,18,22, we introduced mutations into Tha-virus P and M proteins. Notably, we showed that M protein also 
interacted with pSTAT1 to induce the latter’s cytoplasmic retention, and with JAK1 to inhibit its activation. In vivo 
mouse studies showed that mutated M protein attenuated virulence and increased anti-viral immune responses. 
Thus, M protein’s role is crucial and not restricted to only NF-κB–pathway inhibition, but extends to inhibition 
of the Jak-Stat-pathway. Taken together, those findings reinforce the idea that RABV proteins have evolved to 
cooperate in neutralization of the innate immune response.

Results
Mutations of RABV P and M proteins result in IFN-pathway stimulation.  To examine the effect 
of Tha viral proteins on the innate immune response, we inserted W265G and/or M287V mutations into P 
protein and R77K/D100A/A104S/M110L mutations into M protein, to obtain the following mutated RABVs: 
Th2P (P-W265G/M287V), ThP265 (P-W265G), ThP287 (P-M287V), Th4M (M-R77K/D100A/A104S/M110L) and 
Th2P-4M (P-W265G/M287V and M-R77K/D100A/A104S/M110L). In IFN response defective BSR-T7 cells23 
(Fig. S1A), replication of RABV strains were not impaired and no significant difference of growth was observed 
in comparison with wild-type Tha. All recombinant RABVs produced similar viral protein levels except the Th2P 
mutants, which P protein expression was slightly affected (Fig. S1B). In comparison, Th2P, Th4M and Th2P-4M 
replication was impaired compaired to single ThP mutants and Tha in IFN-competent HeLa cells (Fig. S1C). The 
heightened sensitivity of Th2P, Th4M and Th2P-4M in IFN stimulated cells indicates intrinsic sensitivity to the 
IFNα activated Jak-Stat-pathway.

STING37 cells expressing luciferase under the control of an ISRE promoter were used to quantify the acti-
vation of the Jak–Stat-pathway under infection (Fig. 1). Inhibition of ISRE-promoter activation observed in 
Tha-infected cells was lost in Th2P-infected cells (15 fold increase), confirming that P residues W265 and M287 
inhibit Jak–Stat signaling. Surprisingly, the ISRE promoter was also activated (4 times) in Th4M- compared to 
Tha-virus–infected cells. Therefore, M protein residues R77, D100, A104 and M110 appear to be involved in 
Jak-Stat-signaling inhibition.

In order to confirm that Th4M modulates directly the Jak-Stat pathway, we bypassed the NF-κB pathway stim-
ulating the cells with IFNα (Fig. 1) In presence of IFNα, only Tha virus controlled the activation the ISRE pro-
moter while Th2P- (20-fold) or Th4M- (6-fold) allowed its activation. These data supported a direct involvement 
of P and M proteins in inhibition of the Jak-Stat-pathway, and indicated that P protein had a greater impact than 
M protein. Of note, mutation of both proteins (Th2P-4M) were needed to observe IFNα-dependent activation 
of the ISRE promoter to a similar extent as that observed for IFNα-treated non-infected cells, indicating that the 
Jak-Stat-pathway is controlled through combined activity of P-and-M-proteins.

P and M proteins cooperate in pSTAT1 interactions.  To decipher the mechanism of Jak-Stat-pathway 
inhibition, a PCA based on split Gaussia luciferase was used. HEK-293T cells were transfected with P, 
P265 (W265G), P287 (M287V), 2P (W265G/M287V)18, M and 4M (R77K/D100A/A104S/M110L)22 and 

Figure 1.  RABVs with mutated P and/or M proteins display enhanced activation of the IFN-pathway 
compared with wild-type RABV. STING37 cells, which are stably transfected with ISRE promoter-dependent 
luciferase reporter gene, were infected with wild-type (Tha) RABV or RABV mutated for P- and/or M-mutated 
protein (Th2P, Th4M, Th2P-4M) RABVs. IFNα (1000 U/mL, 24 h) was added (grey) or not (black) 24 h post-
infection. Two days post-transfection, firefly luciferase activity, which is indicative of ISRE-promoter activity, 
was determined. Results are expressed as the means ± standard deviation (T-bars) of three independent 
experiments. *p < 0.05.
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Jak-Stat-signaling proteins, including STAT1 and JAK1 (Fig. 2). An IFNα treatment of 1 or 24 h allowed to distin-
guish the early and late stages of Jak–Stat-pathway activation, respectively.

As expected, after 1 h of IFNα stimulation, Tha-virus P protein interacted with pSTAT1 and W265G/M287V 
mutations abrogated that interaction. Co-transfection revealed that M protein stabilized the P/pSTAT1 com-
plex (2.5-fold) and allowed P265 and P287 interaction with pSTAT1, but not 2P. Therefore, M protein seemed 
to counterbalance single P-protein mutations (Fig. 2). To a lesser extent, this mechanism was also observable 
after 24 h of IFNα stimulation. M protein interacted also with pSTAT1 after 1 h of IFNα and required P protein 
co-transfection to stabilize the interaction after 24 h of treatment. The 4M mutant did not interact with pSTAT1, 
indicating key roles of mutations R77K/D100A/A104S/M110L in that interaction.

P and M proteins cooperate in pSTAT1 cytoplasmic retention.  The effect of P and M protein inter-
actions on STAT1 cellular localization was addressed in HeLa cells infected at MOI of 1 and incubated without or 
with IFNα (1000 U/mL, 24 h) before nuclear/cytosol fractionation and immunoblotting (Fig. 3A,B) or immuno-
labeling of cells (Fig. 3C).

