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Abstract: Butyrate-producing bacteria can biosynthesize butyrate and alleviate inflammatory diseases.
However, few studies have reported that the genus Collinsella has the ability to produce butyric acid.
Here, our study depicts a Collinsella strain, which is a rod-shaped obligate anaerobe that is able to
produce butyric acid. This microorganism was isolated from a human gut, and the optimal growth
conditions were found to be 37 ◦C on PYG medium with pH 6.5. The 16S rRNA gene sequence
demonstrated that this microorganism shared 99.93% similarity with C. aerofaciens ATCC 25986T,
which was higher than the threshold (98.65%) for differentiating two species. Digital DNA–DNA
hybridization and average nucleotide identity values also supported that this microorganism
belonged to the species C. aerofaciens. Distinct phenotypic characteristics between TF06-26 and
the type strain of C. aerofaciens, such as the fermentation of D-lactose, D-fructose and D-maltose,
positive growth under pH 5 and 0.2% (w/v) cholate, suggested this strain was a novel subspecies.
Comparative genome analysis revealed that butyric acid kinase and phosphate butyryltransferase
enzymes were coded exclusively by this strain, indicating a specific butyric acid-producing function
of this C. aerofaciens subspecies within the genus Collinsella. Thus, Collinsella aerofaciens subsp.
shenzhenensis subsp. nov. was proposed, with set strain TF06-26T (=CGMCC 1.5216T = DSM 105138T)
as the type strain.
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1. Introduction

The isolation and cultivation of microorganisms are rate-limiting steps in the study of microbiology.
The study of intestinal bacteria isolation was boosted in the 1960s and 1970s by the emergence and use
of anaerobic cultivation techniques [1]. The breakthroughs in modern sequencing technologies have
enabled researchers to obtain more genomics information to identify new organisms. The number
of isolated and cultivated gut microorganisms has increased considerably in recent years, especially
butyric acid-producing bacteria. Butyrate, a product of intestinal microbial fermentation, plays an
important role in colonic health and serves as an energy source for epithelial cells. Previous studies
have suggested that butyric acid-producing bacteria could alleviate inflammatory bowel disease, type 2
diabetes and obesity [2–4].

In this study, a new strain of genus Collinsella is reported. Nine species in this genus, including
C. aerofaciens [5], C. intestinalis [6], C.tanakaei [7], C.stercoris [6], C. bouchesdurhonensis [8], C. phocaeensis [9],
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C. ihuae [10], C. provencensis [11] and C. vaginalis [12], have been reported before. Several studies
demonstrated that Collinsella could modify host bile acids and plasma cholesterol levels [13–15]. Acetic
acid, formic acid and lactic acid are the main fermented products of the genus Collinsella. However,
the function of producing butyric acid has not been reported yet. The objective of this study is to
identify and characterize a new strain of a butyric acid-producing organism after isolating it from a
human gut.

2. Materials and Methods

2.1. Organism Isolation and Cultivation

The fecal sample used in this study was supplied by a 17-year-old healthy Chinese female
volunteer. An approximately 500 mg sample was suspended in 1 mL of phosphate-buffered saline
(PBS), and diluted serially in the same buffer. Next, 100 µL of the sample was spread on a peptone–yeast
extract–glucose (PYG) agar plate [16]. After incubating at 37 ◦C for 3 days, colonies of bacteria were
transferred and sub-cultured until a pure culture was obtained. The pure colony was preserved for
further inoculation and characterization. All experimental operations were performed under anaerobic
conditions (90% nitrogen, 5% hydrogen and 5% carbon dioxide, by volume).

2.2. Short Chain Fatty Acid-Producing Activity Assay

Butyric acid and other short chain fatty acids (acetic acid, formic acid, propionate, isobutyric
acid, isovaleric acid, valeric acid, benzoic acid and lactic acid) were measured by gas chromatograph
(GC-2014C, Shimadzu, Kagoshima, Japan) after fermenting the strains in PYG medium for 72 h.
The capillary columns were packed with porapak HP-INNOWax (Cross-Linked PEG, 30 m × 0.25 mm
× 0.25 µm) and maintained under 220 ◦C. N2 was used as the carrier gas in all analyses.

2.3. Genetic Identification

To determine the phylogenetic position of this strain, the 16S rRNA gene and the whole
genome were sequenced. The 16S rRNA gene was amplified using a pair of universal
primers, 27f (5′-AGAGTTTGATCATGGCTCAG-3′) and 1492r (5′-TAGGGTTACCTTGTTACGACTT-3′).
RNAmmer was used to extend the length of the 16S rRNA gene [17]. The whole-genome sequence
was obtained using the paired-end 100 bp strategy with the Illumina HiSeq 2000 at BGI-Shenzhen
(Shenzhen, China). The raw data were filtered and assembled according to Zou’s method [16].

