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Abstract 

Background:  Malaria prevalence, clinical incidence, treatment, and transmission rates are dynamically interrelated. 
Prevalence is often considered a measure of malaria transmission, but treatment of clinical malaria reduces preva‑
lence, and consequently also infectiousness to the mosquito vector and onward transmission. The impact of the 
frequency of treatment on prevalence in a population is generally not considered. This can lead to potential under‑
estimation of malaria exposure in settings with good health systems. Furthermore, these dynamical relationships 
between prevalence, treatment, and transmission have not generally been taken into account in estimates of burden.

Methods:  Using prevalence as an input, estimates of disease incidence and transmission [as the distribution of the 
entomological inoculation rate (EIR)] for Plasmodium falciparum have now been made for 43 countries in Africa using 
both empirical relationships (that do not allow for treatment) and OpenMalaria dynamic micro-simulation models 
(that explicitly include the effects of treatment). For each estimate, prevalence inputs were taken from geo-statistical 
models fitted for the year 2010 by the Malaria Atlas Project to all available observed prevalence data. National level 
estimates of the effectiveness of case management in treating clinical attacks were used as inputs to the estimation of 
both EIR and disease incidence by the dynamic models.

Results and conclusions:  When coverage of effective treatment is taken into account, higher country level esti‑
mates of average EIR and thus higher disease burden, are obtained for a given prevalence level, especially where 
access to treatment is high, and prevalence relatively low. These methods provide a unified framework for comparison 
of both the immediate and longer-term impacts of case management and of preventive interventions.
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Background
The prevalence of Plasmodium falciparum infections is 
routinely measured in malaria indicator surveys (MIS), 
and as part of various health assessments and research 
projects. Prevalence data are therefore relatively widely 
available and are often used as a measure of endemicity 
in geographical comparisons and in evaluating the suc-
cess of intervention programmes [1]. However, although 
prevalence is a consequence of malaria transmission and 

levels of exposure, these variables do not have a one-
to-one relationship but rather a non-linear relationship 
modified by many factors such as naturally acquired 
immunity, malaria interventions and of heterogeneity 
in transmission rates [2]. These complicate the inter-
pretation of age-patterns of infection and disease. The 
relationship between exposure and prevalence of infec-
tion also depends on the amount of treatment in the 
population because treatment truncates infections and 
(depending on the drug regimen) provides a few weeks 
of chemoprophylaxis (Fig. 1). If access to effective treat-
ment is good, then prevalence may remain relatively low, 
even at high transmission levels. The amount of effective 
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treatment also affects the relationships of exposure (or 
prevalence) with morbidity, and mortality rates (Fig. 1).

Human exposure to malaria, one part of malaria trans-
mission, is best quantified by the entomological inocula-
tion rate (EIR: the number of infectious bites per human 
host, per unit time), which is more directly related 
to morbidity and mortality than is prevalence. How-
ever, measuring this quantity directly requires intensive 
entomological studies over the whole annual period of 
malaria transmission. Previously established empirical 
relationships between prevalence and EIR have illus-
trated the complications and diversity by site [3]. EIR data 
are consequently relatively sparse, and indirect methods, 
that ideally account for treatment effects, are needed for 
estimating EIR from available prevalence data [4, 5].

The comprehensive repository of geo-located malaria 
parasite prevalence data maintained by the Malaria Atlas 
Project (MAP) is the obvious starting point for estimat-
ing how many people are exposed to malaria at different 
intensities, in different endemic countries. Several differ-
ent algorithms have been used to infer the distribution 
of exposure from prevalence maps. In particular, a linear 
relationship between prevalence and the logarithm of 
the EIR approximates the empirical relationship between 
these variables [6], and the MAP repository includes EIR 
surfaces and estimates of the uncertainty based on this 
relationship [7]. Other researchers use process models 
to estimate transmission rates surfaces from prevalence 
data [6, 8–10]. These analyses do not allow for effects 
of treatment on prevalence. At low transmission levels, 
where infection events are sporadic, and superinfec-
tion relatively infrequent, this omission can be remedied 
using rather simple models for translating prevalence 
into transmission estimates, conditional on the incidence 
of effective treatment [4]. At higher levels of transmis-
sion, both concurrent and sequential superinfection are 

frequent; so mechanistic models allowing for this, as well 
as for treatment rates, are needed.

Estimates of the number of clinical malaria episodes at 
national level and continent-wide have been made from 
the MAP database by assuming a standard empirically 
determined relationship between prevalence and the 
incidence of clinical malaria in children [11, 12]. Using a 
similar methodology based on geographical stratification 
of risk, estimates of clinical incidence at national level are 
made yearly by the World Health Organization (WHO) 
for the World Malaria Report (WMR) for high-burden 
sub-Saharan countries [13]. This report also provides up-
to-date assessments of malaria-related interventions and 
policies, attempting to quantify the impact on disease 
burden. Estimates of clinical incidence for each year have 
been made by adjusting for changing intervention cover-
age levels within each country, assuming effects match 
those seen in controlled trials [14].