After IFNα stimulation (Fig. 3A,B), Tha virus retained pSTAT1 in the cytoplasm (cytoplasm/nuclear ratio 
upper than 3). In comparison, mutation of Th2P and Th4M proteins partially restored the capacity of pSTAT1 
to translocate to the nucleus in infected cells (pSTAT1 cytoplasm/nuclear ratios of 1.2 and 1.6, respectively). 
Moreover, pSTAT1 accumulated in the nuclei of Mock and Th2P-4M infected cells compared to Tha-, Th2P- or 
Th4M-infected cells, (Fig. 3B). These observations suggest that Tha-virus P and M proteins cooperate in interac-
tion with and cytoplasmic retention of pSTAT1. Immunolabeling experiments confirmed those results (Fig. 3C).

pSTAT1 cytoplasmic retention in ThP265- or ThP287-infected cells was not impaired after IFNα stimulation 
(Fig. S2), despite the loss of interaction between pSTAT1 and P265 or P287 (Fig. 2). These findings further corrobo-
rate M protein’s ability to compensate for P-protein mutations affecting pSTAT1 interactions.

P and M proteins cooperate to limit pSTAT1–ISRE-promoter binding.  Whether the altered pSTAT1 
cytoplasmic retention by P and M proteins affected ISGF3-dependent ISG transactivation was determined using 
a ChIP assay targeting the ISG15 promoter (Fig. 3D). HeLa cells were infected at MOI of 1 and treated without or 
with IFNα for 24 h before chromatin co-immunoprecipitation with pSTAT1 or anti-FLAG (control) antibodies. 
Then, the ISG15 promoter containing an ISRE was quantified by qPCR. pSTAT1-ISRE binding was only observed 
in the presence of IFNα in Mock-infected cells. Tha virus inhibited pSTAT1-ISRE binding while both Th2P 
and Th4M permitted a partial binding. In Th2P-4M infected cells, the results did not differ from IFNα treated 
Mock-infected cells. Therefore, P and M proteins cooperate to prevent pSTAT1/ISGF3 binding to the ISRE pro-
moter, which is consistent with the cooperative activity in cytoplasmic retention of pSTAT1.

M- and P-protein mutations attenuate RABV virulence.  The pathogenicity of recombinant-RABV 
was determined in three-week-old female BALB/C mice inoculated intramuscularly with 1000 FFU of Tha, Th2P, 
Th4M or Th2P-4M. Tha infection caused severe neurological symptoms in all mice by 8 dpi, and all mice suc-
cumbed to infection or reached an unresponsive endpoint 10 dpi (Fig. 4A). Th2P virus induced severe neuro-
logical symptoms in mice by 9 dpi and death by 10 or 12 dpi, globally comparable to Tha virus. Thus, P-protein 
mutations did not attenuate pathogenicity in mice. In contrast, Th4M-infected mice showed neurological 

Figure 2.  RABV P and/or M proteins cooperate in pSTAT1 interactions. Protein complementation assay: 
wild-type RABV or RABV with mutated P (P265, P287, 2P) or M (4M) proteins were co-transfected with STAT1-
coding plasmid and stimulated for 1 or 24 h with or without IFNα. Two days post-transfection, Gaussia 
luciferase activity, whose intensity is indicative of interaction of the proteins, was determined. P and M proteins 
were also transfected as third partners in some experiments. All results are expressed as the means ± standard 
deviation (T-bars) of at least four independent experiments. *p < 0.05 compared to unstimulated samples.
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symptoms and reached the endpoint 3–7 days later than those infected with the Tha virus. Intriguingly, with dual 
mutated Th2P-4M RABV, symptom onset and endpoint occurred 7–11 days later, and half the mice survived >21 
dpi. Therefore, P and M proteins played additive roles in Tha-virus virulence in mice, with M protein having a 
higher impact.

Figure 3.  RABV P and/or M proteins are involved in pSTAT1 cytoplasmic retention. (A) After cytoplasmic 
and nuclear fractionation of HeLa cells infected with wild-type (Tha) or P- and/or M-mutated–protein RABVs 
(Th2P, Th4M, Th2P-4M) and stimulated with IFNα (1000 U/mL, 24 h) or not, the presence of P and pSTAT1 
protein was analysed by immunoblotting with specific antibodies. Lamin and tubulin served as controls. 
Abbreviations, c: cytoplasmic fraction, n: nuclear fraction. (B) pSTAT1 cytoplasm/nucleus quantification 
based on three independent experiments, expressed as means ± standard deviation (T-bars)). *p < 0.05. (C) 
Specific antibody immunolabeling of pSTAT1, and P and M proteins in cells infected with different recombinant 
RABVs. DAPI was used to stain nuclei blue. (D) HeLa cells were infected with wild-type (Tha) or Th2P, Th4M, 
Th2P-4M. After 24 h of infection, IFNα (1000 U/mL, 24 h) was added. ChIP assays were run with the indicated 
antibodies. ChIP DNA was analyzed by qPCR by using ISG15-ISRE primers. Results are expressed as the 
means ± standard deviation (T-bars) of three independent experiments. *p < 0.05.
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Figure 4.  Mutated P and/or M proteins attenuate RABV virulence correlating with differing innate immune-
response activation. Three-week-old BALB/c mice (6 per experiment) were infected intramuscularly with 1000 
FFUs of Tha, Th2P, Th4M or Th2P-4M RABVs and monitored for 21 days. At the end of the experiment, 3 mice 
survived when infected with Th2P-4M, named Th2P-4M survivors. (A) The mice were sacrificed day 9 post-
infection (denoted D9) or when late infection symptoms appeared (endpoint). mRNA, extracted from their 
brains, was subjected to RT–qPCR to analyze expression of the indicated genes, normalized to the GAPDH-
reporter gene level in Mock-infected mice. RABV mRNA (B), and ISG15 (C), MxA (D), IFNβ1 (E), Tyk2 (F), 
Jak1 (G) and Stat1 (H) gene expression was measured. Results show means ± standard deviation (T-bars) 
expressed in arbitrary units (AU). (NA): non applicable; *p < 0.05 compared to Mock-infected D9 samples and 
#p < 0.05 compared to Mock-infected End-point samples. Th2P-4Ms*: Th2P-4M survivors.
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To confirm the involvement of both P-W265/M287 and M-R77/D100/A104/M110 proteins in the modula-
tion of Jak-Stat signaling in vivo, we quantified the transcription of specific ISRE-promoter-dependent genes, 
such as MxA and ISG15. Transcription of key genes of the different Jak–Stat-pathway steps (i.e., IFNβ1 (activa-
tor), Tyk2 and Jak1 (signal transducers) and Stat1 (transcription factor), were also analyzed. Total RNAs were 
extracted from the brains of mice infected by the various RABV mutants, at 9 dpi and at the experimental end-
point. Notably, RABV mRNA was detected in large amounts (>106 RNA copies/μL) in all mouse brains at 9 dpi, 
with no significant variations, indicating that viral propagation was not perturbed by mutation of P and/or M 
proteins (Fig. 4B).

