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Resting state functional magnetic resonance imaging (rs-fMRI) provides a powerful tool

to examine large-scale neural networks in the human brain and their disturbances

in neuropsychiatric disorders. Thanks to its low demand and high tolerance, resting

state paradigms can be easily acquired from clinical population. However, due to

the unconstrained nature, resting state paradigm is associated with excessive head

movement and proneness to sleep. Consequently, the test-retest reliability of rs-fMRI

measures is moderate at best, falling short of widespread use in the clinic. Here, we

characterized the effect of sleep on the test-retest reliability of rs-fMRI. Using measures of

heart rate variability (HRV) derived from simultaneous electrocardiogram (ECG) recording,

we identified portions of fMRI data when subjects were more alert or sleepy, and

examined their effects on the test-retest reliability of functional connectivity measures.

When volumes of sleep were excluded, the reliability of rs-fMRI is significantly improved,

and the improvement appears to be general across brain networks. The amount of

improvement is robust with the removal of as much as 60% volumes of sleepiness.

Therefore, test-retest reliability of rs-fMRI is affected by sleep and could be improved

by excluding volumes of sleepiness as indexed by HRV. Our results suggest a novel and

practical method to improve test-retest reliability of rs-fMRI measures.

Keywords: test-retest reliability, resting state, naturalistic paradigm, heart rate variability, sleep

INTRODUCTION

Resting state functional magnetic resonance imaging (rs-fMRI) paradigm is a widely used tool to
explore functional connectivity network in both healthy and clinical population (Biswal et al., 1995;
Greicius et al., 2003; Fox et al., 2005; Greicius, 2008; Jafri et al., 2008; Fox and Greicius, 2010; van
den Heuvel and Pol, 2010; Friston, 2011; Buckner et al., 2013; Tailby et al., 2015). The task-free
nature of rs-fMRI paradigm, with low demand and high tolerance, makes it easy to standardize
across study centers and conduct with subjects challenged by task performance (Greicius, 2008).
Rs-fMRI has thus become a common tool in clinical studies on brain disorders, and holds great
promise as imagingmakers for diagnostic and prognostic uses. In addition to connectivitymeasures
between individual brain regions, graph theory has been applied to rs-fMRI connectivity networks
to measure higher order characteristics of brain networks, such as degree centrality, clustering
coefficient, and modularity (van den Heuvel et al., 2008; Bullmore and Sporns, 2009; Guye et al.,
2010; Hayasaka and Laurienti, 2010; He and Evans, 2010; Bullmore and Bassett, 2011; Zuo et al.,
2012a).
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Rs-fMRI measures, however, have not achieved the level
of test-retest reliability as required by clinical imaging. The
reliability of functional connectivity and graph measures derived
from rs-fMRI ranges from poor to moderate (Telesford et al.,
2010; Wang et al., 2011; Braun et al., 2012; Guo et al., 2012;
Li et al., 2012; Patriat et al., 2013; Cao et al., 2014), where
the unconstrained nature of resting state condition could have
a negative impact. Without external stimulation, one problem
with resting state paradigm is the excessive head motion and
associated scan artifacts (Van Dijk et al., 2012; Yan et al., 2013;
Vanderwal et al., 2015). It has been showed that excessive head
motion reduces the reliability of fMRI measures and excluding
high motion subject or volumes, or regressing out motion
related artifacts could improve the reliability of rs-fMRImeasures
(Schwarz and McGonigle, 2011; Guo et al., 2012; Zuo et al.,
2012b; Gorgolewski et al., 2013; Yan et al., 2013; Du et al., 2015).

Sleep was found to affect rs-fMRI measures in previous
studies. It was reported that most subjects become drowsy and
even fall asleep during resting state paradigms (Tagliazucchi and
Laufs, 2014). These sleep episodes during resting state scanning
are thought to be mostly non-rapid eye movement (non-REM)
sleep, as more than 60 min are required to get into REM
sleep (McCarley, 2007). The presence of sleep was found to
affect functional connectivity and graph theoretical measures.
For example, thalamocortical connectivity was found to reduce
at the onset of non-REM sleep, and corticocortical connectivity
increase during light sleep before getting disrupted during deep
sleep (Massimini et al., 2005; Horovitz et al., 2009; Larson-
Prior et al., 2009; Spoormaker et al., 2010; Koike et al., 2011;
Tagliazucchi et al., 2012; Picchioni et al., 2014; Tagliazucchi
and Laufs, 2014; Hale et al., 2016). Therefore, it seems possible
that sleep could also affect the test-retest reliability of rs-fMRI
measures, and excluding volumes of high sleepiness might
improve the reliability of connectivity measures.