These estimates of clinical incidence do not allow for 
levels of access to effective treatment. This affects both 
the true extent of pathology, and the observed clini-
cal incidence, whether ascertained passively or actively. 
Depending on underlying exposure, high treatment levels 
create a virtuous cycle by averting further pathology and 
secondary cases. Estimates of worldwide and national 
levels of burden should, therefore, take into account 
effects of treatment, as well as the shifts in age patterns of 
prevalence [15] and of incidence that occur as a result of 
transmission reducing interventions.

The OpenMalaria platform supports an ensemble of 
models that can be used for calibrating different malari-
ological indices against each other [16]. OpenMalaria is a 
stochastic, individual-based, simulation model of malaria 
in humans [17] linked to a deterministic model of malaria 
in mosquitoes [18]. The simulation model includes sub-
models of infection of humans [19], blood-stage parasite 
densities [20], infectiousness to mosquitoes [21], inci-
dence of morbidity including severe and hospitalisation 
[22, 23] and mortality [22]. An ensemble of 14 model 
variants is available [24] with each model including dif-
ferent assumptions for decay of natural immunity, greater 
within-host variability between infection and entomolog-
ical exposure, heterogeneity in transmission and hetero-
geneity in susceptibility to co-morbidities.

Six of the OpenMalaria ensemble models were used 
in this work to compute estimates of the distribution of 
exposure (EIR) for each of 43 malaria endemic countries 
in sub-Saharan Africa as well as estimates of clinical inci-
dence (and also incidence of severe disease and malaria 
mortality) for 2010 levels of malaria control. These esti-
mates are based on the pixel-level posterior distributions 
of parasite prevalence in 2010 published by MAP [7]. For 
each country, these estimates are conditional on national 

Fig. 1  Illustration of impact of treatment effectiveness on inter‑
actions between infection, clinical disease and exposure. Arrows 
indicate causal links and double lines show where treatment has a 
modifying effect
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level estimates of the levels of access to effective treat-
ment for malaria fevers [25]. The resulting estimates of 
the distribution of transmission and of the incidence of 
clinical malaria provide a basis for evaluating the impacts 
of both preventive and curative intervention programmes 
allowing for the effects of existing case management on 
prevalence and burden of disease.

Methods
An overview of the methods in estimating malaria expo-
sure distributions (as EIR) and resulting burden is pre-
sented in Table  1, including inputs and outputs of each 
method.

Malaria prevalence data
National levels of prevalence were taken from the preva-
lence surfaces estimated by the Malaria Atlas Project 
(MAP) for Plasmodium falciparium 2010 [7]. Estimates 
of prevalence in children aged 2 up to children before 
their 10th birthday (PfPR2–10) across a 5 km × 5 km grid 
were extracted as posterior distributions from a Markov 
Chain Monte Carlo (MCMC) calculated via a Bayesian 
geostatistical model using survey data. The primary esti-
mates are of PfPR2–10 are available from the MAP website 
[26] as posterior densities.

National levels of effective treatment coverage
National levels of access to effective malaria treatment were 
collated previously [25] and are detailed in  Table  2. Effec-
tive malaria treatment is treatment that results in parasito-
logical cure. In this work effective treatment are estimates 
of the  probability, E14, that effective malaria treatment 
will be obtained during any 14-day period in which a fever 
occurs. Estimates were assembled at country level taking 
into account multiple factors for effectiveness of malaria case 
management, including probably of treatment-seeking, of 
type of care provider, of systems compliance with the recom-
mended anti-malarial treatment, of adherence with the drug 
regimen, and the quality of the anti-malarial medications.

Relationship between parasite prevalence and EIR
Two different methods were used to estimate distribu-
tions of malaria exposure (as measured by the entomo-
logical inoculation rate, EIR) from PfPR2–10 data:

Method A: statistical relationship between EIR 
and prevalence
A previously published statistical model transforming 
PfPR2–10 to EIR [7] (Additional file 7 of that paper), based 
on an earlier empirical analysis of the relationship of 
measured EIR values with PfPR2–10 [6]:

(1)x ∼ log Normal
(

µ, σ 2
)

where x is EIR, μ = 1.768 + 7.247p, σ = 1.281, and p, is 
PfPR2–10. This relationship is independent of the level of 
access to effective treatment, E14, and thus does not allow 
for the effects of case management on the prevalence-EIR 
relationship. This model allows for statistical uncertainty 
in both variables x and p (data and fitted curve shown in 
Fig. 2a). Scale factors can be used to obtain the EIR esti-
mate that would be obtained with different measurement 
approaches (e.g. pyrethroid-spraying catches, human 
landing catches, or both). This method is similar to the 
method used in previous analyses of the global burden of 
clinical malaria [11].

Method B: dynamic model relating EIR, prevalence, 
and coverage of treatment
Method B uses relationships between EIR and prevalence 
derived from multiple transmission models of malaria 
epidemiology and control, incorporating the effects of 
treatment on the infectious reservoir. The process of 
translating prevalence to EIR is illustrated in Fig. 3a, b, in 
essence extracting prevalence distributions at each 5 by 
5 km grid from MAP (detailed above, Fig. 3a) and con-
verting to EIR by the fitted relationship from OpenMa-
laria for a given coverage of effective treatment (Fig. 3b).