However, at the terminal endpoint, the viral load was significantly higher (p < 0.05) in the brain of theTh2P- 
infected mice than in Tha-infected ones.

Levels of the different transcripts did not differ between Tha- and Mock-infected mice at 9 dpi or at the exper-
imental endpoint. Levels of ISG15, MxA and Tyk2 transcripts were significantly (p < 0.05) increased in the brains 
of Th2P-4M-infected mice (ISG15, Fig. 4C, MxA, Fig. 4D and Tyk2, Fig. 4E, white boxes). The same pattern was 
observed for MxA and Tyk2 transcripts at the experimental endpoint, although they were detected at greater lev-
els in all RABV-infected mice (MxA, Fig. 4D and Tyk2, Fig. 4E, grey boxes). Concerning ISG15 transcripts, they 
were significantly (p < 0.05) increased in the brain of both Th4M and Th2P-4M infected mice (ISG15, Fig. 4C, 
grey boxes). Regarding IFNβ1 (Fig. 4E, white boxes), Jak1 (Fig. 4G, white boxes) and Stat1 (Fig. 4H, white boxes), 
no significant effect was observed at 9 dpi between Tha virus and the mutated ones. At the terminal endpoint, 
IFNβ1 transcripts were significantly increased in Th4M- (p = 0.053) and Th2P-4M-infected mice (p < 0.05, 
Fig. 4E, grey boxes) while Tyk2 transcripts were only increased in Th2P-4M-infected mice (p = 0.05, Fig. 4F, grey 
boxes). Jak1 transcription was not affected by Tha mutants and Stat1 transcripts were only increased in Th2P and 
Th2P-4M-infected mice compared to Tha infected ones (Fig. 4H, grey boxes).

The same experiments were run on mice with a different genetic background, C57BL/6, and yielded simi-
lar results for ISG15 and IFNβ (Fig. S3). Conversely, for MxA, Tyk2 and Stat1 transcripts, the same trend was 
observed but the differences were not significant in Th2P-4M-infected mice compared to Tha-infected mice.

These results are also consistent with the quantification of ISG15, MxA, IFNβ, Tyk2, Jak1 and Stat1 in 
IFNα-stimulated cells (Fig. S4A–F). The correlation between the levels of ISG15, MxA, IFNβ, Tyk2, Jak1 and 
Stat1 observed and an increased inflammation of the brain in the Th2P-, Th4M-and Th2P-4M-infected mouse as 
confirmed through histopathological analysis (Fig. S5).

Thus, the data indicated that cooperation between P and M proteins is required for the efficient inhi-
bition by RABV of the innate immune response in mice. In Th4M- and Th2P-infected mice, transcrip-
tion of ISRE-promoter-dependent genes, such as MxA and ISG15 and of some other key ISG targets of the 
Jak-Stat-pathway, was still controlled, culminating in 100% mortality. From 9 dpi, Th2P-4M infection induced 
substantial increases in transcription of these both genes. This can be related to the lower virulence observed at 
D21 (50% of survival) (Fig. 4).

P and M proteins cooperate in JAK1 interactions.  Next, we investigated other possible interactions 
between RABV proteins and the Jak–Stat pathway. Previous mass-spectroscopy experiments had shown that M 
protein is present in JAK1-protein complexes20. PCAs performed with M and JAK1 proteins showed that they 
interact, with or without IFNα treatment (Fig. 5A,B), although 1 h of IFNα stimulation led to fewer NLR signals. 
By contrast, the 4M protein lost its capacity to interact with JAK1, indicating that the four mutated residues play 
key role(s) in this interaction (Fig. 5B). Surprisingly, P protein was also found to interact with JAK1 (Fig. 5A). 
The interaction of P protein or its 2P mutant with JAK1 was conserved with IFNα stimulation or without, despite 
significantly a lower NLR signal (p < 0.05) after IFN stimulations (for 1 or - hours) (Fig. 5A,B).