The 16S rRNA data were added to the EzBioCloud [18] database. Phylogenetic trees were
constructed by the neighbor-joining [19] distance method using MEGA7 [20]. The stability of the
relationships in the trees was assessed by bootstrapping 1000 replications. Digital DNA–DNA
hybridization (DDH) and average nucleotide identity (ANI) were performed to determine the
genetic relatedness between the isolated strain and members of the Collinsella species. Digital
DDH was calculated by an online program, the Genome-to-Genome Distance Calculator (GGDC)
(https://ggdc.dsmz.de/) [21]. ANI values were calculated by OrthoANI and ANIb [22,23].

2.4. Biochemical Characteristics Tests on PYG Medium

The effects of temperature, pH, NaCl and cholate on growth were tested in this study.
The temperature ranged from 10 ◦C to 50 ◦C; pH was from 3 to 10; salinity ranged from 0 to 7%
(w/v); cholate ranged from 0 to 0.5% (w/v). The pH was adjusted by adding NaOH or H2SO4.

Sugar metabolism was determined by commercial API 20A (bioMe’rieux) and API 50 CH
tests (bioMe´rieux) according to the manufacturer’s instructions. Gram-stain reaction was tested
according to Cappuccino and Sherman’s method in Microbiology: A Laboratory Manual (6th Edition).
An antibiotic susceptibility test was also performed using the disc diffusion method in accordance
with the manufacturer’s instructions.

https://ggdc.dsmz.de/
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2.5. Comparative Genome Analysis

A Bacterial Pan Genome Analysis (BPGA) pipeline [24] was used to compare genomes of TF06-26
and 13 strains of the genus Collinsella. The set of genes shared by all strains were defined as the core
genome, while the global gene repertoire of all strains was defined as the pan genome. Genes partially
shared in reference strains or unique to single reference strains have been defined as accessory genes
and unique genes, respectively [25,26]. The phylogeny and function of core genes were also used in
the BPGA pipeline by default parameters.

2.6. Data Availability

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Collinsella
aerofaciens TF06-26 is MF383464. The GenBank/EMBL/DDBJ accession number for the genome
sequence of TF06-26 is NKXR00000000. Compliance with Ethical Standards: All procedures performed
in studies involving human participants were in accordance with the ethical standards of BGI-IRB (The
institutional review board on bioethics and biosafety of BGI) and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards. Informed consent was obtained from all
individual participants included in the study.

3. Results and Discussion

Through anaerobic isolation and cultivation, a rod-shaped (1.0 µm long and 1.0–4.0 µm wide),
non-motile, non-spore-forming and Gram-positive obligate anaerobic microorganism was obtained.
Gas chromatograph showed that 4.37 mmol/L butyric acid, 19.88 mmol/L acetic acid, 38.67 mmol/L
lactic acid and 2.19 mmol/L benzoic acid were produced after 72 h of fermentation in PYG medium.
TF06-26 could grow at 25 ◦C to 45 ◦C (optimum 37 ◦C) with pH 5.0–8.0 (optimum pH 7.0) as well as
tolerate 0.3% (w/v) cholate and 2.0% (w/v) salt. The antibiotic susceptibility test demonstrated that this
strain was resistant to kanamycin, amikacin and framycetin, whilst being sensitive towards ampicillin,
carbenicillin and cefazolin. The general features of TF06-26 are showed in Table 1; more details of the
growth conditions and antibiotic susceptibility test are shown in Tables S1 and S2.

Table 1. Parameters of strain TF06-26 concerning morphology, growth conditions, fermented
production and genome information.

Characteristic Parameter

Habitat Human gut
Oxygen requirement Anaerobic

Medium Peptone–yeast extract–glucose (PYG) agar
Gram stain Positive
Cell shape Rod

Motility Non-motile
Sporulation Not reported

Biotic relationship Free-living
Temperature range; optimum (◦C) 25–45; 37

pH range; optimum 5–8; 7
Salinity (w/v) 0–2%

Cholate toleration (w/v) 0–0.3%
Butyrate (mmol/L) 4.37

Acetic acid (mmol/L) 19.88
Lactic acid (mmol/L) 38.67

Benzoic acid (mmol/L) 2.19
GenBank accession of 16s rRNA MF383464
GenBank accession of genome NKXR00000000