The transmission models are six model variants from 
the OpenMalaria stochastic individual-based model of 
the dynamics of P. falciparum malaria in humans [24] 
(Table  3), comprising a subset a previously published 
model ensemble [24] with each model variant including 
the same sub-model for pathogenesis [23] and case-man-
agement [27], but differing by assumptions concerning 
immunity decay or heterogeneity in transmission or co-
morbidity (Table 3). The same parameterizations as used 
previously [24] were used to capture human demography 
and the seasonality of transmission. Each model variant 
has been parameterized by fitting to observed relation-
ships between seasonal patterns of EIR and a range of 
outcomes, including parasite prevalence [19] and mor-
bidity rates [23] in specific field sites.

A statistical relationship was fit between simulated 
PfPR2–10, p, and EIR, x, for a given level of effective treat-
ment, E14, for each model in the ensemble (Fig. 2b illus-
trates an example of this relationship). These simulated 
predictions cover a wider range of EIR and prevalence 
used to parameterize the transmission models originally 
[17, 24]. The OpenMalaria simulations use a 5-day time 
step and effective treatment at each 5-day time step, E5, 
was obtained from the 14 day estimates using a mapping 
based on the pattern of fevers over time in malaria-ther-
apy data [28] (sample values shown in Additional file 1: 
Table S1). A Hill function was fitted by least-squares to 
the simulation data in order to relate PfPR2–10 and EIR, 
namely:
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Table 2  Coverages of  effective treatment and  estimated transmission profiles (EIR mean, median and  quartiles) for  43 
sub-Saharan Africa estimated by method B assuming country level effective treatment

Country Country  
code

Coverage of  
effective treatment  
[25] (E14 %)

Weighted  
mean EIR

Weighted  
median EIR

Weighted EIR  
25 % quartile

Weighted EIR 
75 % quartile

Angola ago 48.7 49.8 6.2 1.4 50.4

Benin ben 30.3 72.8 13.3 2.9 130.3

Botswana bwa 71.3 5.3 0.0 0.0 1.7

Burkina Faso bfa 34.6 118.1 73.7 9.1 407.3

Burundi bdi 42.6 13.5 1.1 0.2 6.2

Cameroon cmr 25.9 67.4 11.0 2.0 107.8

Central African Republic caf 13.4 61.5 7.6 1.1 89.2

Chad tcd 17.7 27.8 1.7 0.2 11.0

Comoros com 37.6 46.5 5.2 0.8 34.5

Congo cog 42.9 49.0 7.6 1.7 50.4

Democratic Republic of 
Congo

cod 26.9 47.4 4.3 0.6 34.5

Cote d’Ivoire civ 25.3 78.8 19.5 2.9 157.6

Djibouti dji 46.6 0.2 0.0 0.0 0.0

Equatorial Guinea gnq 19.4 76.8 16.1 2.4 157.6

Eritrea eri 24.7 1.1 0.1 0.0 0.2

Ethiopia eth 15.8 1.0 0.0 0.0 0.1

Gabon gab 40.4 71.7 16.1 3.5 130.3

The Gambia gmb 39.3 7.3 1.4 0.4 5.2

Ghana gha 39.9 52.3 7.6 1.7 50.4

Guinea gin 25.0 39.7 3.5 0.6 23.6

Guinea Bissau gnb 27.5 6.3 0.8 0.2 2.9

Kenya ken 35.7 7.7 0.2 0.0 1.1

Liberia lbr 45.2 60.2 16.1 4.3 73.7

Madagascar mdg 20.2 42.0 2.0 0.2 23.6

Malawi mwi 39.1 54.5 9.1 1.7 61.0

Mali mli 27.5 76.0 16.1 2.4 157.6

Mauritania mrt 22.4 5.4 0.1 0.0 0.4

Mozambique moz 37.9 65.8 11.0 1.7 107.8

Namibia nam 38.0 11.3 0.3 0.0 2.4

Niger ner 30.9 35.3 3.5 0.8 19.5

Nigeria nga 32.2 65.7 11.0 2.4 107.8

Rwanda rwa 41.0 2.2 0.2 0.0 0.9

Sao Tome Principe stp 68.0 25.8 6.2 1.7 23.6

Senegal sen 32.3 5.8 0.6 0.2 2.4

Sierra Leone sle 36.8 61.0 11.0 2.4 73.7

Somalia som 7.5 1.1 0.0 0.0 0.2

North Sudan sdn 18.8 7.0 0.1 0.0 0.5

South Sudan ssd 8.7 17.0 0.1 0.0 2.0

Tanzania tza 44.5 25.1 2.0 0.4 11.0

Togo tgo 18.1 58.9 7.6 1.4 73.7

Uganda uga 66.3 89.7 34.5 7.6 190.6

Zambia zmb 51.5 26.9 2.9 0.6 16.1

Zimbabwe zwe 25.7 2.8 0.2 0.1 0.6
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 where, pmax, K, and n are functions of E14. The inverse of 
relationship Eq. (2), relating EIR to PfPR2–10 is given by

The functional forms for x, pmax and K were chosen 
among exponential, linear, and quadratic options to give 
the best fit of p(x,  E14) to the simulated prevalence for 
different levels of coverage of effective treatment. The 
selected functions are:

and

where K1, K2, n1,n2, n3, p1, and p2 are fitted parameters. Sep-
arate parameter sets were fitted for each of the six model 
variants in the ensemble (values provided in Table 3).