In the next step, we investigated whether the P or M protein could interfere with one another’s interaction 
with JAK1. Co-transfected P protein has no effect on M/JAK1 interactions in the absence of IFN stimulation. 
However, after 1 or 24 h of IFN stimulation, co-transfected P protein did not abolish M/JAK1 interactions but led 
to a significantly (p < 0.05) lower NLR signal. As far as M protein is concerned, co-transfected M protein did not 
abolish P/JAK1 interactions although a lower NLR signal is observed. Most notably, after 1 h of IFN stimulation, 
co-transfected M protein abolished P/JAK1 interaction (Fig. 5A). However, 24 h of IFN stimulation restored P/
JAK1 interactions, despite the presence of M protein.

Thus, the data indicated that P protein can bind to JAK1 and that M protein reduces this P/JAK1 interaction 
during the early times of IFN stimulation.

M protein inhibits JAK1 phosphorylation and P protein prevents JAK1-STAT1 interaction.  To 
investigate the effect of M/JAK1 interaction, we monitored JAK1 phosphorylation (pJAK1) in cells, with or with-
out RABV protein expression, by Western blotting. HeLa cells were first transfected with wild-type P or M pro-
tein, then incubated with IFNα for 24 h (Fig. 5C). In untransfected cells, JAK1 was phosphorylated only in the 
presence of IFNα (Fig. 5C). P protein did not impair JAK1 phosphorylation but M protein impaired JAK1 phos-
phorylation, despite IFNα stimulation (Fig. 5C).

Those findings were confirmed by ELISA on RABV-infected cells which allow us to quantify pJAK1/JAK1 
(Fig. 5D). Without IFNα activation, only a minor fraction of JAK1 in Mock-infected cells were phosphoryl-
ated (pJAK1/JAK1 = 0.15) compared with IFN-treated Mock-infected cells and neither Tha nor Th2P infection 
impaired that level of JAK1 phosphorylation. However, mutated Th4M and Th2P-4M increased phosphoryla-
tion of JAK1 proteins (pJAK1/JAK1 = 0.3). After IFNα treatment, nearly half of JAK1 proteins in Mock-infected 
cells was phosphorylated (pJAK1/JAK1 = 0.9), while pJAK1 levels were significantly (p < 0.05) lower in Tha- and 
Th2P-infected cells (pJAK1/JAK1 = 0.6) (Fig. 5D). Moreover, in Th4M- and Th2P-4M–infected and IFN-treated 
cells, JAK1 phosphorylation was similar to that of Mock-infected and IFN-treated cells (pJAK1/JAK1 = 0.9). 
Therefore, through its interaction with JAK1, M protein alone was able to inhibit JAK1 phosphorylation.
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Figure 5.  RABV M protein inhibited Jak1 activation and P protein blocked Jak1-Stat1 interaction. Protein 
complementation assay: wild-type (A) or mutated M (Th4M) or P (Th2P) protein (B) was co-transfected with 
JAK1-protein–coding plasmids and stimulated for 1 or 24 h with IFNα or not. Two days post-transfection, 
the Gaussia luciferase activity, whose intensity corresponds to interaction, was determined. P and M proteins 
were also transfected as third partners in some experiments. The bold horizontal lines represent Gaussia 
significance threshold. Results are expressed as means ± standard deviation (T-bars) of at least four independent 
experiments. *p < 0.05 compared to unstimulated samples. (C) Phosphorylated JAK1 protein (pJAK1), JAK1, 
and P and M proteins were detected by immunoblotting of cell lysates with specific antibodies. HeLa cells 
were transfected with wild-type P or M-proteins and stimulated (+) with IFNα (1000 U/mL, 24 h) or not 
(−). (D) pJAK1 ELISA was run on HeLa cells infected with RABV wild-type (Tha) or P- and/or M-mutated 
proteins (Th2P, Th4M, Th2P-4M) and stimulated or without IFNα. *p < 0.05 compared to Tha-infected 
samples not stimulated by IFNα and #p < 0.05 compared to IFNα-stimulated Tha-infected samples. Protein 
complementation assay (E): STAT1 and JAK1 proteins were co-transfected and stimulated for 1 or 24 h with 
IFNα or not. P and M proteins were also co-transfected as third partners in some experiments. Two days post-
transfection, Gaussia luciferase activity, whose intensity corresponds to interaction, was determined. The bold 
horizontal lines represent Gaussia significance threshold. Results are expressed as means ± standard deviation 
(T-bars) of at least four independent experiments. *p < 0.05 compared to the corresponding data for STAT1/
JAK1 alone.
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To better elucidate the role of P protein on the Jak-Stat pathway, we analyzed JAK1/STAT1 interactions with-
out or with wild-type P protein (Fig. 5E). Upon IFNα stimulation of the Jak-Stat signaling, JAK1/STAT1 complex 
formation is not blocked by P or M expression (Fig. 5E).

P and M protein cooperate temporally to fully inhibit the JAK-STAT pathway.  All our results 
showed that the interactions among JAK1, STAT1, P and/or M proteins are modulated after Jak–Stat-pathway 
activation. Therefore, we followed protein–protein interactions with PCA over 24 h of incubation with IFNα. 
After an initial sharp M/JAK1-interaction drop, interactions increased from approximately 10 h of stimulation 
onwards (Fig. 6D). In contrast, M/STAT1 interactions rose during the very early stages of activation of Jak–
Stat signaling and rapidly declined thereafter (Fig. 6C). After approximately 10 h of IFNα exposure, M protein 
no longer interacted with pSTAT1 proteins (Fig. 6C). A correlation was similarly observed between P-protein 
interactions with STAT1 or JAK1. After IFNα activation, P/JAK1 interactions rapidly diminished (Fig. 6B), and 
this low level of interaction persisted throughout the post-IFN-stimulation period (35 h) and never returned the 
initial maximum level. P/pSTAT1 NLR values showed an inverse relationship to P/JAK1 NLR values. P proteins 
always interacted with pSTAT1 after IFNα, with NLR values peaking after 1 h of IFNα stimulation and persisting 
over 24 h (Fig. 6A)

