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Abstract: The identification of promoters is an essential step in the genome annotation process,
providing a framework for gene regulatory networks and their role in transcription regulation.
Despite considerable advances in the high-throughput determination of transcription start sites (TSSs)
and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and
expensive. Instead, several computational approaches have been developed to provide fast and
reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale.
Numerous studies have been carried out on the regulatory elements of mammalian genomes, but
plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have
been poorly investigated. The aim of this study was to enhance and expand the existing genome
annotations using computational approaches for genome-wide prediction of TSSs in the four conifer
species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful
for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions
are not usually available. We also explored some of the features of the nucleotide composition of the
predicted promoters and compared the GC properties of conifer genes with model monocot and dicot
plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can
be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species
have been deposited in the Persephone genome browser, which allows smooth visualization and is
optimized for large data sets. This work provides the initial basis for future experimental validation
and the study of the regulatory regions to understand gene regulation in gymnosperms.

Keywords: transcription start site; transcription factor binding site; TATA-box; conifer; gymnosperms;
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1. Introduction

Transcription is a mechanism of information transmission encoded in protein-coding
genes conducted by RNA Polymerase II, resulting in the production of messenger RNAs
(mRNAs). This process is subject to complex regulation via binding of transcription factors
(TFs) to appropriate genomic sites consisting of regulatory nucleotide motifs typically
located within the 1000 bp region upstream of the transcription start sites (TSSs). This region
is called the promoter. The TSS position corresponds to the first nucleotide transcribed by
RNA Pol II. Eukaryotic genes can have multiple alternative TSSs [1,2].

The core promoter is a stretch of DNA up to 250 bp long located immediately upstream
of the TSS and required for transcription initiation. There are two types of transcription
initiation: narrow, generally associated with the regulation of tissue-specific and stress-
response genes, and broad, typically occurring in housekeeping genes under a constitutive
expression pattern [3]. The corresponding area is called a transcription start region (TSR)
when the transcription initiation region is broad. The best-known regulatory motif in core
promoter regions is the TATA-box, a recognition site for the TATA-binding protein (TBP).
This motif has a highly conserved consensus sequence TATA(A/T)A(A/T) found in 5–60%
of all RNA Pol II promoters [1,4–8]. Another common motif is Inr (initiator) with the
consensus sequence YYA+1NT/AYY, which occurs at the start of transcription. Inr is more
widespread than any other sequence motif [3] and is commonly found in housekeeping
genes, whose transcription is initiated not with a single start but with positional clusters of
TSSs referred to as TSRs [9]. In contrast, TATA-containing promoters are narrower and as-
sociated with tissue- or context-specific gene expression [10]. Other common core promoter
elements are the TFIIB recognition element (BREu, consensus G/CG/CG/ACGCC, and
BREd, consensus G/ATT/AT/GT/GT/GT/G [11,12]), the downstream promoter element
(DPE, consensus RGWYV [13,14]), and the downstream core element (DCE, consensus
CTTC, CTGT, AGC [15]).

The identification of promoters is a crucial step in genome annotation, providing a
framework for understanding gene regulatory networks and their role in transcription
regulation [8]. In recent years, high-throughput methods for identifying TSS and TFBS have
advanced considerably. Such techniques as chromatin immunoprecipitation combined with
microarray or sequencing analysis (ChIP-chip and ChIP-seq, respectively), identification of
DNase I-hypersensitive sites (DHS), cap analysis of gene expression (CAGE), and paired-
end analysis of TSS (PEAT) have allowed the accumulation of a substantial amount of
data on plant regulatory regions [16,17]. TF studies in agriculturally important species,
such as the Prunus genus, have utilized numerous resources and techniques, including
gene expression analysis of different agronomic traits, quantitative RT-PCR, cDNA-AFLP,
LC-ESI-MS, RNA, and DNA blotting, to build a database of genus-specific TFs and to
provide a comprehensive source for further functional studies and breeding programs [18].
However, those experimental methods of identifying the TSS and promoter regions are time-
consuming, labor-intensive, and expensive. Several computational approaches have been
developed to provide fast and accurate ways to predict the location of TSSs and regulatory
motifs on the whole-genome scale. These include Bayesian classification based on positional
densities of oligonucleotides for detecting TSS in human genomic sequences [19], neural
networks for predicting TSS in plant promoters [20,21], and conditional random fields for
identifying TSS in eukaryotic promoters [22]. Strategies for genome-wide discovery of
novel cis-regulatory motifs using position weight matrices (PWMs) and expression data
were successfully implemented for rice and Arabidopsis [6,23], hop [24], and grapevine [25].
Genome-wide analysis of core promoter elements using PWMs and orthologous-based
prediction were performed for several monocot and dicot species by Kumari and Ware [26].