DNA G + C (%) 59.81
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To determine the phylogenetic position of TF06-26, the 1494 bp 16S rRNA gene and 2,260,546 bp
genome were obtained. The 16S rRNA gene sequence was compared against the EzBioCloud
database, and the sequence alignments showed that TF06-26 was phylogenetically close to the genus
Collinsella, especially the species C. aerofaciens. TF06-26 exhibited 99.93%, 99.65% and 99.51% identity
similarity with C. aerofaciens ATCC 25986T, C. aerofaciens indica and C. aerofaciens 2789STDY5834902,
respectively, and all values were higher than the threshold (98.65%) for differentiating two species [27].
A dendrogram depicting the phylogenetic relationships of TF06-26 is shown in Figure 1. TF06-26
formed a distinct subline associated with C. sp. 4_8_47FAA (100.00% similarity), the uncultured
bacterium clone TS27_a04b05 (96.25% similarity), C. aerofaciens ATCC 25986T, C. aerofaciens indica and
C. aerofaciens 2789STDY5834902. These results suggest that it is likely that TF06-26 can be ascribed to
the species C. aerofaciens.

Microorganisms 2019, 7, x 4 of 10 

 

database, and the sequence alignments showed that TF06-26 was phylogenetically close to the genus 
Collinsella, especially the species C. aerofaciens. TF06-26 exhibited 99.93%, 99.65% and 99.51% identity 
similarity with C. aerofaciens ATCC 25986T, C. aerofaciens indica and C. aerofaciens 2789STDY5834902, 
respectively, and all values were higher than the threshold (98.65%) for differentiating two species 
[27]. A dendrogram depicting the phylogenetic relationships of TF06-26 is shown in Figure 1. 
TF06-26 formed a distinct subline associated with C. sp. 4_8_47FAA (100.00% similarity), the 
uncultured bacterium clone TS27_a04b05 (96.25% similarity), C. aerofaciens ATCC 25986T, C. 
aerofaciens indica and C. aerofaciens 2789STDY5834902. These results suggest that it is likely that 
TF06-26 can be ascribed to the species C. aerofaciens. 

 

Figure 1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences of C. aerofaciens 
TF06-26 and related type species. Bootstrap values based on 1000 replications are shown at branch 
nodes, and only noted if the percentage is greater than 50%. TF06-26 showed a close relationship 
with the genus Collinsella. 

Digital DDH relatedness and ANI were performed between TF06-26 and nine type strains of 
the genus Collinsella to verify the phylogenetic position of TF06-26. More details of these strains are 
shown in Table S3. Consistent with the results of 16s rRNA gene similarity, both digital DDH 
relatedness and ANI values showed that TF06-26 is most closely related to the type strains of the 
species C. aerofaciens (Table 2). However, 65.7 % DDH relatedness and 93.08% ANI values were 
slightly below the common threshold for the same species (70% DDH and 95% ANI). Considering 
the extremely high 16S rRNA similarity, four C. aerofaciens strains were added for comparison. These 
four strains were simultaneously assigned to C. aerofaciens by the NCBI genome database and the 
GTDB [28], which confirmed their phylogenetic positions. TF06-26 exhibited 71.19%–75.9% digital 
DDH relatedness with these four C. aerofaciens strains, which were higher than the 70% threshold 
(Table 3). However, 93.25%–95.05% OrthoANI values and 93.07%–94.93% ANIb values within C. 
aerofaciens strains suggested that a 95% common threshold is not suitable for identifying this species, 
and 94.22% (TF06-26 with C. aerofaciens 2789STDY5834902), 94.13% (TF06-26 with aerofaciens indica) 
and 93.43% (TF06-26 with C. aerofaciens 2789STDY5608842) OrthoANI values were in the reasonable 
range among C. aerofaciens strains (Tables 4 and S4). Based on the above information, TF06-26 was 
assigned to the species C. aerofaciens. 

Table 2. The digital DNA–DNA hybridization (DDH), Ortho-average nucleotide identity (ANI) and 
ANIb values between TF06-26 and the representative strains of other nine species of the genus 
Collinsella. 

Strains DDH (%) OrthoANI (%) ANIb (%) 
C. aerofaciens ATCC 25986T 65.7 93.08 92.92  

Figure 1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences of C. aerofaciens
TF06-26 and related type species. Bootstrap values based on 1000 replications are shown at branch
nodes, and only noted if the percentage is greater than 50%. TF06-26 showed a close relationship with
the genus Collinsella.