To better understand the dynamics of interactions among M, P, STAT1 and JAK1, protein/protein interactions 
were recorded with PCAs 24 h post-transfection in cells over 1 or 24 h of IFNα stimulation (Fig. S6). Our results 
indicate that P and M proteins interact together, regardless of JAK/STAT-pathway status activation by IFNα. 
Overexpression of STAT1 (but not JAK1) impaired P/M interactions after IFNα stimulation in the presence of 
Stat1 but not in the presence of Jak1.

Taken together, all our findings suggest that P and M proteins cooperated inversely to inhibit Jak and Stat 
signaling in a time-sensitive manner: pSTAT1/RABV-protein interactions might be essential at infection onset, 
whereas those with JAK1 might be required during late infection stages.

Discussion
Type-I IFNs and Jak-Stat signaling constitute a pillar of the innate immune response, triggering ISG production 
and establishing an antiviral environment inside infected and in neighboring cells24. As a consequence, develop-
ing escape strategies to hijack and/or inhibit this pathway constitutes a milestone for many viruses in establishing 
efficient infections.

The P-protein interaction with STAT proteins has been extensively described16–18, yet to our knowledge, the 
interaction of RABV P-protein with JAK1 is described here for the first time. Interestingly, the positions 265 and 
287 necessary for P/STAT1 interaction were not involved in P/JAK1 interaction, which suggests that P/JAK inter-
action is independent of STAT1 and occurs via different mechanisms. Surprisingly, while P-protein interaction 

Figure 6.  Dynamic interactions between RABV P and/or M proteins and pSTAT1 and Jak1 proteins. Protein 
complementation assay: P and M proteins were co-transfected with STAT1 or JAK1-coding plasmids. Two 
days post-transfection, cells were stimulated with IFNα for 15 or 30 min, or 1, 2, 4, 8 or 24 h. Gaussia luciferase 
activity, whose intensity corresponds to interaction, was determined. The bold horizontal lines represent 
the Gaussia significance threshold. Results are expressed as means ± standard deviation (T-bars) of five 
independent experiments.

https://doi.org/10.1038/s41598-019-48507-4


9Scientific Reports |         (2019) 9:12171  | https://doi.org/10.1038/s41598-019-48507-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

with JAK1 interfered with JAK1/STAT1 interaction, it apparently did not affect JAK1 or STAT1 phosphorylation 
after 24 h of IFNα stimulation.

Herein, we found that M protein interference with cell signaling is not only affecting pathways regulating 
type-I IFN expression19,20,22 but also type-I IFN response. Thus, we propose a model (Fig. 7) where M protein 
cooperates with P protein to control the Jak-Stat signaling pathway. M protein interacted dynamically with JAK1 
to partially prevent the JAK1 phosphorylation and, hence, its activation. JAK1 phosphorylation is mandatory for 
transduction of the IFNAR signal to its downstream targets, STAT proteins25. While the M protein did not affect 
STAT1 phosphorylation, it was able to participate independently of other viral proteins in: 1) pSTAT1 cytoplas-
mic retention, 2) restriction of STAT1 access to its target, the ISRE promoter, and 3) control of expression of ISGs. 
Whether pSTAT1 cytoplasmic retention relates to the observed M/pSTAT1 interaction remains to be investigated. 
Furthermore, it should be considered that the inhibition of JAK1 phosphorylation might be associated with the 
regulation of other pathways downstream from JAK1, such as mitogen-activated protein kinase (MAPK) or ser-
ine/threonine kinase-1 (AKT)26.

Residues 77, -100, -104 and -110 of M protein were initially identified as important to M protein interaction 
with RelAp43 by mutagenesis22, and subsequently involved in the interaction with TNF-inducible zinc finger 
protein A20-binding protein (ABIN2) and mitogen-activated MAP3K tumor-progression locus-2 (TPL2), both 
proteins complexed with RelAp43 and a second NF-κB protein, p10520. In the present study, these four positions 
also proved to be important for interactions between the M protein and JAK1 and/or STAT1, supporting the role 
of the four residues and their surrounding regions in M-protein functions. Although mutation of the M protein 
had only a mild effect on virus replication, it strongly impacted RABV escape from the immune response. If the 
global structure of the protein remains intact and preserves its vital functions for replication (transcription reg-
ulation, viral entry, budding), the four amino-acid mutations impairs M-protein interactions with up to five host 
proteins involved in NF-κB and JAK-STAT pathways27–29.

Interactions between both RABV proteins and JAK1 seem to be essential before IFN induction of signaling 
and during the later infection stages. These dual interactions could limit signal outbursts early during the infec-
tion and enable control of later feedback loops30. In contrast, P- and M-protein interactions with pSTAT1 were 
crucial during the first few hours following the induction of type-I IFN expression. Our study is consistent with 
the pre-existing model of P/pSTAT1 interactions: P protein and its isoform P2 retain pSTAT1 in the cytoplasm, 
while the P3 isoform restricts its access to the ISRE promoter in the nucleus and exports it to the cytoplasm15,16. 
In that context, the M protein facilitated P/pSTAT1 interactions, and M- and P-protein cooperation was required 
to completely inhibit Jak–Stat signaling in field isolates. That a RABV protein evolved to so broadly neutralize 
the innate immune response means that suppression of multiple pathways of host defenses is required to achieve 
successful infection.