It has been shown that promoters differ from the rest of the genome in several mea-
surable properties: low DNA stability, high bendability, curvature, etc. [7,27–29]. DNA
stability is associated with the melting of the double-stranded molecule before transcrip-
tion initiation and is commonly calculated as the standard free energy of a DNA duplex.
It has been implemented successfully for promoter identification in various eukaryote
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species [30]. Numerous studies have reported a curved DNA region upstream of TSSs
and higher bendability of the area that interacts with DNA binding proteins [28,31–33].
Other features of promoter regions include CpG islands, GC-skew, and decreased genetic
variability [7,29,34]. The excess of Cs over Gs (GC skew) in the sense strand around TSSs
was reported for several plant species [35,36] and metazoans [37]. The peak of the GC skew
around TSSs can be explained by cytosine deamination during the transcription due to
RNA polymerase preferential protection of nucleotides on the non-transcribed strand [35].

It may seem surprising, but the properties of coding and promoter regions are cor-
related. The frequency of guanine and cytosine nucleotides at the third position GC3 is
one of the critical properties of coding regions. Nucleotides at the third position are less
subjected to selection than at the first two due to the degeneracy of a genetic code. It was
observed that based on GC3, the genomes could be classified into those having unimodal
and bimodal GC3 distributions. For instance, all currently sequenced grass genomes have a
bimodal distribution of GC3, while the CDS of dicot plants shows a unimodal distribution
of GC3 [38,39]. It was previously thought that bimodal GC3 is a specific feature of grass
genomes. Later, it was demonstrated that GC content in other monocot species, such as
Curcuma longa, Zingiber officinale, Elaeis guineensis, and Zantedeschia aethiopica, also exhibits a
bimodal GC3 distribution [40–42]. It has been shown that genes with a higher GC3 content
also have a higher frequency of TATA-boxes and are more likely to be stress-related [39].

Conifers are an ancient group of dicot plants represented by more than 600 species that
play a significant role in boreal forest ecosystems. Due to their enormous size and highly
repetitive nature, deciphering conifer genomes takes more time and effort than many other
plant species. Several mega-genomes of conifer species have been sequenced and assembled
to the draft state recently, resulting in multiple contigs and gaps in chromosome coverage.
Although such annotations are preliminary, they provide an opportunity for structural
and functional analysis. Even an incomplete genome contains keys to understanding
regulatory relationships between genome elements, and this analysis requires knowledge
of the precise locations of promoter sequences.

The aim of this study was to enhance and expand the existing genome annotations by
predicting TSSs for the four recently published conifer species: loblolly pine (Pinus taeda
L.), white spruce (Picea glauca (Moench) Voss), Norway spruce (Picea abies (L.) H. Karst.),
and Siberian larch (Larix sibirica Ledeb.). Siberian larch is a cold-resistant fast-growing tree
known for its rot-resistant timber, making it especially valuable in construction. Norway
spruce had the first genome sequenced among gymnosperms. It is widely cultivated as an
ornamental tree worldwide and is a source of timber for paper and construction lumber
production. White spruce is another cold-resistant tree native to northern parts of North
America with tremendous economic value in Canada. Loblolly pine has one of the largest
genome sizes (22 Gbp) among sequenced plant species and is considered one of the most
significant sources of timber in the U.S.