We here investigated this hypothesis using a test-retest fMRI
dataset, where 17 participants underwent two identical fMRI
sessions 3 months apart. To detect sleep during the scan, we used
an established method based on simultaneous ECG recordings
during the fMRI acquisition. It is well established that cardiac
autonomic regulation alters between wake and different sleep
stages (Burgess et al., 1997; Trinder et al., 2012; Tobaldini
et al., 2013). Compared with wake condition, non-REM sleep
often incurs a marked decrease in heart rate and increase in
HRV. The changes start from sleep onset, or when subjects
feel drowsy, and continue throughout the non-REM sleep stage.
This suggests a general cardiovascular output reduction and
a transfer from predominant sympathetic to parasympathetic
cardiac modulation during non-REM sleep (Toscani et al., 1996;
Elsenbruch et al., 1999; Trinder et al., 2001; Busek et al., 2005;
Carrington et al., 2005; de Zambotti et al., 2011, 2014; Cabiddu
et al., 2012; Boudreau et al., 2013; Chouchou and Desseilles, 2014;
Cellini et al., 2016). HRV could thus be used to detect sleep or
drowsiness.

In sleep studies, electroencephalogram (EEG) is recognized as
gold standard to identify sleep stages (Rechtschaffen and Kales,
1968; Iber et al., 2007). Nevertheless, it is hard for subjects
to fall asleep with EEG scalp on. Lv et al. identified sleep

state using HRV derived from peripheral pulse signals, and
observed consistent brain network properties compared to those
derived from EEG based studies (Lv et al., 2015). Moreover,
HRV measures are widely used, solely or combined with other
physiological signal measures, as features in machine learning
models to predict and detect the fatigue and sleepiness of drivers.
The classification accuracy could reach over 90% (Lal and Craig,
2001; Borghini et al., 2012; Sahayadhas et al., 2012; Abbood et al.,
2014). Furthermore, compared to other biosignals used for sleep
detection, such as EEG and pupillometry (Abbood et al., 2014),
simultaneous recording of cardiac signals, using either ECG or
pulse oximetry, is more easily and routinely implemented in
fMRI experiments.

Here, we used HRV derived from the ECG to index the level
of alertness and sleepiness continuously for each fMRI volume.
We then examined the effect on the test-retest reliability of
connectivity measures when the volumes of the most extreme
HRV values were excluded. To derive a more general conclusion,
we used two different HRV measurements—the root mean
square of successive difference of normal-to-normal intervals
(RMSSD) (Neumann et al., 1941; Malik, 1996) and cardiac
vagal index (CVI) (Toichi et al., 1997) to index the level of
sleep, independently, and assessed test-retest reliability at both
individual unit- and scan-wise levels (Guo et al., 2012).

MATERIALS AND METHODS

Participants
Twenty right-handed participants (11 females, 9 males; aged
between 21 and 31 years; mean age 27± 2.7 years) participated in
the study. The participants were recruited from the University of
Queensland and provided written informed consent. Participants
received a small monetary compensation ($50) for their
participation in the study. The study was approved by the human
ethics research committee of the University of Queensland
and was conducted according to National Health and Medical
Research Council guidelines.

Experimental Paradigm
The experiment comprised two scanning sessions. For each
session, participants underwent an 8-min resting state fMRI
exam with eyes closed, and then freely viewed a 20-min
short movie “The Butterfly Circus.” Resting state condition was
always acquired first to avoid potential effect of movie viewing
experience on resting state brain activity, and also to reduce
the likelihood of fatigue and sleep during resting state. The
Butterfly Circus is a short film that depicts an intense, emotionally
evocative story of a man born without limbs who is encouraged
by the showman of a renowned circus to reach his own potential.
The movie is live action, color, and shot in high definition.
Additional details of the experiment were previously reported
(Nguyen et al., 2016b; Wang et al., 2017).

Three months after the first scan session (Session A),
participants returned for the second imaging session (Session
B) involving an identical protocol of resting state and movie
viewing paradigms. Three participants were excluded from the
reliability analysis: one was due to technical problems during
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data recordings and the other two did not return for the second
session. Hence, test-retest reliability analyses were performed on
data from the 17 participants who finished both scan sessions.

Functional Image Acquisition and
Preprocessing
Functional and structural images were acquired from a whole-
body 3-Tesla Siemens Trio MRI scanner equipped with a
12-channel head coil (Siemens Medical System, Germany).
Functional images were acquired using a single-shot gradient-
echo Echo Planar-Imaging (EPI) sequence with the following
parameters: repetition time (TR) 2,200 ms, echo time (TE) 30ms,
flip angle (FA) 79◦, Field of View (FOV) 192 × 192 mm, pixel
bandwidth 2,003 Hz, a 64 × 64 acquisition matrix, 44 axial
slices, and 3 × 3 × 3 mm3 voxel resolution. A high-resolution
T1-weighted MPRAGE structural image covering the entire
brain was also collected for each participant with the following
parameters: TE = 2.89 ms, TR = 4,000 ms, FA = 9◦, FOV = 240
× 256 mm, and voxel size 1× 1× 1 mm3.

Functional images were preprocessed using Statistical
Parametric Mapping toolbox (SPM12, Welcome Department
of Imaging Neuroscience, Institute of Neurology, London) and
a toolbox for Data Processing & Analysis for Brain Imaging
(DPABI) (Yan et al., 2016) implemented in Matlab (Mathworks,
USA). The first five volumes of each EPI sequence were discarded
to allow scanner equilibrium to be achieved. The remaining
functional images were slice-time corrected, realigned, co-
registered to the T1 structural image of each individual subject,
and normalized to the Montreal Neurological Institute (MNI)
space without additional smoothing. The images were further
regressed out of nuisance signals, bandpass filtered (0.0083–
0.15 Hz) and detrended. Nuisance signals include principle
components of WM and CSF signals derived using the CompCor
method (Behzadi et al., 2007) and Friston-24 motion parameters
(Friston et al., 1996; Yan et al., 2013). Additional preprocessing
details were previously reported (Wang et al., 2017). After
preprocessing, there are total 215 and 530 volumes for resting
state and natural viewing conditions, respectively.