(2)p(x,E14) =
pmaxx

n(E14)

Kn(E14) + xn(E14)
,

(3)x = K (E14)exp

[

1

n(E14)
ln

(

p(x,E14)

pmax(E14)− p(x,E14)

)]

.

(4)K (E14) = K1exp(K2E14)

(5)n(E14) = n1E
2
14 + n2E14 + n3

(6)pmax(E14) = p1exp(p2E14).

Estimation of EIR distributions at national level
The prevalence-EIR relationships from method A and B 
were used to estimate a distribution of EIR for each coun-
try from the prevalence surfaces estimated by the MAP 
for 2010 [7]. Prevalence from the MCMC chains are 
weighted by each pixel-level value of population, and the 
percentiles of the distributions obtained by summarizing 
the whole set of MCMC chains. Corresponding to the 
PfPR2–10 value for pixel j, from MAP, and MCMC itera-
tion i, an EIR estimate, xj

(i), is obtained. For method B this 
is

The corresponding estimate of the distribution of 
EIR over the whole country (including non-endemic 
areas, with EIR  =  0) is obtained by binning xj

(i) 
into a limited number, K, of ranges X1,X2, . . . ,XK , 
and population weighting. Aggregating the esti-
mates from the whole set of T sampled values of 
pj

(i) from the MCMC chains, each range is assigned 
probability:

(7)x
(i)
j = K (E14)exp

[

1

n(E14)
ln

(

p
(i)
j

pmax − p
(i)
j

)]

.
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Fig. 2  Relationships between malaria exposure (EIR), effective coverage, and prevalence for Method A (a) and Method B (b). a Method A: plotted 
empirical relationship of prevalence as a function of EIR relationship [6] (Eq. 1) with data used to fit this relationship. The relationship between 
standardized prevalence and EIR is approximately linear-log for all the data (grey curve fitted relationship over all data). The relationship varies by 
study (purple colour dots a correspond to data from a single field study, purple curve the fitted relationship to those data) and by method (red dots 
correspond to measurements taken via pyrethroid spray catches, and purple and blue dots measurements taken by other methods. Red and blue 
curves correspond to the respective fits). b Method B: OpenMalaria simulations of the relationship between prevalence and EIR (model variant 
R0133 only, other models shown in Additional file 2: Figure S3) for discrete levels of coverage of effective treatment (points) and best fitted model 
to these data as Hill functions (curve for different levels of effective treatment) (Eq. 3). Colour indicates the level of effective treatment (E14), with red 
0.001 %, yellow 5 %, light blue 20 %, dark blue 40 %
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and I(xj
(i) ∊  Xk) is an indicator taking value 1 if xj

(i) is in 
range Xk and zero otherwise. Here Nj is the popula-
tion assigned to the pixel as determined by the gridded 

(8)
Pr(Xk) =

∑

i

∑

j

(

NjI
(

x
(i)
j ∈ Xk

))

T
(

∑

j Nj

) ,

population of the world [29, 30]. For computational con-
venience we carried out the summation over i before 
summing over j.

The resulting distributions describe the proportion of 
each country’s population that one would expect to be 
living at a given level of prevalence. In many of the coun-
tries analysed, a proportion of the gridded population 
from [30] falls outside the boundary of the area defined 
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Fig. 3  Schematic diagrams of the processes in estimating EIR distributions and disease burden from MAP prevalence. The figure illustrates the 
steps involved in estimating geographic specific EIR (Method B) and incidence levels of malaria (Methods A and B), which includes the dynamic 
effect of treatment on transmission, and a dynamic model of clinical incidence. a, b Illustrate the process of extracting prevalence distributions from 
MAP [7] by pixel (5 km by 5 km) and converting to distributions of EIR using a statistical relationship relating prevalence and EIR for given levels of 
effective treatment derived from OpenMalaria simulations. Method A, not illustrated, is simpler in that it does not consider the effect of treatment 
on transmission, and uses the WMR method for estimating EIR. c Illustrates aggregation of these EIR distributions from pixel level to a larger spatial 
area, such as country level. d Illustrates the process of estimating country level burden for a distribution of EIR (derived from either method A or 
B), namely the EIR distributions are inputs to micro-simulation OpenMalaria with outputs of incidence of clinical cases (and mortality) which are 
calculated for a given coverage of effective treatment E14. The Gaussian distributions in a–d are illustrative only

Table 3  Model-specific parameters for  each model variant for  the statistical models fits relating OpenMalaria EIR 
and prevalence among 2–10 year olds

Model Description of model variant K1 K2 n1 n2 n3 p1 p2

R0068 Heterogeneity in transmission: within-host variability 3.40 2.39 −2.44 1.65 1.09 0.90 −0.18

R0131 Immunity decay in effective cumulative exposure 3.68 3.44 0.95 0.68 0.81 0.84 −0.33

R0132 Immunity decay in immune proxies 3.35 3.69 −1.27 2.11 0.72 0.85 −0.45

R0133 Immunity decay in both immune proxies and effective cumulative exposure 3.33 3.49 0.19 1.22 0.86 0.81 −0.39

R0134 Base model (no immunity decay) 4.02 2.67 −1.87 1.52 0.79 0.84 −0.24

R0670 Heterogeneity in susceptibility to co-morbidity 3.51 3.78 1.55 0.43 0.81 0.86 −0.32
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by MAP as being within the spatial limits of endemic 
malaria transmission [7]. This proportion of the popula-
tion was assigned an EIR of zero.