2. Results
2.1. Prediction of TSS in Four Conifer Species

Alignment of RNA-seq, ESTs, and RefSeq protein to the four genomes data allowed
the identification of 9260 evidence-supported gene models for Pinus taeda, 16,853 for Picea
glauca, 7587 for Picea abies, and 23,077 for Larix sibirica (Table 1, Supplementary Figure S1).
For promoter prediction, we used TSSPlant [20], which utilizes neural networks to estimate
up to 17 features, such as the presence of classic motifs, nucleotide composition variation,
and others (more details in Methods or [20]). The use of TSSPlant generated predictions of
22,633 TSS positions in P. taeda, 25,889 in P. abies, 44,651 in P. glauca, and 62,420 in L. sibirica.
From 13.3% to 14.3% of identified TSS positions occurred within the coding parts of their
respective gene models (Figure S2) and were excluded.
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Table 1. Summary of genome assemblies and annotations for four conifer species.

Assembly and Annotations Parameters Picea abies [43] Picea glauca [44] Pinus taeda [45] Larix sibirica [46]

Estimated genome size, Gbp 19.57 15.79 20.15 12.03

Assembly length, Gbp 12.30 25.47 22.10 12.34

Scaffold N50, Kbp 4.869 34.405 107.821 6.443

GC content, % 38.81 37.08 38.06 35.41

Repeat content, % 70.0 81.8 65–80 *

Total predicted gene models 58,587 103,694 36,732 50,163 *

Average CDS length, bp 287.21 283.56 419.81 291.01 *

Average intron length, bp 997.94 642.73 1146.12 351.13 *

Maximum intron length, bp 68,268 44,113 568,968 10,152 *

RNA/RefSeq supported genes * 10,434 16,839 9260 23,077
Predicted TSS positions * 25,889 44,651 22,633 62,420

Unique TSSs filtered by 5′-UTR distribution * 10,367 16,629 9149 23,016

* authors’ data.

To select the most likely TSS among the multiple predictions for a given gene, we
compared the length of each 5′ UTR to the distribution of 5′ UTR lengths in four plant
species, two dicots, A. thaliana and P. trichocarpa, and two monocots, O. sativa and S. bicolor
(Figure S3A,B). Two parameters, k and theta, which determine the shape and scale of the
gamma distribution, were computed as follows: theta = v/m, k = m/theta. Using k = 0.62
and theta = 238.99, we selected predictions that better fit the theoretical 5′ UTR length
distribution (Figure S3C). After filtering out predictions within the respective coding regions
and selecting the highest-scoring positions, 10,367 P. abies, 16,629 for P. glauca, 9149 for
P. taeda, and 23,016 for L. sibirica were identified as putative TSSs (Table 1). All gene models
with corresponding predicted TSSs were deposited in the Persephone genome browser and
are available at https://web.persephonesoft.com (accessed on 31 January 2022).

Genome annotations of the Siberian larch and white spruce were performed with
the MAKER [47] pipeline using transcriptome data and available ESTs and RNA-seq data
for these and other closely related species. Therefore, it became possible to conduct an
automated prediction of 13,228 UTRs for L. sibirica and 14,056 UTRs for P. glauca based on
the available ESTs within the annotation pipeline. We compared the TSSs predicted by the
maker pipeline and TSSs predicted by the TSSPlant algorithm with filtering based on the 5′

UTR length distribution of model plant species. We showed that the positional distribution
of TSSs predicted by the de novo method was similar to that predicted using RNA support
(Figure S4).

In the predicted promoters, the occurrence of the TATA(A/T)A(A/T) motif shows a
pronounced peak approximately 20 bp upstream of the predicted TSS position for all four
species (Figure 1), which corresponds well to the canonical location of the TATA-box, since
30 to 50% of eukaryotic promoters contain a TATA-box 40 to 15 bp upstream of the TSS.

When comparing the number of promoters containing TATA-box or CA initiator motif,
approximately half of the analyzed sequences (46–53%) had CA motif within the area
[−2; +2] around the TSS, while TATA-box was found in 5–8% of promoters in the [–40; –20]
region relative to the TSS. Among TATA-containing promoters, approximately half of them
(1.6–2 ratio of TATA-containing to TATA-and-CA-containing) contained both TATA and CA
motifs (see more in Table S3 and Figure S5).