Heart Rate Variability
ECG signals were recorded using Brain Products system (http://
www.brainproducts.com/). The leads were placed on the back,
and the signals were recorded at the sampling rate of 5,000 Hz.
Heart beats were first detected automatically using the detection
algorithm implemented in QRSTool software (Allen et al., 2007).
The detected heart beats were then visually checked and the
misidentified ones were manually corrected. Inter-beat intervals
(IBI) were then calculated as the time intervals between two
successive individual beats. Using HRVAS toolbox (Ramshur,
2010), the resultant IBIs were further cleaned and processed
(ectopic values removed, interpolated, and detrended). Finally,
the IBIs were used to derive HRVmeasures: the root mean square
of successive difference of IBIs (RMSSD) and Tochi cardiac vagal
index (CVI). These two measures are believed to primarily reflect
parasympathetic function (Neumann et al., 1941; Malik, 1996;
Toichi et al., 1997).

Next we used sliding windows to derive continuous HRV
(Guo et al., 2016). Sliding windows were centered in themiddle of
each TR, moving forward in steps of 1 TR. HRV measures were
calculated using the IBIs within each window. We examined a
series of window lengths: 4, 8, 12, ..., 50 s, and the proper window
length was chosen based on the following criteria: (1) the time-
varying HRV is highly consistent with the overall HRV, measured
as the ratio of time-varying HRV averaged across all windows and
subjects to the overall HRV averaged across all subjects (Thong
et al., 2003); (2) the test-retest reliability of the time-varying
HRV measures is good. We finally chose RMSSD and CVI with
the window length of 16 s for the following analyses, because
they are highly consistent with the whole scan HRV (>0.95),
relatively reliable (RMSSD: scan-wise ICC: 0.8, unit-wise ICC:
0.672; CVI: scan-wise ICC: 0.693, unit-wise ICC: 0.53. Method
of calculating unit- and scan-wise ICC is described below in
Test-retest reliability), and could still provide satisfactory time
resolution.

This continuous HRV was then used as an estimate of the
level of sleepiness during each TR. We used a relative threshold
of 50% to select the top 50 percentile sleepiest (highest HRV
values, sleepy-0.5) or most alert (lowest HRV values, alert-0.5)
volumes from each session in the reliability analyses. To exclude
any non-specific effect due to volume selection, we created a
control condition by randomly selecting 50% volumes and taking
the average from 5,000 randomizations (random-0.5). To ensure
the robustness of our results to the selection threshold of certain
state and the window lengths of time varying HRV, we performed
additional reliability analyses: (1) using a serial of additional
thresholds of data inclusion (0.9, 0.8, 0.7, 0.6, 0.4, 0.3) when
HRV was derived using 16 s sliding window; (2) using a serial
of window lengths (4, 8, 12, ..., 50 s) to derive the time-varying
HRV, then performed reliability analyses for sleepy-0.5 and alert-
0.5 conditions. We then used RMSSD derived from 16 s sliding
window to derive continuous HRV for movie viewing data, and
examined the effects of sleepiness on test-retest reliability in
natural viewing conditions. To make the analyses on resting state
and natural viewing conditions more comparable, we performed
additional analyses on an 8-min segment of the natural viewing
data, which matched the duration of the resting state sessions.

ROI-Based Functional Connectivity
Analysis
We first performed functional connectivity analysis using a
previous established atlas: the 200 ROI atlas based on Craddock
2012 parcellation (Craddock et al., 2012), as it provides good
cortical and subcortical coverage with fine divisions.

ROIs’ time series were extracted as the mean signal across
all voxels within each ROI from preprocessed fMRI data.
Pearson correlation was then computed between each pair of
ROIs’ time series using the sleepy-0.5, alert-0.5, random-0.5 and
whole data separately, resulting in four 200 × 200 connectivity
matrices for each subject for each session. For each matrix,
the correlation coefficients were transformed to z-scores using
Fisher’s transformation, averaged across all subjects for each
condition, and then reverted to Pearson’s r values to derive
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group-level connectivity matrices (Zuo et al., 2012a; Vanderwal
et al., 2015). To quantitatively evaluate the differences between
connectivity matrices at different alertness levels, we performed
paired t-test across subjects on the connectivity matrices between
sleepy-0.5 and alert-0.5 conditions. The results were thresholded
using FDR-corrected p < 0.05.

Graph Theoretical Analysis
We further derived graph theoretical measures from the
ROI connectivity matrices. We produced weighted adjacent
matrices by thresholding the fully connected ROI matrices:
suprathreshold connections (edge) retained their correlation
coefficients denoting edge weights, whereas subthreshold edges
were assigned values of 0. To ensure robustness of the threshold
chosen, we repeated our analyses using a serial of thresholds
(Tr = 0.1, 0.3, and 0.5).