Two different estimates of the transmission distribu-
tion per geographic area were calculated by estimation 
method B, to examine sensitivity to the estimated level 
of access to effective treatment. To capture the situation 
before recent scale-up of artemisinin combination treat-
ment (ACT), a common value of access to effective treat-
ment for all countries was used assumed and at a value 
previously used in OpenMalaria simulations [31]. This 
value equates to approximately 15 % of all malaria cases 
receiving treatment resulting in parasitological cure. In 
addition, analyses were conducted using country-specific 
estimates of access to effective treatment [25]. Country 
levels of coverage of effective treatment are listed Table 2 
and illustrated by map in Additional file 2: Figure S1 and 
in Fig. 3b.

Burden of disease
National level estimates of the incidence of clini-
cal malaria were projected from the EIR distributions 
derived from Method A and Method B using OpenMa-
laria simulations. These incorporate dynamic models 
of clinical incidence and treatment parameterized with 
Senegalese and Tanzanian data [23, 31] and models for 
severe disease and mortality [22], and hence provide clin-
ical incidence estimates as an extension of EIR estimation 
(process illustrated in Fig.  3d). Separate estimates were 
made using the EIR estimates with Method A, those from 
with Method B with E14  =  0.15, and those made with 
Method B with country specific E14 values.

Estimated burden, via clinical incidence, derived by 
both methods was compared with those national level 
estimates of clinical malaria from the WMR. For most 
sub-Saharan African countries, these use a standard 
empirical relationship between clinical incidence and 
endemicity. Clinical incidence values were assigned to 
each endemicity level based on estimates of the num-
bers of events recorded in longitudinal surveys of febrile 
malaria episodes in children, detected either actively or 
passively [32–34], established independently of effects of 
treatment rates [12]. For countries with low endemicity, 
WMR uses national surveillance data to estimate burden, 
with adjustments to allow for incomplete reporting.

Results
National level prevalence distributions
National levels of PfPR2–10 aggregated at country level after 
extracting from MAP [7] posterior distributions at each 5 by 
5 km pixel illustrate high average levels of PfPR2–10 in 2010 
in many African countries but for many countries also the 
wide distribution of prevalence levels (values summarized in 

Table 4 and Additional file 1: Table S3 and shown as distri-
butions in Additional file 2: Figure S2). Regional differences, 
local variation, and uncertainty within areas all contrib-
ute differently to the overall distributions, with the average 
levels of transmission highest in West and Central Africa. 
Much of Namibia, Botswana, and South Africa, and also 
several Sahelian countries are malaria free, as are highland 
areas of East Africa. Some of the variation is also a result of 
differences in the extent of recent intervention programmes. 
In some countries, intervention programmes have had little 
impact on 2010 prevalence (e.g. Benin, Burkina Faso, Côte 
d’Ivoire), while elsewhere prevalence has been considerably 
reduced in the last decade (e.g. Senegal, Tanzania, Zambia), 
or much of the population lives in areas on the margins of 
stable transmission (Somalia, North Sudan). The location 
of some major urban centres such as Nairobi and Lusaka 
at relatively high altitudes, with low transmission, strongly 
influences some of these profiles.

Modelled relationships between EIR and prevalence
Where PfPR2–10 is high, the OpenMalaria models predict 
on average a slightly higher EIR at a given prevalence than 
does the empirical model (method A), with relatively lit-
tle influence of effective treatment (E14) (Fig. 2a, b). The 
fitted prevalence to EIR relationships for Method B are 
shown in Fig.  2b (model variant R133) and Additional 
file 2: Figure S3 (all 6 model variants). The six model vari-
ants all predict broadly similar, but nevertheless distinct, 
prevalence-EIR relationships. The general pattern for 
Method A is for prevalence to increase steeply with EIR 
at low transmission levels, but to saturate at higher trans-
mission (Fig. 2a). The considerable variation around the 
best fitting curve for Method A, after adjusting for the 
different EIR measurement techniques used, is treated 
as random variation that contributes to uncertainty in 
the estimate of EIR from prevalence. This analysis does 
not allow for variations in the coverage or effectiveness of 
case management in the different studies, however such 
variation could account for much of this unexplained 
dispersion (compare with Fig.  2b). At lower transmis-
sion levels the fitted curves for Method B (OpenMalaria) 
vary considerably with E14, suggesting that effectiveness 
of case management is a particularly important driver of 
prevalence in such settings, with Method B estimating 
lower EIR at a given prevalence than the empirical model 
unless E14 is high (Fig. 2b). This is partly because Method 
B constrains estimated EIR to be zero at zero prevalence, 
while the empirically-based Method A does not cap-
ture or force this constraint.