Change in the standard free energy of a DNA duplex across the genome sequence is a
strong indicator of a promoter region and has been implemented successfully for promoter
prediction. We used this as supporting evidence for promoters predicted by TSSPlant. The
free energy profile shows a peak around –40 bp and a sharp decline around putative TSS
(Figure 2).

https://web.persephonesoft.com
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Figure 1. Frequency of the TATA(A/T)A(A/T) motif in the TSS-centered promoter region.

Figure 2. Distribution of DNA free energy around TSS position predicted by TSSPlant.

To determine the positional distribution of TFBS, we scanned the identified promoter
regions for the presence of several developmental and stress-related TFBS using TRANSF
AC and MATCH. PWMs that belong to the Homeodomain, Heat shock, and Myb TFs show
two peaks in their positional distribution (Figure 3b–d), while AP2/EREBP TFs have an
apparent decrease near the TATA-box region (Figure 3a).

Additionally, the promoters of two developmental genes, FLORICAULA/LEAFY and
WLIM2a, were scanned for the presence of conserved sequence motifs. For orthologs of
LEAFY, a helix-turn-helix transcription factor regulating inflorescence development in
many flowering plant species [48], there are two predicted TSS positions (Figure 4) in the
upstream regions of P. abies and P. glauca, and one prediction for P. taeda and L. sibirica.
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Figure 3. Positional distribution of transcription factor binding sites (TFBS) in Larix sibirica, Picea abies,
Picea glauca, and Pinus taeda based on PWM scanning using TRANSFAC. (a) AP2/EREBP-related
factors; (b) Homeodomain; (c) Heat shock transcription factors; (d) Myb transcription factors.

Figure 4. Orthologous genes of FLORICAULA/LEAFY-like proteins in L. sibirica, P. taeda, P. abies,
and P. glauca with corresponding predicted TSS positions (depicted by the vertically-oriented labels)
in their upstream regions are aligned using the genome browser Persephone. Red, yellow, green,
and blue boxes represent exons. Light blue ribbon-like connectors indicate identical areas, blue
lines mark nucleotide substitutions, and red lines indicate indels. The visualization is available at
https://web.persephonesoft.com/?bookmark=43C6DEFD15C23F5F40A8AFF25F844042 (accessed
on 31 January 2022).

https://web.persephonesoft.com/?bookmark=43C6DEFD15C23F5F40A8AFF25F844042
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For LIM domain-containing WLIM2a, a regulatory protein that triggers the formation
of actin bundles playing an essential role in actin cytoskeleton organization [49], three
orthologs were found in L. sibirica, P. abies, and P. glauca, each of which had two predicted
TSS sites (Figure 5).

Figure 5. Orthologous genes of WLIM2a in L. sibirica, P. abies, and P. glauca with corresponding
predicted TSS positions (depicted by the vertically-oriented labels) in their upstream regions. Red,
green, and blue boxes represent exons. Light blue ribbon-like connectors indicate identical areas, blue
lines mark nucleotide substitutions, and red lines indicate indels. The visualization is available at
https://web.persephonesoft.com/?bookmark=4239E3155493E8E21C61A9932BD502EE (accessed on
31 January 2022).

2.2. Nucleotide Composition Analysis of Promoter and Coding Sequences

We computed GC3 for all coding regions retrieved from current annotations and
had RNA-SEQ support. Similar to other dicot plants, conifers possess a unimodal GC3
distribution, with a mean of 0.43 (sd = 0.087, Figure 6c). Analyzing coding sequences in
several plant species has indicated a GC3 gradient from the 5′ to 3′ end of a gene [39,50]. All
four analyzed species had a similar GC3 gradient that gradually decreased 250 bp after the
start of the coding sequence (Figure 6a). We divided the genes into GC3-poor and GC3-rich
categories using 10% and 90% quantiles of GC3 to define the GC3-rich and GC3-poor gene
sets. We determined the relationship between the position of the codon in the coding
sequence and the GC3 content for both GC3 categories, applying linear regression to the
first 1000 nucleotides of the coding sequence (Figure 6b). In Siberian larch and rice, the
slope of the regression line is more prominent than in loblolly pine and thale cress. These
results agree with a previous report on GC distribution patterns in gymnosperms [41].