We focused on two graph metrics that have been shown to
be reliable: degree centrality and clustering coefficient (Braun
et al., 2012; Guo et al., 2012; Andellini et al., 2015; Du et al.,
2015; Wang et al., 2017). These graph metrics were derived
from the weighted adjacency matrices using Brain Connectivity
Toolbox (Rubinov et al., 2009). Degree centrality measures the
connectedness of each node, computed as the weighted sum of all
the edges connected to the node. Clustering coefficient measures
the likelihood of the nodes tending to cluster together, calculated
as the fraction that the number of edges actually exist to the
number of all edges possibly exist. To examine the differences
between graph measures with different sleepiness levels, we
performed paired t-test across subjects on the graph measures
between sleepy-0.5 and alert-0.5. The results were thresholded
using an FDR-corrected p < 0.05.

Test-Retest Reliability
In this paper, we assessed test-retest reliability using intraclass
correlation coefficient (ICC) (Shrout and Fleiss, 1979; McGraw
and Wong, 1996; Caceres et al., 2009). A one-way ANOVA was
applied to the measures of the two scan sessions across subjects,
to calculate between-subject mean square (MSb) and within-
subject mean square (MSw). ICC values were then calculated as:

ICC =
MSb −MSw

MSb +
(

d − 1
)

MSw

where d = the number of observations per subject. For every
functional connectivity measure, we assessed reliability at both
individual unit-wise and scan-wise levels. Unit-wise reliability is
commonly reported in the literature (Shehzad et al., 2009; Wang
et al., 2011; Braun et al., 2012; Guo et al., 2012; Zuo et al., 2012a;
Birn et al., 2013; Liao et al., 2013). Here, one ICC value was
calculated for each measurement unit, such as the HRV value
of each window, the connectivity score of each ROI pair (edge),
or graph metric of each ROI (node). Unit-wise ICC was then
produced by averaging the ICC values for all measurement units
across the windows or the network to represent reliability at
individual level. Additionally, we reported scan-wise reliability,
which estimates the reliability of the mean measurement derived
from the entire scan session or the whole graph (Guo et al., 2012).

Here, a single ICC value was calculated for the mean HRV values,
mean connectivity scores or graph metric averaged across all
windows of the whole scan, or edges or nodes of the network.

The reliability results are referred as excellent (ICC > 0.8),
good (0.79 > ICC > 0.6), moderate (0.59 > ICC > 0.4), fair
(0.39 > ICC > 0.2), and poor (ICC < 0.2) (Guo et al., 2012).

Statistical Test
We tested whether ICC values of sleepy and alert conditions were
significantly different from corresponding random condition,
at both unit- and scan-wise levels. We performed one-tailed
permutation test by comparing the true ICC value against the
distribution of ICCs from the permuted random conditions
(details see Heart Rate Variability). A 95% CI for each
permutation test was calculated as the highest value (right-
tailed test) or lowest (left-tailed test) with an alpha level of 0.05
(Lamotte and Volaufova, 1999; Ernst, 2004).

Head Motion
We also examined the amount of head motion during different
levels of sleepiness, using framewise displacement proposed by
Power et al. (2012). Framewise displacement is a scalar quantity
defined as: FDi = |1dix| + |1diy + |1diz| + |1αi| + |1βi| +

|1γi|, where dix, diy and diz are translational displacements
along X, Y and Z axes, respectively; αi, βi and γi are rotational
angles of pitch, yaw and roll, respectively; 1dix = d(i− 1)x +

dix,1diy = d(i− 1)y + diy,1diz = d(i− 1)z + 1γi = α(i− 1) +

1βi,1βi = 1γi− 1 + βi,1γi = γ(i− 1) + γi. Rotation
displacements were converted from degrees to millimeters of
distance on a sphere surface (radius: 50 mm, assumed to be
the radius of a head). One spike was counted when FDi was
greater than 0.3 mm (Yan et al., 2013; Vanderwal et al., 2015).
We calculated the frequency of spikes as the number of spikes
per volume and compared it between the different alert levels
using paired t-test across subjects. We didn’t find any significant
influence of sleep on head motion.

RESULTS

Heart Rate Variability during Resting State
fMRI
HRV is modulated by both sympathetic and parasympathetic
nervous systems (Acharya et al., 2006), while the parasympathetic
modulation is predominant at rest. We here used two common
HRV metrics reflecting mainly parasympathetic modulation—
RMSSD (Malik, 1996) and CVI (Toichi et al., 1997) to measure
the overall and time-varying HRV during rs-fMRI. The overall
HRV measures showed good test-retest reliability (RMSSD:
0.799; CVI: 0.681). Then we used a sliding window method to
derive time-varying HRV metrics based on RMSSD and CVI
(Guo et al., 2016). With proper window length, time-varying
HRV measures were highly consistent (>0.95) with overall HRV
metrics [Figure 1A; SFigure 1A; results based on RMSSD are
presented in main text (Figures), and those based on CVI are
in Supplementary Materials (SFigure)], and showed moderate
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FIGURE 1 | Heart rate variability analysis based on RMSSD. (A) Normalized RMSSD (RMSSD (n.u.), n.u. stands for “normalized units”) averaged across

windows and subjects using different window length in both sessions. (B) ICCs of time-varying HRV (tv-HRV) using different window length at both unit- and

scan-wise levels. The ICC of overall HRV is indicated by the dashed line. The window chosen to derive the main results (16 s) is signified by crosses. (C) The number

of subjects who successively stayed alert with scanning progression using a serial of selection threshold of sleepiness (signified by different colors). The appearance of

consecutive 5 sleepy volumes was used as dropout criterion.