Figure 7.  Model of the cooperation between M and P proteins to inhibit different Jak-Stat-pathway steps. (A) 
At infection onset, before the IFN response is triggered and IFNα binds to its receptor (IFNR), JAK1 and STAT1 
are not phosphorylated. Then, both RABV M (red) and P (purple) proteins can interact with JAK1, although 
M-STAT is favoured. Only the mutant 2P (pink) but not 4M (orange) interact with JAK1 (phosphorylated or 
not). (B) In the presence of IFNα, JAK1 is phosphorylated which lead to the phosphorylation of STAT1 and 
translocation in the nucleus of STAT phosphorylated dimers and finally activation of ISRE promotors and 
increase of transcription of corresponding genes (ex: ISG15, MxA, IFNβ1 and Tyk2). This is inhibited in the 
context of a RABV infection by both M and P proteins. Neither the mutant 2P nor 4M are able to interact 
with STAT1 (phosphorylated or not). Less than 30 min after IFN stimulation (1), the M protein blocked JAK1 
phosphorylation and then STAT1 phosphorylation. 30 min after the initial stimulation (2), P destabilises 
M-JAK1 and the M protein switches towards pSTAT1 interaction, which then enhances the capacity of P protein 
to also switch towards pSTAT1 interaction and inhibit the translocation of phosphorylated STAT dimers. (C) 
Several hours later, P and M proteins tend to interact preferentially with JAK1, although the initially high P/
JAK1 levels were never again reached.

https://doi.org/10.1038/s41598-019-48507-4


1 0Scientific Reports |         (2019) 9:12171  | https://doi.org/10.1038/s41598-019-48507-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

The results observed in vivo are preliminary and can not entirely reflect potential contributions from differ-
ences in innate and adaptative immunity. Futher LD50 experiments performed in immunocompetent versus 
immunocompromised mice will provide a better understanding of the role of these mutations in vivo31. However, 
our results corroborate with the fact that depriving RABV of its capacity to interfere with pSTAT1 cytoplasmic 
retention had a barely noticeable effect on pathogenesis and innate immune responses compared to the wild-type 
virus. In contrast, depriving RABV of its ability to interfere with the NF-κB and MAPK pathways, as previously 
described20, and JAK1-pSTAT1 signaling significantly impaired virus escape and enhanced host survival. Indeed, 
because they affect several pathways, M-protein positions 77, 100, 104 and 110 more dramatically impacted 
RABV escape than P-protein positions 265 and 287, which affected only one viral interference pathway.

In conclusion, our results demonstrate that RABV-M acts as a potent inhibitor of the Jak-Stat pathway in 
complementation to the P protein and therefore plays a crucial role in shutting down the type-I IFN response and 
inflammation19,20,22,32,33.

Materials and Methods
Cell lines and viruses.  Human carcinoma epithelial cells (HeLa, ATCC CCL2™) and BSR cells34 respec-
tively, are part of the collection of our laboratory and were cultured at 37 °C, 5% CO2, in Dulbecco’s minimal 
essential medium (DMEM) supplemented with 10% calf serum. Human epithelial kidney cells stably transfected 
with an ISRE-luciferase reporter gene-37 (STING37) reporter cells kindly provided by Marianne Lucas-Hourani 
(Unité de Génomique Virale et Vaccination, Virology Department, Institut Pasteur)35, were cultured at 37 °C, 5% 
CO2, DMEM supplemented with 10% calf serum. BSR-T7 cells provided to us by K.K. Conzelmann (Max von 
Pettenkofer Institute and Gene Center, Munnich)23 were cultured in Glasgow medium supplemented with 10% 
calf serum, tryptose phosphate, nonessential amino acids and geneticin. Human neuroblastoma cells (SK-N-SH 
ATCC® HTB-11™) were differentiated into neurons in neurobasal medium supplemented with 10% calf serum, 
glutamax and B19 (Gibco A10508) for 1 week.

Six recombinant viruses from the rabies strain 8743THA (EVAg collection, Ref-SKU: 014V-02106), a 
street-dog isolate from Thailand36, were used: the wild-type virus (Tha), three P-protein mutants (Th2P 
(P-W265G/M287V), ThP265 (P-W265G), ThP287 (P-M287V), an M-protein mutant (Th4M (M-R77K/D100A/
A104S/M110L)20,22 and a mutant bearing mutations on both P- and M-protein (Th2P-4M (P-W265G/M287V and 
M-R77K/D100A/A104S/M110L).

Plasmids and sited-directed mutagenesis.  All the sequences were amplified by reverse 
transcription-polymerase chain reaction (RT-PCR) on RNA extracted from Tha-virus–infected HeLa cells 
using specific primers. PCR products were inserted into the vector of interest using In-FusionTM HD Cloning Kit 
(Clontech).

Viral P and M sequences were cloned, respectively, with C-terminal and N-terminal FLAG-tags into the 
pIRES vector (Clontech, PT3266-5) using NheI and XhoI restriction sites. The complete Tha-virus genome 
was inserted into pSDI-Flash-HH-SC37, as previously described22. Plasmids for the protein-complementation 
assays (PCA) were obtained by cloning M, P, Stat1 and Jak1 sequences into vectors containing the N-terminal 
(pCMV-KDEL-Glu1) or C-terminal part (pCMV-KDEL-Glu2) of Gaussia luciferase, respectively, using 
BstXI/SalI and XhoI/SacII restriction sites38. To study the impact of a third protein in PCAs, plasmids coding for 
M, P, STAT1 or JAK1 protein without FLAG- or HA-tag were used.