Similar to A. thaliana and O. sativa [35,36], the CG-skew in the four examined conifer
species exhibited a distinct peak around the TSS (Figure 6d). The height of the peak in
the four conifer species is lower than that in the thale cress. It can be due to biological
differences or the lower quality of genome assembly.

To test whether the difference in gene length between GC3-poor and GC3-rich genes
can be observed in gymnosperm genomes, we compared these two classes of genes
(Figure 7 and Figure S6). A Mann–Whitney U test indicated that the CDS length in GC3-poor
genes was significantly longer than that in GC3-rich genes (2.20 × 10−16 < p < 6.09 × 10−12,
see Table S2).

https://web.persephonesoft.com/?bookmark=4239E3155493E8E21C61A9932BD502EE
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Figure 6. Some GC statistics for four conifer species, Larix sibirica, Picea abies, Picea glauca, Pinus
taeda, and two model plant species, Arabidopsis thaliana and Oryza sativa: (a) GC3 gradient of coding
sequences, (b) GC3 gradient slope, (c) GC3 distribution across all CDSs, (d) CG-skew around TSSs.

Figure 7. The difference in coding sequence length between GC3-poor and GC3-rich genes; 10%
and 90% quantiles were used to divide genes into GC3-poor and GC3-rich classes (blue and red,
respectively).

There was a significant difference in the number of exons between the two classes
of genes; this trend holds for all studied gymnosperms and angiosperms. According to
the current genome annotations, GC-rich genes tend to have between two and four exons
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in Siberian larch and loblolly pine and two or fewer exons in Norway and white spruces
(Figure 8). Genes with more than five exons are generally GC-poor in all species.

Figure 8. Distribution of the exon number per gene in GC3-poor and GC3-rich genes in L. sibirica, P.
abies, P. glauca, and P. taeda. The number of genes in the GC3-poor and GC3-rich categories was the
same within each organism.

3. Discussion

While extensive studies on mammalian regulatory regions have been conducted, plant
promoters were left out of the limelight and have remained poorly investigated. Promoter
prediction programs have been mainly developed for and trained on a limited range
of model organisms such as humans, Drosophila, thale cress, or rice. Nevertheless, the
existing annotations for sequenced conifer genomes allow for computational prediction
of biologically relevant elements, such as TSS and TFBS, and meaningful comparative
analysis.

3.1. Prediction of TSS

Plants rely on TATA-box to initiate the transcription of most genes. The TATA-box
is located approximately 40 bp upstream of the TSSs in the conifers. Although the most
common location for the TATA-box is from 20 to 40 bp upstream of the TSSs, it has been
previously reported that in some plants, such as Vinis vinifera, the TATA-box was observed
within −70 bp relative to the TSSs [26]. The height of the peak of TATA frequency (Figure 1)
directly measures the accuracy of the TSS prediction.

In addition to the TATA-box, a standard plant core promoter model [51] includes
the initiator motif at the TSSs, AGGA-box (YA2-5KNGA2-4YY, ~80 bp upstream of the
TSSs, [51,52]), and the downstream promoter element, DPE (RGWYVT, ~28–32 bp down-
stream from the TSSs, [51]). There are crucial differences in the promoter organization of
plants and animals. Mammalian promoters commonly have a CAAT-box [53] instead of the
plant AGGA. The TATA-box appears in less than 10% of mammalian promoters. The DPE
motif typically occurs in TATA-less promoters; however, TATA and DPE may co-occur [51].
Animal promoters may also have BRE and motif ten (MTE) elements not found in plant
promoters [53]. It has been reported that genes may have bidirectional promoters [54,55];
this feature has been thoroughly studied in mammals and less extensively in plants. Morton
et al. [17] analyzed A. thaliana root samples to find precise TSS locations. They found that
most promoters were TATA-less but contained a specific combination of transcription factor
binding sites regulating gene expression. Yamamoto et al. [56] studied core promoters in
A. thaliana, such as TATA and GA. They observed that the promoter architecture was related



Int. J. Mol. Sci. 2022, 23, 1735 10 of 16

to the gene structure. The length of the 5′ UTR (a distance from the TSS to the start of
translation) is also negatively correlated with the expression level of respective genes [39].