to good test-retest reliability (RMSSD: scan-wise ICC: 0.8, unit-
wise ICC: 0.672; CVI: scan-wise ICC: 0.693, unit-wise ICC: 0.53;
Figure 1B; SFigure 1B).

It is well established that HRV increases as one gets drowsier,
which has been used to detect driver alertness (Lal and Craig,
2001; Borghini et al., 2012; Abbood et al., 2014). Here, we used
the time-varying HRV measures as a way to index sleepiness
during resting state fMRI scans. Consistent with previous work
using EEG for sleep detection (Tagliazucchi and Laufs, 2014), the
number of subjects who stayed alert decreased as the scan time
increased (Figure 1C; SFigure 1C).

Reliability of Functional Connectivity
Measures Affected by Sleep
To examine the effect of sleep on functional connectivity
measures and their test-retest reliability, we performed
connectivity and reliability analyses using either the 50% of
data when subjects were most alert (alert-0.5) or the 50% when
subjects were sleepiest (sleepy-0.5). We chose a parcellation
scheme of 200 ROIs (Craddock et al., 2012), which covers the
entire cortical and subcortical regions, and organized the ROIs
into seven networks (Yeo et al., 2011). The seven networks
are: visual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal, default, and other areas (including parts of
cerebellums, thalamus, brainstems, and caudate). Overall, group
averaged functional connectivity matrices derived from alert-0.5,
sleepy-0.5, and whole data conditions showed similar patterns
(Figure 2A; SFigure 2A). Direct comparison between sleepy-0.5
and alert-0.5 conditions did not detect significant differences
(paired t-test, FDR-corrected p < 0.05).

We then assessed whether the sleepiness affected the reliability
of functional connectivity measures. Following previous studies
(Guo et al., 2012), unit- and scan-wise ICC measures were used
to quantify the test-retest reliability of functional connectivity
measures during sleepy-0.5 and alert-0.5 conditions, respectively.
Unit-wise ICC refers to that ICC was calculated for each pair of
ROI connection, and scan-wise ICC derived from connectivity
strengths averaged across the whole connectivity matrix. As
reliability decreases with less data volumes (Birn et al., 2013),

we created a control condition of 50% randomly selected
volumes (random-0.5) to compare with the alert-0.5 and sleepy-
0.5 conditions. Compared to the random-0.5 condition, the
sleepy-0.5 condition resulted in significantly lower ICC and
the altert-0.5 condition produced significantly higher ICC for
both unit- and scan-wise measures (permutation test, p < 0.05;
Figures 2B,C; SFigure 2B; Table 1; Stable 1), suggesting that
sleepiness during resting state scans reduced the reliability
of functional connectivity measures. Even directly compared
to the whole data condition, the alert-0.5 condition yielded
higher reliability. The ICC values increased by 3.7 and 33.4%
at individual unit- and scan-wise levels, respectively (Figure 2B;
SFigure 2B), further confirming that the volumes with high
sleepiness were associated with low reliability.

Reliability of Graph Theoretical Measures
Affected by Sleep
We then assessed the effect of sleep on graph theoretical
measures. We focused on the graph metrics known to be reliable:
clustering coefficient and degree centrality (Braun et al., 2012;
Guo et al., 2012; Wang et al., 2017). To ensure the robustness
of our results, graph theoretical measures were derived using a
broad range of thresholds: Tr = 0.1, 0.3, 0.5. Overall, the level of
sleepiness did not affect graph theoretical measures (SFigure 3).
There was a slight decrease with alert-0.5 condition, but this
decrease was not statistically significant (SFigure 3; paired t-test,
FDR-corrected p < 0.05).

We then assessed the test-retest reliability of each graph
measure. Similar to functional connectivity, ICCs derived from
the sleepy-0.5 condition were significantly lower than those
from the random-0.5 condition, while those from the alert-0.5
condition were significantly higher, irrespective of the threshold
used (permutation test, p< 0.05; Figure 3A; SFigure 4A; Table 1;
STable 1). Furthermore, ICC values derived from the alert-0.5
conditions were also improved when compared to those from the
whole data condition, which increased by 29.8% at unit-wise and
37.7% at scan-wise levels averaged across both graph measures
and all three thresholds applied (Figure 3A; SFigure 4A).
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FIGURE 2 | ROI connectivity matrix analysis of alert and sleepy conditions based on RMSSD. (A) Group-level connectivity matrices derived from the

sleepy-0.5, whole-scan and alert-0.5 conditions during session A. ROIs were organized according to the 7-network system (Yeo et al.), as labeled on the left of each

panel. The mean connectivity strength of each condition is indicated on the bottom of each matrix. The connectivity matrices in session B are very similar to those in

session A, and thus not presented. (B) Functional connectivity ICCs during resting state at both scan- (left panel) and unit-wise (right panel) levels. Unit-wise ICC was

averaged across ROI pairs. Orange dashed lines indicate the average ICC values of the random-0.5 conditions, and the shaded boxes indicate their

distributions—upper and lower bounds marking the 95 and 5 percentiles, respectively. Values outside the boxes are significantly different from the random conditions

