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Introduction
The tryptophan (Trp) degradation pathways can be divided 
into four pathways as follows: serotonin, kynurenine, glu-
tarate, and niacin pathways (Fig. 1). Many biologically impor-
tant compounds such as serotonin, melatonin, kynurenine, 
kynurenic acid (KA), quinolinic acid (QA), and niacin are 
synthesized from Trp. Of these pathways, we are interested 
in the conversion pathway of Trp to niacin. This is because a 
deficiency of Trp and a metabolic disorder of Trp is pellagra, 
which is cured by administration of niacin.

We have previously reported that the conversion percentage 
of niacin from Trp is around 2% in molar ratio, the rate-limiting 
enzyme is quinolinic acid phosphoribosyltransferase (QPRT), and 
this pathway mainly exists in the liver, while nonhepatic tissues 
are not associated with this conversion pathway.1–20 However, our 
recent findings21,22 have revealed that the latter is incorrect.

An enzyme that governs the biosynthesis of niacin 
from Trp. The urine total amount of nicotinamide (Nam) 
and its catabolites, such as N1-methylnicotinamide (MNA), 
N1-methyl-2-pyridone-5-carboxamide (2-Py), and N1-methyl-
4-pyridone-3-carboxamide (4-Py), reflects the formation of 
niacin-active compounds. We investigated the relationships 
between the urine total amount of Nam and its catabolites 
and other urine Trp catabolites such as anthranilic acid, KA, 
xanthurenic acid (XA), 3-hydroxyanthranilic acid (3-HA), 

and QA.1–20,23 We found a significant correlation between the 
urine total amount of Nam and its catabolites and urine QA.

Next, we examined the enzyme that controls the for-
mation of niacin from Trp in the liver.2–5,10–12,15,16,18,19,23 The 
relationship between tryptophan 2,3-dioxygenase (TDO) and 
urine Nam and its catabolites was not significant. The rela-
tionship between 3-hydroxyanthranilic acid 3,4-dioxygenase 
(3-HADO) and urine total amount of Nam and its catabo-
lites was significant (P  =  0.040). The relationship between 
kynureninase and urine Nam and its catabolites was not sig-
nificant. The relationship between QPRT and urine Nam and 
its catabolites was not significant. From these results, we con-
cluded that the enzyme that governs the biosynthesis of Nam 
from Trp is 3-HADO.

Organ correlation with Trp metabolism in wild-
type mice. More than 90% of the Trp intake is said to be 
metabolized by the Trp-kynurenine-glutarate pathway (Fig. 1) 
in the liver.21,24,25 2-Amino-3-carboxymuconate-6-semialde-
hyde (ACMS) is a very unstable compound; therefore, it non-
enzymatically cyclizes to form QA. QA is a key intermediate 
of the conversion. QA then enters the nicotinamide adenine 
dinucleotide (NAD) pathway.

The NAD metabolism in the liver is shown in Figure 2. 
QA is converted to nicotinic acid mononucleotide (NaMN), 
nicotinic acid adenine dinucleotide (NaAD), and then 
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Figure 1. Trp degradation pathway in the liver.
Abbreviations: VB1, vitamin B1; VB2, vitamin B2; VB6, vitamin B6; PaA, pantothenic acid.
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Figure 2. NAD metabolism in the liver.
Abbreviation: VB2, vitamin B2.
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to NAD. NAD is then hydrolyzed to form Nam. Nam is 
distributed to nonhepatic tissues. Also, in the liver, Nam 
is converted to nicotinamide mononucleotide (NMN) and 
NAD. When excessive Nam is present in the body, it is catab-
olized to form MNA, 2-Py, and 4-Py, which are eliminated 
into the urine.

The Trp degradation pathway in nonhepatic tissues 
is shown in Figure  3. The first enzyme is not TDO, but 
indoleamine 2,3-dioxygenase (IDO). The activity of kynure-
nine 3-monooxygenase and kynureninase in nonhepatic tissues 
is weak compared with that of the liver enzymes. Therefore, 
some parts of kynurenine and 3-hydroxykynurenine (3-HK) 
are converted to side intermediates such as KA and XA. Fur-
thermore, 3-HA is an end product, because 3-HADO does 
not exist in nonhepatic tissues.21 Namely, Trp is not a precur-
sor of NAD in nonhepatic tissues.