One of the standard computational strategies in predicting transcriptional targets in
promoter regions is to search for a consensus model of a TF binding site (TFBS). Such
consensus sequences are derived from experimentally identified binding sites and stored as
a position weight matrix (PWM), which can be used to scan a sequence of interest. Several
curated databases provide collections of PWMs, such as JASPAR [57], PlantRegMap [58], or
TRANSFAC [59]. Despite the continuous improvement in PWM matching methods, they
yield many false-positive predictions. Short length and high variability of the actual TF
binding motifs cause the majority of matrix matches to miss functional binding sites (a
so-called “futility theorem” [60]). However, PWM scanning can serve as a useful prelim-
inary step in generating a list of candidate TFBSs that can be further filtered using other
methods. Motif conservation across homologs, identification of overrepresented motifs
in co-expressed genes, or clustering of multiple closely positioned motifs (cis-regulatory
modules, CRMs) can be among these filters. The consistency in the location of specific
motifs can also indicate an accurately predicted promoter.

The AP2/EREBP superfamily is one of the largest plant TFs, and it can be classified
into three families: the AP2, RAV, and ERF (ethylene response factor) families. The most
abundant ERF family is further divided into ERF and DREB subfamilies. ERF TFs can
bind to a GCC-box element (AGCCGCC) and are involved in hormone signaling pathways
and the regulation of pathogenesis-related genes. DREB TFs bind to the dehydration-
responsive element (DRE) with the A/GCCGAC motif and regulate the expression of stress-
responsive genes [61,62]. Homeodomain TFs are widely conserved proteins accounting
for approximately 15–30% of all TFs in eukaryotes that drive the transcription of genes
responsible for cell differentiation, morphogenesis, and stem cell pluripotency maintenance.
They possess a DNA-binding domain containing a helix-turn-helix (HTH) structure that
recognizes a short 5′-TAAT-3′ motif with very moderate specificity [63,64]. Cold, salinity,
drought, and other protein-damaging stress factors induce activation and trimerization of
HSF, allowing binding of each HSF monomer to a heat shock element (HSE). HSE is located
at the TSS of HSP genes and includes at least two inverted repeats with a 5′-nGAAn-3′ (5′-
nGAAnnTTCn-3′) consensus motif upstream of the TATA-box [65,66]. MYB-like proteins
control plant metabolism, development, cell fate, and stress response. TFs containing the
R2R3-type MYB domain, typical for plants, usually bind to an AC-enriched DNA motif (AC-
elements), such as 5′-ACC(A/T)A(A/C)-3′ [67,68]. PWMs belonging to Homeodomain,
Heat shock, and Myb TFs have two peaks (Figure 2b–d) that match AT-rich positions at
0 and –40 bp corresponding to TSS and TATA-box, respectively. Similarly, AP2/EREBP
TFs with their GC-rich binding motifs had a pronounced drop near the TATA-box region
(Figure 2a).

TSSPlant [20] combines the EM algorithm and neural networks to estimate a com-
prehensive set of features. The prediction accuracy is similar to another classic method
that calculates the free energy of the free-energy change of the DNA duplex implemented
in PromPredict [69]. To the best of our knowledge, there are practically no experimental
studies verifying 5′-UTR on a genome-wide level or for a large subset of genes in conifers.
However, experiments with individual genes have been carried out in Picea glauca [70–72].
A trans-activation assay with Agrobacterium transient transformation method was used to
evaluate promoter–TF interactions in 12 genes involved in lignin biosynthesis enzymes,
cell-wall synthesis and remodeling, and transcriptional regulation [70]. The promoter of
cellulose synthase gene PgCesA3, containing MYB cis-regulatory elements [71], and cin-
namyl alcohol dehydrogenase (CAD), containing cis-elements matching MYB, WRKY, and
bHLH [72], have been confirmed to induce expression of GUS reporter gene in transgenic
spruce in differentiating xylem and foliar guard cells, and in lignifying tissues, respec-
tively. We suggest that on the datasets coming from non-model plant organisms, these
two algorithms can be used together for higher accuracy of the TSS prediction. The results
obtained in this study can be further validated in the future using chromatin immuno-
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precipitation analysis (ChIP-chip and ChIP-seq), identification of DNase I-hypersensitive
sites, CAGE sequencing, or PEAT. In addition, the in silico predictions may be used as
complementary support in cases of ambiguous signals that can be captured by ChIP-seq or
CAGE-seq analysis.