National level EIR distributions
The differences between the two relationships for preva-
lence and EIR are reflected in the estimated distributions 
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Table 4  Prevalence distributions, summarized for  each country: estimated prevalence (mean, median and  quartiles) 
for 43 sub-Saharan Africa estimated from MAP prevalence posteriors at 5 km by 5 km grids, aggregated to country level 
and weighted by population. Mean EIR estimates for Method A aand Method B assuming effective coverage (E14) of 15 % 
for all countries

Country Country 
code

Mean 
prevalence

Prevalence 
median

Weighted mean 
EIR for Method A

Weighted median EIR 
for Method B with E14 
of 15 %

Angola ago 0.284 0.160 18.09 1.37

Benin ben 0.467 0.440 35.55 7.55

Botswana bwa 0.018 0.000 0.39 0.00

Burkina Faso bfa 0.622 0.680 61.15 41.71

Burundi bdi 0.114 0.001 3.57 0.25

Cameroon cmr 0.457 0.440 34.07 7.55

Central African Republic caf 0.462 0.440 35.73 7.55

Chad tcd 0.265 0.120 14.67 1.37

Comoros com 0.302 0.160 19.71 1.65

Congo cog 0.318 0.240 18.07 2.42

Democratic Republic of Congo cod 0.344 0.240 23.32 2.42

Cote d’Ivoire civ 0.514 0.520 40.56 11.04

Djibouti dji 0.001 0.000 0.03 0.00

Equatorial Guinea gnq 0.520 0.520 41.78 13.35

Eritrea eri 0.018 0.001 0.49 0.04

Ethiopia eth 0.023 0.000 0.57 0.03

Gabon gab 0.432 0.400 29.59 6.25

The Gambia gmb 0.092 0.001 1.52 0.36

Ghana gha 0.337 0.240 21.40 2.42

Guinea gin 0.322 0.200 19.06 2.42

Guinea Bissau gnb 0.105 0.040 2.18 0.36

Kenya ken 0.068 0.001 2.80 0.04

Liberia lbr 0.395 0.360 19.65 4.27

Madagascar mdg 0.308 0.160 22.87 1.65

Malawi mwi 0.355 0.280 22.02 2.92

Mali mli 0.483 0.480 38.53 9.13

Mauritania mrt 0.058 0.000 2.58 0.04

Mozambique moz 0.391 0.320 30.07 3.53

Namibia nam 0.095 0.001 3.66 0.05

Niger ner 0.285 0.160 15.30 1.65

Nigeria nga 0.429 0.400 30.51 6.25

Rwanda rwa 0.023 0.000 0.48 0.04

Sao Tome Principe stp 0.122 0.040 2.22 0.44

Senegal sen 0.076 0.001 1.86 0.20

Sierra Leone sle 0.401 0.360 25.55 4.27

Somalia som 0.039 0.001 0.77 0.08

North Sudan sdn 0.072 0.001 3.65 0.07

South Sudan ssd 0.168 0.001 10.24 0.25

Tanzania tza 0.172 0.040 8.16 0.44

Togo tgo 0.440 0.400 32.62 6.25

Uganda uga 0.399 0.360 25.97 4.27

Zambia zmb 0.165 0.040 7.18 0.44

Zimbabwe zwe 0.044 0.001 1.12 0.07
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of EIR by county (Fig.  4; Additional file  2: Figure S4). 
The EIR distributions are generally much more highly 
skewed than are the prevalence distributions. The dis-
tributions obtained with the empirical model (Method 
A: Fig.  4; Table  4 and Additional file  1: Table S4) and 
with the simulation models (Method B) that assume 
E14 = 0.15 (Table  4 and Additional file  1: Table S5) are 
similar to each other for most countries, though the 

estimated median EIRs are generally somewhat higher 
for the estimates from the simulation models (Fig.  5). 
Where effectiveness of case management is high, the 
country specific assumptions for system effectiveness 
make substantial differences to the estimated EIR distri-
butions (Fig.  4; Table  2; Additional file  2: Figure S2). In 
these countries, notably Zambia, Tanzania, São Tomé 
and Principe, the EIR distribution shifts to the right when 
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Fig. 4  Distribution of EIR for each of the 43 countries. Distribution of EIR (including non-endemic areas which are assigned values of 0) for each of 
the 43 countries. Calculated from MAP using both the empirical model (Method A) (black); the simulation models (Method B) with a common value 
for access to care (yellow) (E14 = 0.15); and country-specific values of E14(blue). Countries are indicated by country code
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the country-specific value of E14 is used, reflecting lower 
prevalence than in a situation with the same EIR pat-
tern, but less effective case management. The estimate 
of median EIR for these countries is thus much higher 
when country-specific effectiveness is considered. Con-
versely, in a few countries, where median prevalence is 
low, and case management is also poor, the estimated EIR 
distribution allowing for country-specific effectiveness 
is shifted slightly to the left (e.g. both South and North 
Sudan). 

The EIR distributions are highly skewed, so that the 
arithmetic means are much higher than the medians 
(Figs.  4, 5). Except in some cases where prevalence is 
very low, the average EIR is higher when there is allow-
ance for treatment (Method B), with a much larger shift 
in the mean than in the median of the distribution. When 
country specific E14 values are used (which are mostly 
higher than the 15 % shown in yellow), this makes little 

difference to the mean EIR, but substantial differences to 
the medians, reflecting the stronger relationship between 
treatment rates and prevalence when EIR is low, than 
when EIR is high.