Mutations were introduced into the Tha-genome or P- and/or M-protein plasmids using Change-ITTM 
Multiple Mutation Site-Directed Mutagenesis Kit (Afflymetrix) and specific primers, as described previously22.

Reverse genetics.  Recombinant RABVs were rescued, as previously described22, by transfection into 
BSR-T7 cells of the complete genome (2.5 μg), and plasmids N-pTIT (2.5 μg), P-pTIT (1.25 μg) and L-pTIT 
(1.25 μg). Briefly, 6 days after transfection, supernatants were passaged onto BSR cells and incubated for 5 days. 
The supernatant was harvested and titrated on BSR cells. To control for the isolation of different RABVs, growth 
curves were plotted. BSR cells were infected at a multiplicity of infection (MOI) of 0.1 fluorescent focus units 
(FFUs)/cell. Supernatants were harvested 24-, 48- and 72-h post-infection and titrated on BSR cells. RABV pro-
teins were extracted from the infected cells and subjected to Western-blot analysis.

Transfection, infection and stimulation.  Lipofectamine 2000 (Invitrogen) was used for all transfections 
at a ratio of 1:2.4 (μg of DNA/μL of Lipofectamine 2000) for HeLa, SK-N-SH and BSR-T7 cells, and 1:3 for HEK-
293T cells. HeLa, differentiated SK-N-SH and STING37 cells were infected at an MOI of 1 FFUs/cell and washed 
2-h post-infection to remove input virus. Twenty-four hours after infection or transfection, cells were stimulated 
with 1000 U/mL of IFNα and/or 10 ng/mL of tumor necrosis factor (TNF) for 1–24 h in DMEM without calf 
serum. Western-blot analyses or immunofluorescence experiments were performed on cell extracts. Supernatants 
were titrated on BSR cells to control for viral infection.

Ethics statement.  All mice experiments were performed in accordance with guidelines of the European and 
French guidelines (Directive 86/609/CEE and Decree 87–848 of 19 October 1987) and the Institut Pasteur Safety, 
Animal Care and Use Committee, and approved by the French Administration (Ministère de l′Enseignement et 
de la Recherche) under the number O522-02. All animals were handled in strict accordance with good animal 
practice.

In vivo experiments.  Three-week-old BALB/C or C57BL/6 mice were infected by intramuscular injection of 
1000 FFUs of the different recombinant RABVs and monitored for 21 days.

In this model, the pathology observed in mice infected by Tha virus can be caraterized in 3 steps: (stage 1) D8, 
first signs of illness: ruffled fur, slow movement, hind limb ataxia and apathy appearing. (stage 2) D9: worsening 
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of symptoms were visible like monoplegia and hind limb paralysis. (stage 3) D10: mice reached an unresponsive 
endpoint (humane endpoint) characterized by paralysis of at least two limbs, and finally death.

Two different type of experiments were performed: (i) mice were sacrificed 9 days post-infection (dpi), stage 
2, when monoplegia and hind limb paralysis were observed in mice infected with Tha virus and/or (ii) mice were 
sacrificed when they reached an unresponsive endpoint (humane endpoint, paralysis of at least two limbs) at stage 
3. The infection was confirmed by RT–quantitative (q)PCR.

Immunohistochemistry.  After necropsy, mouse brains were removed and immediately fixed in 10% 
neutral-buffered formalin and embedded in paraffin; 4-µm–thick sections were cut and stained with hematoxylin–
eosin. In immunohistochemistry, we assessed 1) microglial cell morphology using a rabbit anti-ionized-calcium 
binding-adaptor molecule-1 (Iba1) primary antibody (#01919741, Wako Chemical, diluted 1:50), 2) astrocyte 
morphology using chicken anti-glial fibrillary acidic protein (GFAP) primary antibody (ab4674, Abcam, dilution 
1:5000) and 3) RABV detection using the rabbit P49-1 antibody (diluted 1:1000)39. All immunohistochemistry 
procedures were done with the Bond III automat (Leica).

RT-qPCR.  Total RNA was extracted from in vitro-cultured cells using RNeasy mini kit (Qiagen, Hilden, 
Germany). Total mouse-brain RNA was isolated with TRIzol. Using Superscript II (Invitrogen) with Oligo-dT 
primers (2 pmol, Fermentas), 1.2 μg of RNA were reverse transcribed and transcripts were amplified and analyzed 
with Power SYBR Green (Qiagen, Hilden, Germany) and 7500 Fast Real-Time PCR System (Applied Biosystems) 
by 7500 SDS software version 2 (Applied Biosystems). Commercial primers (QuantiTect Primer Assay, Qiagen, 
Hilden, Germany) were used for the following human and mouse genes: Trim25, ISG15, Stat1, NF-κB1, Jak1, 
Tyk2 and IFNβ1. The following primers were used for MxA: 5′-ATAGACCTTCCTGGCATAACC-3′ and 
5′-CTTCAGTTCCVTTTGCCCACCA-3′. The relative amount of each target mRNA was normalized to the 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) level in each sample. Commercial primers (QuantiTecy 
Primer Assay, Qiagen, Hilden, Germany) were used for the following mouse genes: Trim25, ISG15, Stat1, NF-κB1, 
Jak1, Tyk2 and IFNβ1.