Te NAD biosynthetic pathway in nonhepatic tissues 
is shown in Figure  4. In nonhepatic tissues, Nam is only a 
precursor of NAD. Nam generated from Trp in the liver is 
transported to nonhepatic tissues via the blood. Nam incorpo-
rated into nonhepatic tissues is converted to NMN and NAD. 
Nonhepatic tissues cannot catabolize Nam. Thus, surplus 
Nam in nonhepatic tissues returns back to the liver where it 
is catabolized.

The organ correlation with Trp metabolism in wild-type 
(WT) mice is summarized in Figure 5. The first enzyme in 
liver Trp degradation is TDO. A small amount of Trp is also 
degraded in nonhepatic tissues. In this case, the first enzyme 
is IDO. We investigated the distribution of the enzymes 
involved in the Trp–niacin metabolism.21,26,27 We found that 
3-HADO was only in the liver, and not in nonhepatic tis-
sues.21 Therefore, 3-HA is an end product of the Trp deg-
radation pathway in nonhepatic tissues. Namely, nonhepatic 
tissues cannot biosynthesize niacin from Trp. Also, a certain 
amount of 3-HA is taken up by the liver, and 3-HA is used 
as a niacin precursor. In nonhepatic tissues, NAD is syn-
thesized only from Nam. The upper metabolites in the Trp–
niacin pathway such as 3-HA, KA, and XA are detected in 
the urine. Their origins are thought to be nonhepatic tissues. 
The lower metabolites in the Trp–niacin pathway such as QA, 
MNA, 2-Py, and 4-Py are detected in the urine. Their origin 
is thought to be the liver.

TDO-KO Mice
The necessary amount of niacin can be synthesized only 

by IDO. We found that mice can biosynthesize the necessary 
amount of niacin from Trp by catalysis of IDO (exists in non-
hepatic tissues) even in the absence of TDO (mainly exists in 
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Figure 3. Trp degradation pathway in nonhepatic tissues.
Abbreviations: VB2, vitamin B2; VB6, vitamin B6.
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the liver).21 A retardation of body weight gain was not observed 
in tryptophan 2,3-dioxygenase knockout (TDO-KO) mice. 
Namely, we found that the necessary amount of Nam was syn-
thesized from Trp by IDO, which exists in nonhepatic tissues. 
In nonhepatic tissues, 3-HADO does not exist.21 Conse-
quently, 3-HA is sent out to the blood stream and some of it 
is then taken and metabolized into Nam in the liver, which is 
then distributed to nonhepatic tissues by the blood stream.

Side-intermediates of the Trp–niacin pathway origi-
nate from nonhepatic tissues. We obtained interesting find-
ings in the experiment with TDO-KO mice (Table  1). The 
urinary excretion amounts of the upper intermediates of the 
Trp–niacin pathway such as kynurenine, KA, XA, and 3-HA 
were higher in the TDO-KO mice than in the WT mice. On 
the other hand, the amounts of the lower intermediates such 
as QA, Nam, MNA, 2-Py, and 4-Py were lower in the TDO-
KO mice than in the WT mice. These findings indicate that 
the urinary excretion amounts of the upper metabolites reflect 
the conversion ability of Trp to 3-HA in nonhepatic tissues, 
but do not reflect that ability in the liver. The conversion abil-
ity of Nam from Trp was very low in TDO-KO mice, because 
TDO was absent.

Table  2  shows the relative niacin conversion activity 
from exogenous Trp, kynurenine, 3-HK, and 3-HA.28–30 Each 
compound was orally fed to niacin-deficient animals. Trp 
and 3-HA showed niacin conversion activity, but kynurenine 
and 3-HK did not. These findings indicate that liver cells can 

incorporate Trp and 3-HA, but cannot incorporate kynure-
nine and 3-HK. From these findings, we summarized the Trp 
to Nam metabolism in TDO-KO mice (Fig. 6). 3-HADO 
does not exist in nonhepatic tissues.21 Hence, 3-HA in non-
hepatic tissues, which is synthesized from Trp by IDO, is 
sent out to the blood stream, and some of the 3-HA is then 
taken up by the liver, where the 3-HA is metabolized into 
Nam. The synthesized Nam is distributed to nonhepatic tis-
sues via the blood stream, and then, the Nam is converted 
to NAD.

QPRT-KO Mice
True niacin-deficient animals cannot be created using nutritional 
techniques, because the vitamin niacin can be synthesized from 
Trp.22 We wanted to establish a truly niacin-deficient model 
animal using a protocol that does not involve manipulating 
the dietary Trp. We generated mice that do not have the qprt 
gene.21 The body weight of QPRT-KO mice decreased when 
they were fed a diet without preformed niacin; however, it did 
not decrease when they were fed a diet with preformed niacin.