National levels of burden of disease
The OpenMalaria simulations predict that steady state 
clinical incidence (over all ages) increases linearly with 
EIR in low transmission settings, tending to plateau at 
high EIR (with a suggestion, driven by the specific Sen-
egalese data used to parameterize the models for older 
children and adults [35] that there may be a maximum 
in the curve at high prevalence). The initial slope is 
greater when E14 is higher, but the plateau occurs at a 
similar level of incidence irrespective of effective treat-
ment level. These patterns are a consequence of the age-
specific relationships between incidence and EIR shown 
in Fig. 6.
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Fig. 5  Relationship of estimated average EIR to prevalence at country level. Calculated from MAP using both the empirical model (Method A) 
(black); the simulation models (Method B) with a common value for access to care, (yellow) (E14 = 0.15); and country-specific values of E14(blue)
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When these models are used to infer country-specific 
incidence of clinical malaria, there is a clear increase in 
incidence with average prevalence at the country level 
(Fig. 7), and no plateau is reached because even the coun-
tries with highest average transmission have only small 
populations in the very high EIR categories (Table 4 and 
Additional file  1: Table S2). The relationships between 
country-level EIR and estimated clinical malaria inci-
dence are similar, irrespective of whether the EIR is esti-
mated by Method A or Method B. Similarly, Method B 
estimates similar relationships between country-level EIR 
and clinical malaria incidence, irrespective of whether a 
common value, or a country specific estimate is used for 
the effectiveness of case management.

Country-specific estimates of clinical incidence using 
country EIR distributions is compared to published 
malaria cases from the World Malaria Report [14] (Fig. 8; 
Additional file  2: Figure S5). In general, projections of 

incidence using EIR derived from method B produces 
higher predictions than using EIR from method A, but 
in both cases the simulation models predict substantially 
more episodes of malaria than the cases reported in 
the World Malaria Report 2013 (Fig. 8a). There is also a 
much less steep relationship between the incidence rate 
and the overall burden (Fig. 8b). This can be explained by 
the empirical relationships between prevalence and case 
incidence used by WMR [12], which refer back to field 
research carried out prior to the widespread use of ACT 
[33, 36], and therefore do not allow for level of treat-
ment. Moreover, only clinical episodes in children under 
5 years of age are considered. The effect of high levels of 
treatment on reducing prevalence leads to much higher 
ratios of case-incidence to prevalence ratio than it would 
be without treatment (Fig.  7). OpenMalaria correctly 
predicts that in low transmission countries the major-
ity of the clinical burden is in older age groups (Fig. 6). 
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Fig. 6  Models of the relationship between EIR and clinical incidence. Incidence of clinical episodes by EIR in OpenMalaria models with light blue 
E14 = 0.15 and dark blue E14 = 0.45. The continuous lines indicate the mean prediction of the overall incidence. The shading around the continuous 
lines indicates the range of predictions made from simulations with different model variants and random number seeds. The dashed lines indicate 
the incidence of clinical episodes that are treated [31]
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The difference between the methods is particularly evi-
dent for low-burden countries Namibia and Botswana, 
for which very low case numbers are reported by the 
WMR, with estimates based on adjustments to surveil-
lance data.

Discussion
It has been incontrovertible since Laveran’s first studies 
of the malaria parasite [37] that effective treatment of 
clinical malaria results in clearance of blood-stage para-
sites. Treatment lowers the overall prevalence associated 
with malaria (or other parasites [38]), the infectiousness 
of the human population and the transmission level [31], 
both of which synergize with effects of other interven-
tions on transmission. Most immediately, effective treat-
ment reduces the length of illness and the incidence 

adverse outcomes, including severe disease, neurological 
sequelae, and death. This reduces the burden of disease 
that can potentially be averted by other interventions. All 
these effects need to be considered in estimating current 
burden of disease, in analyses of the impact of case man-
agement and treatment on the burden of disease, and 
analyses of treatment modifies the public health impact 
achievable with other curative and preventive interven-
tions. Results presented here clearly indicate that incor-
porating the dynamic effects of treatment is essential for 
valid estimation of EIR, of clinical incidence itself, and of 
downstream outcomes including the incidence of severe 
disease and mortality rates, with substantively differences 
in estimates when included or excluded.

Overall, the model-based method proposed in this 
work (method B) provides estimates of transmission 

a b c

d e f

Fig. 7  Predicted incidence of clinical events by national level average EIR. Predicted incidence of clinical events estimated from empirical model 
(Method A) (black); the simulation models (Method B) with a common value for access to care (yellow) (E14 = 0.15); and country-specific values of 
E14(blue). a uncomplicated clinical episodes (cases); b severe malaria episodes; c hospitalizations; d deaths directly attributable to malaria; e hospital 
deaths; f all malaria deaths (including those with co-morbidities). All rates are expressed as events per 100,000 person years at risk over all ages of 
hosts. The model and parameters for severe disease and mortality follows Ross et al. [22], with a common hospitalization rate assumed for severe 
disease across all countries
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intensity, as measured by EIR, that are somewhat higher 
than those estimated by method A [7], especially in 
low endemicity countries and where case management 
is relatively effective. The downstream country level 
clinical incidence estimates are also higher than those 
previously reported in the World Malaria Report [13]. 
At the country level, allowing for uncertainty in the 
inputs makes a substantial difference to average values 
of both EIRs and disease rates, as a result of the skew-
ness of their distributions. This means that incorporat-
ing uncertainty and spatial variation into the estimation 
has important consequences for both burden estimates 
and prediction of average health impacts of interven-
tions, which in general vary non-linearly with EIR. The 
OpenMalaria models also predict, as one would expect, 
that the effectiveness of uncomplicated malaria treat-
ment has substantial impact on the incidence of severe 
disease and malaria mortality.