Protein extraction and western blot.  Transfected or infected cells were washed with phosphate-buffered 
saline (PBS). RIPA Lysis Buffer System (Santa Cruz Biotechnology) and the Nuclear, Cytosol Fractionation 
Kit (CliniScience), respectively, were used for protein extraction, and nuclear and cytoplasmic fractiona-
tion. Western-blot were performed with NuPAGE 10% Bis–Tris Gels (Invitrogen) and the iBlot transfer sys-
tem (Invitrogen). To detect RABV P and M proteins, anti-M (186.20) and anti-P (49.11) mouse antibodies 
(diluted 1:3000) were used39. Phosphorylated STAT1 was detected with a phosphotyrosine-specific rabbit anti-
body (diluted 1:1000) recognizing phospho-Y701 (Cell signaling, S8D6). Anti-α-tubulin (Sigma, T5168) and 
anti-lamin (Abcam, 8984) mouse antibodies (diluted 1:1000) served as loading and fractionation controls. 
Mouse and rabbit antibodies were revealed with horseradish-peroxidase–conjugated secondary antibody (GE 
Healthcare; diluted to 1:1000). Membrane saturation and all antibody dilutions were made in PBS–Tween 0.1% 
and 5% nonfat dry milk. Blots were revealed by chemiluminescence on a LA500 blot revealer (Amersham), with 
LA500 software for blot analyses.

ELISA.  ELISA assays were performed using “RayBio phospho-JAK1 and total JAK1 ELISA” kit, (RayBiotech, 
Inc., Norcross, GA, USA) according to the manufacturer recommendation. ELISA was run on HeLa cells infected 
with RABV wild-type (Tha) or P- and/or M-mutated proteins (Th2P, Th4M, Th2P-4M) and stimulated or not 
with IFNα.

Immunofluorescence.  Infected cells were washed with PBS, fixed with cold methanol and permeabilized 
with acetone. Immunofluorescence experiments used the same primary antibodies as for Western blots, and sec-
ondary conjugated anti-rabbit DyLight 405 (Jackson ImmunoResearch) and conjugated anti-mouse DyLight 549 
(Jackson ImmunoResearch) antibodies (diluted 1:1000). Saturation and all antibody dilutions were done in PBS 
with 10% of calf serum. DAPI was used to stain the nucleus blue (ProlonGold with DAPI). Analyses were done 
on the Zeiss ApoTome system.

PCA/luciferase assay.  HEK-293T cells were seeded onto 96-well plates and, 8 h later, transfected with 100 ng 
of Glu1 and Glu2 chimeric constructs, and 5 μg of firefly-luciferase DNA. Gaussia and firefly luciferase activities 
were measured 48-h post-transfection on the GloMax multi-detection system (Promega) using the Renilla and 
firefly Luciferase Assay Systems (Promega), respectively. IFNα (1000 U/mL) was added to cell cultures, 15 and 
30 min, and 1, 2, 4, 8 or 24 h before the luciferase readout. Gaussia-luciferase activity was normalized to firefly 
luciferase activity in order to evaluate transfection efficiency. Protein–protein interaction levels are expressed as 
normalized luminescence ratios (NLRs), according to the following formula, as described previously40:

= + + + +NLR (Glu1A Glu2B)/[(Glu1A Glu2) (Glu1 Glu2B)]

Glu1A and Glu2B are chimeric proteins, and Glu1 and Glu2 empty vectors. The threshold for positive interac-
tion between two partners was determined for an NLR > 3.540.

Chromatin immunoprecipitation (ChIP) assay.  ChIP assays were performed as previously described41. 
Briefly, after infection and IFN stimulation, cells were incubated for 15 min in culture medium containing 
1% formaldehyde, washed with PBS and collected by scraping in 5 mL of buffer (100 mM Tris–HCl [pH 9.4], 
10 mM dithiothreitol). Cells were lysed in lysis buffer (0.25% Triton X–100, 0.5% NP-40, 10 mM EDTA, 0.5 mM 
EGTA, 10 mM Tris [pH 8.0]) supplemented with protease and phosphatase-inhibitor cocktail (Complete; Roche 
Molecular Biochemicals). Cell lysates were then sonicated to yield 150-bp chromatin fragments, as determined 
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by Agarose-gel electrophoresis. The sonicated protein extracts were diluted 1:10 in dilution buffer (0.01% 
SDS, 1.1% Triton X–100, 1.2 mM EDTA, 16.7 mM Tris–HCl [pH 8.1], 150 mM NaCl) and then precleared 
with 50 μL of protein G–Sepharose beads for 3 h at 4 °C. Proteins were immunoprecipitated with anti-human 
pStat1 and anti-FLAG, overnight at 4 °C. Then, the beads were washed extensively, and cross-links were broken 
by incubation in elution buffer (1% SDS, 0.1 M NaHCO3) for 15 h at 65 °C. DNA was extracted with phenol–
chloroform, ethanol precipitated, and dissolved in 50 μL of H2O. The input and precipitated DNA were ana-
lyzed by real-time PCR using primers encompassing the ISRE-binding site on the ISG15 promoter (forward: 
5′-CTCCTCCCTCCCTGAAGCT-3′; reverse: 5′-CGGTTGAGTTTCGTTTCTTGCA-3′. qPCR used Applied 
Biosystems PRISM 7900HT in triplicate with Hotstar PCR master mix (Qiagen, Hilden, Germany), according to 
the latter manufacturer’s instructions. PCR consisted of 40 cycles of 95 °C for 15 s and 55 °C for 30 s.

Statistical analyses.  All analyses were computed with GraphPad Prism software. Results are expressed 
as means ± standard deviation (error bars) of at least triplicate samples. Statistical significance was assessed by 
ANOVA or Student’s t-tests and defined as p < 0.05.
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