(one-tailed permutation test, p < 0.05). (C) Unit-wise ICC differences between alert-0.5 and sleepy-0.5 conditions (warm color: alert-0.5 > sleepy-0.5; cool color:

alert-0.5 < sleepy-0.5). Differences greater than 0.2 are displayed.

TABLE 1 | One-tailed permutation tests of the differences in resting state reliability between the sleepy-0.5 or alert-0.5 and the random-0.5 conditions,

based on RMSSD.

Unit-wise Scan-wise

Random Sleepy Alert Random Sleepy Alert

Functional connectivity ICC [0.321, 0.397] 0.273 0.418 [0.349, 0.624] 0.26 0.7

p – 0.0004 0.0038 – 0.0048 0.003

Clustering coefficient ICC [0.314, 0.550] 0.216 0.636 [0.341, 0.628] 0.228 0.707

p – 0.0024 0.001 – 0.0034 0.0042

Degree centrality ICC [0.338, 0.519] 0.257 0.584 [0.351, 0.625] 0.252 0.699

p – 0.002 0.0014 – 0.0044 0.0032

Graph theoretical metrics were derived with Tr = 0.1. ICC and p values are listed for each condition. ICCs of random condition are indicated using upper and lower bounds marking

the 95 and 5 percentiles of the random distribution, respectively.

To examine whether these changes in reliability was specific to
certain brain networks, we compared unit-wise ICCs across each
brain network (Figure 3B; SFigure 4B). The average reliability
was calculated as the arithmetic mean across ROIs included in
each network. Under alert-0.5 condition, the ICCs increased
by more than 30% in most networks for clustering coefficient,
and over 25% for degree centrality (Figure 3C; SFigure 4C). To
ensure the robustness of the improvement, we also used the
median ICCs to represent the average reliability within each
network, and observed consistent results (SFigure 7).

Test-Retest Reliability with Different Data
Selection Thresholds
So far, our results show that the test-retest reliability is
improved when excluding the top 50 percentile data of high
sleepiness. We then asked what percentage of volumes selection
is optimal for improving test-retest reliability. We tested a range
of percentiles to select volumes (Figure 4; SFigure 5). When
volumes were randomly selected (random conditions), ICC
value decreased with less volumes included (Birn et al., 2013).
However, when specifically selecting volumes based on HRV,
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FIGURE 3 | Test-retest reliability analysis using graph theoretical measures, based on RMSSD. (A) Average unit-wise (upper panel) and scan-wise (lower

panel) ICCs during resting state across three thresholds (Tr = 0.1, 0.3, 0.5). Orange dashed lines indicate the average ICC values of the random-0.5 conditions, and

the shaded boxes indicate their distributions—upper and lower bounds marking the 95 and 5 percentiles, respectively. Values outside the boxes are significantly

different from the random conditions (one-tailed permutation test, p < 0.05). (B) Unit-wise ICC differences between sleepy-0.5 and alert-0.5 conditions (warm color:

alert-0.5 > sleepy-0.5; cool color: alert-0.5 < sleepy-0.5). Differences greater than 0.3 are displayed. (C) Unit-wise ICC difference between sleepy-0.5 or alert-0.5 and

the whole data at network level, which is represented using mean across ROIs within each network. Solid bars indicate significant differences compared to the

random-0.5 condition (one-tailed permutation test, FDR-corrected p < 0.05). Asterisks indicate ICC changes over 30% relative to the whole data condition. Results in

(B,C) were generated using Tr = 0.1.
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ICCs increased significantly and continuously with less volumes
of high sleepiness included in the calculation, till as much as 60%
sleepy volumes were excluded (Figure 4; SFigure 5), suggesting
that the detrimental effect of sleepiness on reliability outweighed
the effect of reduced volumes. In practice, however, it might be
desirable to remove the minimal amount of data volume and we
found 20% was the least amount of sleepy volumes required to
significantly improve test-retest reliability for all three measures
(Figure 4; SFigure 5).

Reliability of Natural Viewing Paradigm Not
Affected by Sleep
As we showed previously that the reliability of connectivity
measures were higher during natural viewing than resting state
condition (Wang et al., 2017), we then asked whether it could be
further improved by this approach.

We first examined the measures of HRV during natural
viewing. On average, HRV during natural viewing reduced
slightly, but this reduction was not significant (paired t-test,
p < 0.05; Figure 5A). We further derived HRV from the most
engaging movie segment based on our previous study (Wang

et al., 2017), and found that HRV during this segment was
significantly lower than resting state in session A (paired t-test,
p < 0.05; Figure 5A). Furthermore, HRV measures were more
reliable during natural viewing (0.928) than resting state (0.799),
similar to our findings with functional connectivity measures
(Wang et al., 2017).