Preventive interventions like insecticide treated nets 
(ITNs), which affect prevalence only via their impact on 
exposure, do not change the relationship between expo-
sure and prevalence. Consequently, coverages of preven-
tive interventions can be useful covariates for estimating 
EIR or prevalence surfaces where direct measurements 
are sparse, but the coverage of these interventions are 
not directly relevant when making estimations of dis-
ease burden from prevalence. In contrast, treatment of 

malaria reduces the prevalence at a given level of EIR, 
by preventing infections from persisting, thus modify-
ing the relationship between the two metrics (Fig.  1). 
So the same prevalence can result from very different 
average exposures depending on the level of treatment, 
and the effective coverage of case management (like the 
degree of transmission heterogeneity [2]) should be taken 
account in modeling  the relationships between EIR and 
prevalence.

Nevertheless, at least in high endemicity settings, prev-
alence remains the best measure on which to base geo-
graphically specific models of malaria transmission. This 
is because prevalence data are actively collected based on 
representative sampling of populations, are widely avail-
able, have been compiled into publicly accessible databases 
[7, 39], and have been analysed using geostatistical mod-
els to produce high resolution maps of the distribution 
of infection in space [7, 40]. In most sub-Saharan Afri-
can countries prevalence is therefore likely to remain the 
main metric used in deciding when and where to distrib-
ute or target interventions. In low transmission settings 
such as those in Asia, Latin America, and selected African 
countries the annual parasite index (API) rather than the 
prevalence is the main metric used for monitoring and 
evaluation, and WMR has estimated burden in these coun-
tries using an API-based algorithm [12]. Prevalence-EIR-
treatment relationships in such low transmission settings 
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Fig. 8  Numbers of episodes per annum estimated using different approaches. Numbers of clinical cases; b incidence rate (episodes or cases per 
100,000 person-year). Black points: based on EIR estimates calculated using Method A; yellow points: based on EIR estimates made using Method B 
with a common value for access to care (E14 = 0.15); blue points: based on EIR estimates made using Method B with country-specific values of E14
(blue). The diagonal line corresponds to a 1:1 relationship; the horizontal and vertical lines represent minimum and maximum ranges
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can be captured by relatively simple empirical mathemati-
cal models [4]. However in areas of moderate or high 
transmission it is important to allow for effects of superin-
fection and natural immunity, and thus mechanistic mod-
els that account for dynamics of immunity are needed.

The use of simulation models that take both prevalence 
and treatment rates as inputs provides a generalizable way 
of generating national level estimates of transmission and 
disease burden, applicable across the range of transmission 
intensities. This generalizability will be important for moni-
toring progress as malaria is further controlled to the point 
where measurement of API becomes the main metric used 
by many more country programmes. The approach will 
capture in a natural way the transitions between the dif-
ferent metrics, and the age shifts in the pattern of disease 
where transmission rates change [41, 42]. The approach 
can be made more robust by employing a larger ensemble 
including other simulation models with different assump-
tions about transmission heterogeneity, immunity, and 
pathogenesis [10, 43]. For the method to provide the best 
estimates of malaria attributable mortality, geographical 
variation in access to appropriate in-patient treatment of 
severe disease also needs to be taken into account.

Previous methodologies for estimating burden have 
applied both estimates of intervention protective effi-
cacy derived from meta-analyses of controlled trials and/
or household survey data, leading to circular reasoning. 
Local variability has also been ignored [1], in particular 
variations in access, compliance, or adherence, and also 
the medium- and long-term dynamics resulting from 
intervention-induced reductions in transmission, which 
include shifts of disease into older age groups [41, 42]. 
The burden estimation procedures proposed in this paper 
will allow empirical analysis of the relationships between 
intervention coverage and burden independently of field 
trial results and conditional on all these factors. This will 
provide a basis for assessing the impacts of both preven-
tive and curative interventions on an equivalent basis, 
ensuring correct attribution of the effects of different 
interventions. The method can be extended to give time-
dependent estimates of burden by using time-period spe-
cific input data. By linking these to intervention coverage, 
this will provide valid estimates of intervention impacts 
in time and space. Although results are presented only 
at country  level in this work, this methodology can, in 
principle, be applied to any level of spatial aggregation. 
However, applying the approach to data disaggregated in 
smaller spatial units would raise additional methodologi-
cal issues, as the simulation models are parameterized 
mainly using village-level data.

This paper demonstrates the dual importance of captur-
ing the effects of treatment when estimating disease burden 
based on infection prevalence: to both improve the accuracy 

of those estimates and to correctly quantify the impact of 
treatment on reduced malaria transmission and illness. 
These insights are currently being incorporated into a revised 
WHO methodology that will lead to more refined burden 
estimates and ultimately better information for national and 
international malaria control decision-making processes.
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