3.2. Nucleotide Composition of Promoters and Coding Regions

Most angiosperm genomes have a distinct 5′ to 3′ decreasing gradient of the GC content
of coding regions. This effect is manifested the most at the third codon position. There is a
possible connection between recombination and the 5′–3′ GC gradient, as the recombination
rate is higher around the TSSs, which creates a 5′–3′ recombination gradient [73,74]. It was
proposed that a 5′–3′ GC gradient can indicate recombination initiation at TSSs [40].

Enrichment of DNA in guanine and cytosine nucleotides is associated with higher gene
compactness and density and higher recombination rates than less GC-enriched regions [40].
It has been observed in multiple species that genes can be grouped into two classes based
on the GC content in the third nucleotide position of the coding sequences [75–77]. As was
reported by Serres-Giardi et al. [41] and Tatarinova et al. [39], in some plants, GC3-poor
and GC3-rich genes differ significantly in length, with longer coding sequences tending to
have a lower frequency of G+C nucleotides in the third position. It is also believed that
the prevalence of GC nucleotides in shorter genes is the result of their length, as the GC
content of a gene is an average of the existing GC gradient. The shorter GC-rich genes
tend to be either mono-exonic or have fewer exons and introns in general, directly affecting
the average GC content, as introns have a lower GC content than exons. According to
Glémin et al. [40], the unimodal distribution of GC3 content indicates a smaller GC gradient
within the genes and a lower recombination rate. It was also previously noticed that GC3-
rich genes could show more variable expression, more frequently have TATA-dependent
promoters, and are commonly involved in stress response pathways. An observed peak
in the CG skew around the predicted TSSs (Figure 6d) had been previously linked to the
transcriptional efficiency and methylation status of the GC3-rich genes [42].

The CG-skews in the four conifer genomes were lower than that reported for thale
cress (A. thaliana), but to conclude whether it was due to the quality of conifer genome
assembly or due to differences between gymnosperms and angiosperms (or monocots and
dicots for that matter) many more genomes should be analyzed, which is beyond the scope
of this study. However, it can be done using the tools presented here and will be an exciting
avenue for prospective studies.

4. Materials and Methods
4.1. Genome Assemblies and Annotations

Pinus taeda genome assembly and annotation Pita v2_01 [45,78,79] were taken from
https://treegenesdb.org/FTP/Genomes/Pita/v2.01 (accessed on 21 January 2020). Genome
assembly PG29 v3.0 and the corresponding annotation for Picea glauca [44,80] were taken
from ftp://plantgenie.org/Data/ConGenIE/Picea_glauca/PG29/v3.0/ (accessed on 16
January 2020); to our knowledge, assembly v4.0 has not yet been fully annotated. However,
we also considered the manual annotation for assembly v4.0 added to annotation v3.0 Picea
abies [43]; genome data Pabies_v1.0 were retrieved from ftp://plantgenie.org/Data/ConGe
nIE/Picea_abies/v1.0 (accessed on 16 January 2020). Corresponding annotations for the
High Confidence set (predicted gene models with more than 70% homology with reference
proteins) and the Medium Confidence set (predicted gene models with between 30% and
70% homology with reference proteins) as provided by the authors were grouped. For
Larix sibirica [46], genome assembly under NCBI GenBank accession NWUY0000000000
(BioProject PRJNA393226) and unpublished draft annotation data were used. The detailed
parameters of the genome assemblies used in the study are presented in Table 1.

https://treegenesdb.org/FTP/Genomes/Pita/v2.01
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4.2. Gene Filtering

To filter out possible pseudogenes and putative predicted coding sequences that do
not represent functional genes, all gene models retrieved from genomic annotations were
aligned against the database of RNA-seq data, including ESTs and TSAs (Table S1) of a
related species using HISAT2 [81] (Table S4). To verify the selected gene models, we aligned
the corresponding protein products to RefSeq plant protein sequences using BLASTp
(Table S4).