We then compared the unit- and scan-wise ICCs of functional
connectivity measures. The results derived from the 8-min
segment were similar to the results using the entire natural
viewing data (Figure 5B; SFigure 8; Table 2). While the reliability
of conditions with higher HRV level decreased, these changes
were much smaller than the ones during resting state conditions.
And we did not find consistent and significant increases in
reliability with the low HRV conditions (Figure 5B; SFigure 8).

DISCUSSION

In this study, we examined the effect of sleep on test-retest
reliability of rs-fMRI connectivity measures. By excluding
volumes acquired when participants were sleepy, we could
improve the reliability of network connectivity measures during

FIGURE 4 | Test-retest reliability analysis using a serial of volume selection percentiles (Ps), based on RMSSD. The shades indicate the distribution of the

ICCs derived from random condition—upper and lower bounds marking the 95 and 5 percentiles, respectively. Values outside the shades are significantly different

from the random conditions, and represented using solid markers (one-tailed permutation test, p < 0.05). Results of clustering coefficient and degree centrality were

obtained from Tr = 0.1.

FIGURE 5 | Analysis for natural viewing conditions based on RMSSD. (A) RMSSD values derived from resting state (RS), natural viewing (NV), and the 24th

segment of natural viewing data (NV24). Data from each subject is signified by the gray dots. Error bars indicate the standard error of the mean. (B) Test-retest

reliability analysis using a serial of Ps. The shades indicate the distribution of the ICCs derived from random condition—upper and lower bounds marking the 95 and 5

percentiles, respectively. Values outside the shades are significantly different from the random conditions, and represented using solid markers (one-tailed permutation

test, p < 0.05). Results of clustering coefficient and degree centrality were obtained from Tr = 0.1.
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TABLE 2 | One-tailed permutation tests of the difference in movie viewing reliability between the sleepy-0.5 or alert-0.5 and the random-0.5 conditions,

based on RMSSD.

Unit-wise Scan-wise

Random Sleepy Alert Random Sleepy Alert

Functional connectivity ICC [0.617, 0.658] 0.602 0.622 [0.841, 0.922] 0.854 0.907

p – 0.0024 0.1038 – 0.1178 0.1774

Clustering coefficient ICC [0.824, 0.889] 0.801 0.874 [0.873, 0.941] 0.863 0.924

p – 0.006 0.2194 – 0.022 0.2575

Degree centrality ICC [0.750, 0.814] 0.743 0.802 [0.846, 0.922] 0.853 0.909

p – 0.0264 0.176 – 0.0894 0.1572

Graph theoretical metrics were derived with Tr = 0.1. ICC and p values are listed for each condition. ICCs of random condition are indicated using upper and lower bounds marking

the 95 and 5 percentiles of the random distribution, respectively. Non-significant results are in italic.

rs-fMRI paradigm. The improvement of test-retest reliability is
robust with removal of as little as 20% of volumes. Noticeably,
this improvement on ICC outweighs the opposing effect from
reduced volume (Birn et al., 2013). Overall, our results provide
a novel and practical way to improve test-retest reliability of
rs-fMRI paradigm.

The test-retest reliability of rs-fMRI measures ranges between
poor to moderate (Telesford et al., 2010; Wang et al., 2011;
Braun et al., 2012; Guo et al., 2012; Li et al., 2012; Patriat
et al., 2013; Cao et al., 2014). Many factors contribute to the
moderate reliability, including poor signal-to-noise ratio of the
blood oxygenation level-dependent (BOLD) signal, excessive
head motion, physiological noise, and so on. Previous work has
found that test-retest reliability can be improved by removing
volumes or subjects with excessive motion, and regressing out
motion related artifacts (Schwarz and McGonigle, 2011; Guo
et al., 2012; Zuo et al., 2012b; Gorgolewski et al., 2013; Yan et al.,
2013; Du et al., 2015). Now we showed that the presence of
drowsiness and sleep during scanning is another factor affecting
rs-fMRI measures and their reliability. Due to acoustic noise,
fatigue, and the lack of stimulation, it is common that subjects fall
asleep during rs-fMRI scans (Tagliazucchi and Laufs, 2014). Sleep
was found to be associated with changes in brain network, urging
caution when interpreting functional connectivity measures
during resting state (Massimini et al., 2005; Larson-Prior et al.,
2009; Spoormaker et al., 2010; Koike et al., 2011; Picchioni et al.,
2014; Tagliazucchi and Laufs, 2014; Hale et al., 2016). Some
methods were proved to be effective to prevent subjects from
falling asleep, such as requiring subjects to keep eyes open or
fixed on a cross (Patriat et al., 2013; Zou et al., 2015), and their
test-retest reliability are higher than resting state with eyes closed.
However, this impact on connectivity measures and their test-
retest reliability appears to differ across brain networks (Patriat
et al., 2013; Zou et al., 2015).