QPRT activity was not affected by the kind of diet, ie, 
with or without preformed niacin. Its activity was 1.0 µmol/
hour/g of liver in WT mice, 0.5 µmol/hour/g of liver in hetero 
type mice, and 0 µmol/hour/g of liver in QPRT-KO mice.

In QPRT-KO mice, QA is not metabolized. Therefore, 
QA is completely eliminated into the urine in QPRT-KO 
mice. The amount of urine QA excreted was not affected by 
the kind of diet. The excretion amount percentage of QA was 
around 6% of the intake of dietary Trp. These values were 
higher than expected.

The urine QA was almost the same between the groups of 
WT and hetero mice. This was unexpected, because we thought 
that QPRT is the rate-limiting enzyme of the conversion path-
way of Trp to Nam. Thus, these results indicate that QPRT is 
not the rate-limiting enzyme. The Trp to Nam conversion per-
centages in WT and hetero mice were 1.4% and 1.2%, respec-
tively. This finding also indicates that QPRT is not the limiting 
enzyme in the Trp to Nam conversion.

The degradation pathway of Trp in QPRT-KO mice, 
which does not have QPRT, is shown in Figure 7. Therefore, 
QA does not convert into niacin-active compounds. All of the 
QA formed is eliminated into the urine. Therefore, the vitamin 
niacin is an essential nutrient for QPRT-KO mice.

Table 1. Urinary excretion of Trp-Nam metabolites in WT and 
TDO-KO mice fed a niacin-free diet.22

Niacin-free diet

WT (nmol/d) TDO-KO (nmol/d)

Upper intermediates

Trp 180 ± 60 1,970 ± 90*

Kynurenine 1,530 ± 370 6,470 ± 1,020*

KA 50 ± 2 185 ± 20*

XA 107 ± 41 930 ± 64*

3-HA 11.3 ± 1.6 62.0 ± 9.8*

Lower intermediates

QA 55.4 ± 19.5 28.4 ± 14.5*

Nam 14.2 ± 8.2 NC

MNA 87 ± 39 6 ± 1*

2-Py 95 ± 26 7 ± 1*

4-Py 60 ± 15 5 ± 1*

Notes: Values are mean ± SE of six mice. *Compared with the WT group, 
P , 0.05. Student’s t-test was performed for comparison between WT and 
TDO-KO mice.
Abbreviations: 3-HA, 3-hydroxyanthralinic acid; KA, kynurenic acid; MNA, 
N1-methylnicotinamide; Nam, nicotinamide; NC, not calculated, because the 
urinary excretion amount of Nam was not detected (,0.1 nmol/day); NiA, 
nicotinic acid; 2-Py, N1-methyl-2-pyridone-5-carboxamide; 4-Py, N1-methyl-4-
pyridone-3-carboxamide; QA, quinolinic acid; Sum, sum of Nam, MNA, 2-Py 
and 4-Py; TDO-KO, tryptophan 2,3-dioxygenase knockout; WT, wild-type; 
XA, xanthurenic acid.

Table 2. Relative niacin conversion activity to Nam (molar ratio).

Compounds Relative activity

Trp 1/101

Kynurenine None2

3-HK None2

3-HA 1/121

Notes: 1Ref.30, 2Refs.28,29

Abbreviations: Trp, tryptophan; 3-HK, 3-hydroxykynurenine; 3-HA, 
3-hydroxyanthranilic acid.
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In conclusion, these findings21,22 show that the limiting 
factors in the conversion of Trp to niacin are based on the 
amounts of 3-HA and the conversion ability of 3-HADO in 
the liver.

Future Directions
The formation of QA is catalyzed by 3-HADO, whose activity 
is much higher than that of other enzymes involved in the Trp 
degradation pathway. Thus, generally speaking, 3-HADO is 
not the limiting enzyme. Nevertheless, our findings suggest 
that the limiting step may be the conversion reaction of 3-HA 
to QA. The supply of 3-HA from nonhepatic tissues to the 
liver may have an important role. We thought that the supply 
of 3-HA was significantly smaller in nonhepatic tissues than 
in the liver, but it turned out to be much higher than expected. 
Thus, IDO in nonhepatic tissues plays an important role in the 
supply of 3-HA. A 3-HA uptake transporter in liver mem-
branes may have a critical role. The formation of QA from 
3-HA is catalyzed by 3-HADO.

Further studies on organ–organ relationships are required 
to elucidate the entire Trp metabolism. In addition, we will 
investigate 3-HADO.
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