4.3. Prediction of TSS

Prediction of putative TSSs was performed in the upstream sequences of selected
genes, which were defined as regions of –1000 and +250 bp around the start codon, using
the TSSPlant program [20]. TSSPlant utilizes the expectation-maximization (EM) algorithm
and neural networks to estimate 17 and 15 features for predicting TATA and TATA-less
promoters, respectively. The complex set of estimated parameters includes such features
as the presence of classic plant promoter motifs (TATA, INR, DPE, YP), variation in nu-
cleotide composition (CG- and AT-skews), oligomer scoring, and others. As the algorithm
determines several possible start sites with the best scores, selecting the best prediction
was utilized to leave one TSS per gene. Assuming that a gamma distribution can describe
the length of the 5′-UTR, we compiled the pool of 5′-UTR lengths from the annotations
of several model plants (Arabidopsis thaliana, Oryza sativa, Sorghum bicolor, and Populus
trichocarpa). We computed k and theta parameters that determine the shape and scale of
the distribution of the 5′-UTR lengths. The probability density function was used to select
the most likely TSS positions using these parameters (Table S4).

4.4. Nucleotide Composition Analysis

Nucleotide frequency analysis of promoters was performed in TSS-centered sequences
(–1000, +200 around TSS). CA and TATA motif frequencies were calculated with a sliding
window (width = 20, increment step = 10) using the stringr R package. The CG-skew of a
given sequence was defined as a proportion (C−G)/(C+G) and calculated with a sliding
window width of 50 bp and a window increment step of 10 bp along the promoter sequence
(Table S4). GC3 was calculated using CDSs and the R package seqinr. The slope of the GC3
gradient was estimated using linear regression between GC3 and the position relative to
the first coding nucleotide (ATG) based on the first 1000 bp of a spliced transcript sequence.
Genes were divided into GC3-poor and GC3-rich sets using 10% and 90% quantiles of GC3.
DNA duplex stability was estimated using PromPredict [69] in a 15 bp sliding window. All
manipulations were performed using bedtools and custom R and C scripts. A TFBS search
was performed using the TRANSFAC database and MATCH [82].

4.5. Genome Visualization

The genomic sequences, tracks with gene models, predicted TSS, and RNA-seq cover-
age data were deposited at the Persephone genome viewer at https://web.persephonesoft.
com (accessed on 31 January 2022). The choice of using this visualization solution was based
on its ability to align and analyze genomic sequences in real time. Persephone is a state-of-
the-art genome browser specifically designed to show and compare multiple sequences
and genetic maps on one screen (see also help files at https://help.persephonesoft.com,
accessed on 31 January 2022). The aligned maps can be linked using common markers,
orthologous gene pairs, or regions of sequence similarity. The sequence maps can be
aligned at a specific zoom level by running a real-time BLASTn search that visualizes
structural variations by displaying identical sequence regions with highlighted nucleotide
substitutions and indels.

5. Conclusions

This work is the first genome-wide prediction of TSS in genomes larger than 10 Gbp.
Ancient origin, massive genome size, not associated with recent polyploidization or dupli-

https://web.persephonesoft.com
https://web.persephonesoft.com
https://help.persephonesoft.com
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cation, and extensive gene families (with higher copy number than in most angiosperms)
distinguish conifers from other plants. The predicted TSSs and their putative promoter re-
gions provide the basis for future experimental verification and present a valuable resource
for better understanding gene regulation and investigating the evolutionary relationships
between gymnosperm and angiosperm clades. Identification of TSS can find its implemen-
tation in genetic-assisted breeding and genome editing, providing opportunities for more
precise mapping and the targeting of SNPs in functional genomic regions and quantitative
trait loci associated with adaptive traits, such as growth rate, cold- and drought-resistance,
and resistance to pathogen invasion.

We predicted promoter regions for several conifer species using computational strate-
gies based on the expectation-maximization and neural network classification method
utilized by the TSSPlant algorithm. The predictions were ranked using the probabilistic
distributions of UTR lengths in model plants. The predicted TSSs were assessed using
the profiles of standard free energy of a DNA duplex and the distribution of a CG-skew,
both of which showed peaks around putative TSS positions and near the TBP binding site.
The positional distributions of TFBS for several abundant transcription factor families also
support the predicted promoters.
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