Previous studies report decreases in heart rate and increases
in HRV at the transition from wake to non-REM sleep. These
changes have thus been widely used to detect sleepiness in real
life situations (Lal and Craig, 2001; Borghini et al., 2012; Abbood
et al., 2014). While previous studies used long ECG data to
derive HRV (5 min to 24 h), recent studies have used shorter
duration (10–250 s) to improve the temporal resolution (Thong

et al., 2003; Salahuddin et al., 2007; Udi et al., 2011; Chang et al.,
2013; Valenza et al., 2014; Guo et al., 2016; Massaro and Pecchia,
2016; Nguyen et al., 2016a). In this study, we examined the
robustness and reliability of HRV metrics derived using different
window lengths. For both RMSSD and CVImeasures, themetrics
derived using short data durations are highly consistent (>0.95)
with the ones derived using the whole 8-min data, and RMSSD
achieves good test-retest reliability with the window length of
as short as 6 s. These analyses support the use of short-term
HRV as time-varying measures. It is increasingly recognized
that physiological fluctuations could introduce noise in fMRI
signals. It is possible that higher HRV might contribute to
greater fMRI noise. Removal of noisy volumes could thus lead
to an improvement in reliability. In our current experimental
design, it is not possible to discern between the contributions
of physiological noise and sleepiness. Irrespective of the source,
excluding volumes of high HRV could still provide a valid
strategy to improve test-retest reliability of rs-fMRI connectivity.

We excluded volumes of high or low HRV for connectivity
and test-retest reliability analyses. This approach is similar to
the motion scrubbing method proposed to reduce the impact
of motion artifacts (Power et al., 2012). In some study, an
average of 58% data were scrubbed for a cohort of children
where motion is problematic. In our dataset, after excluding
50% sleepiest volumes, we found ICC values increased by 24.9%
(0.108) at the unit-wise level and 36.4% (0.187) at the scan-wise
level averaged across the three measures we examined (functional
connectivity, clustering coefficient and degree centrality), and
across all three thresholds for graph measures. The test-retest
reliability also improved in higher order brain networks, such as
dorsolateral prefrontal cortex, angular gyrus, and cingulate cortex
(Figure 3; SFigure 4), reflecting the impact of sleep on these
brain regions. In our main analyses, the volume-wise sleepiness
level was identified using the time-varying HRV derived from
16 s sliding window, which was chosen based on a tradeoff
between time resolution and the robustness of HRV measure
itself. We additionally tested the effects of the HRV window
length on the reliability of functional connectivity and graph
measures (SFigure 6). Our major conclusion, that reliability
improved when sleepy volumes were excluded, was consistent
across different window lengths. This improvement diminishes,
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however, if using a too short or too long window length. ICC
of sleepy-0.5 condition decreased in general with longer window
length, possibly due to the reduced volume number (Birn et al.,
2013). Overall, the method proposed in this work is effective and
efficient at improving test-retest reliability of rs-fMRI paradigm.

We additionally examined the effect of sleep on test-retest
reliability during natural viewing paradigm. Unlike the effect on
resting state measures, excluding volumes with higher HRV had
very limited effect on the reliability of natural viewing data with
as much as 50% volumes excluded regardless of the data length
used (Figure 5B; SFigure 8). During movie viewing, cardiac
autonomic activities are likely to be influenced by sustained
attention and emotional saliency (Thayer and Lane, 2001) where
high HRV does not necessarily reflect sleepiness. The ability
of RMSSD to detect sleep is thus diminished. The test-retest
reliability of connectivity measures is higher for natural viewing
than resting state paradigm (Wang et al., 2017), which might be
partially contributed by the high alertness during natural viewing.

There are several limitations to our study. Sleep is a complex
physiological condition, and the use of single HRV measure
for sleep detection might be oversimplified. In particular, HRV
during movie viewing conditions is likely to be influenced
by emotional responses rather than sleepiness. Therefore, the
method we proposed here is a simple scheme to assess sleep
and improve test-retest reliability for rs-fMRI paradigm, and
our results on natural viewing should be considered with
caution. Various methods have been previously used for sleep
detection, such as subjective questionnaires, other physiological
signals including EEG (Rechtschaffen and Kales, 1968; Iber
et al., 2007), electrooculogram, electromyogram (Abbood et al.,
2014), fMRI (Tagliazucchi et al., 2012; Tagliazucchi and Laufs,
2014), and more HRV measures (Sahayadhas et al., 2013).
Advanced methods like machine learning have also been applied
(Sahayadhas et al., 2012). With more advanced algorithm and/or

additional physiological signals combined, it might be possible
to further improve the accuracy of sleep detection, or expand
such analysis to more complex conditions. In addition, it would
be useful to examine whether HRV derived from pulse oximetry
recording could provide similar results as ECG recording. Pulse
oximetry is easier to implement and less affected by MR gradient
artifact than ECG. While the smooth pulse waveform might
offer less precision for peak detection, it has been shown to
produce comparable HRV values as ECG (Iyriboz et al., 1991)
and used to derive HRV values during rs-fMRI (Lv et al., 2015;
Guo et al., 2016). Therefore, pulse oximetry might be used for
sleep detection instead of ECG, which could be formally tested in
the future studies.
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