Digital DDH relatedness and ANI were performed between TF06-26 and nine type strains of
the genus Collinsella to verify the phylogenetic position of TF06-26. More details of these strains
are shown in Table S3. Consistent with the results of 16s rRNA gene similarity, both digital DDH
relatedness and ANI values showed that TF06-26 is most closely related to the type strains of the
species C. aerofaciens (Table 2). However, 65.7% DDH relatedness and 93.08% ANI values were slightly
below the common threshold for the same species (70% DDH and 95% ANI). Considering the extremely
high 16S rRNA similarity, four C. aerofaciens strains were added for comparison. These four strains
were simultaneously assigned to C. aerofaciens by the NCBI genome database and the GTDB [28],
which confirmed their phylogenetic positions. TF06-26 exhibited 71.19–75.9% digital DDH relatedness
with these four C. aerofaciens strains, which were higher than the 70% threshold (Table 3). However,
93.25–95.05% OrthoANI values and 93.07–94.93% ANIb values within C. aerofaciens strains suggested
that a 95% common threshold is not suitable for identifying this species, and 94.22% (TF06-26 with
C. aerofaciens 2789STDY5834902), 94.13% (TF06-26 with aerofaciens indica) and 93.43% (TF06-26 with
C. aerofaciens 2789STDY5608842) OrthoANI values were in the reasonable range among C. aerofaciens
strains (Table 4 and Table S4). Based on the above information, TF06-26 was assigned to the species
C. aerofaciens.
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Table 2. The digital DNA–DNA hybridization (DDH), Ortho-average nucleotide identity (ANI)
and ANIb values between TF06-26 and the representative strains of other nine species of the
genus Collinsella.

Strains DDH (%) OrthoANI (%) ANIb (%)

C. aerofaciens ATCC 25986 T 65.7 93.08 92.92
C. bouchesdurhonensis Marseille-P3296 T 16.1 76.18 75.12

C. intestinalis DSM 13280 T 15.3 75.24 74.93
C. phocaeensis Marseille-P3245 T 16.5 75.64 74.64

C. stercoris DSM 13279 T 15.8 76.37 75.38
C. tanakaei YIT 12063 T 15.2 75.34 73.83

C. ihuae GD8 T 15.7 75.48 74.62
C. provencensis Marseille-P3740 T 14.9 74.40 73.90

C. vaginalis Marseille-P2666 T 14.4 74.82 73.60
T: Type strain.

Table 3. The digital DDH values between TF06-26 and five strains of the species C. aerofaciens.

Strains 1 2 3 4 5 6

1 − 75.9 74.2 71.3 71.1 65.7
2 75.9 − 74.6 74.4 72.3 70
3 74.2 74.6 − 72.2 73.5 69.4
4 71.3 74.4 72.2 − 79 78.4
5 71.1 72.3 73.5 79 − 73.6
6 65.7 70 69.4 78.4 73.6 −

1, TF06-26; 2, C. aerofaciens 2789STDY5834902; 3, C. aerofaciens indica; 4, C. aerofaciens 2789STDY5608842;
5, C. aerofaciens 2789STDY5608823; 6, C. aerofaciens ATCC 25986 T; T: Type strain.

Table 4. The OrthoANI values between TF06-26 and five strains of the species C. aerofaciens.

1 2 3 4 5 6

1 − 94.22 94.13 93.43 93.14 93.08
2 94.22 − 93.71 93.38 93.29 93.25
3 94.13 93.71 − 93.76 93.73 93.58
4 93.43 93.38 93.76 - 95.05 94.83
5 93.14 93.29 93.73 95.05 − 94.61
6 93.08 93.25 93.71 94.83 94.61 −

1, TF06-26; 2, C. aerofaciens 2789STDY5834902; 3, C. aerofaciens indica; 4, C. aerofaciens 2789STDY5608842;
5, C. aerofaciens 2789STDY5608823; 6, C. aerofaciens ATCC 25986T; T: Type strain.

The ad hoc committee for the reconciliation of approaches to bacterial systematics advised
that bacterial isolates within a given species be considered as distinct subspecies if they differ
phenotypically [29]. Carbon source metabolism and growth condition tests were undertaken
to compare the phenotype characteristics between TF06-26 and the type strains of the species
C. aerofaciens. Fermenting D-lactose, sucrose, salicin, D-galactose, D-fructose, D-mannose, arbutin,
esculine, cellobiose, D-maltose and gluconate distinguished TF06-26 and C. aerofaciens ATCC 25986T.
Additionally, TF06-26 exhibited a stronger ability to adapt to acidic and high-cholate environments
with positive growth at pH 5.0 and 2% (w/v) cholate, in contrast to C. aerofaciens ATCC 25986T

(Table 5). Furthermore, TF06-26 was able to produce butyric acid and benzoic acid, and these distinct
characteristics indicate that TF06-26 is a new subspecies of species C. aerofaciens.
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Table 5. Characteristics that differentiate TF06-26 and C. aerofaciens ATCC 25986 T.

Test Characteristic TF06-26 C. aerofaciens ATCC 25986

API 20A
D-Lactose + w

Sucrose − +
Salicin w −

API 50 CH

D-Galactose + w
D-fructose + w
D-mannose + w

Arbutin w −
Esculine + −
Salicin w −

Cellobiose + −
D-Maltose + w
D-Lactose + w
D-Sucrose − w
Gluconate − w

pH

5 + −
5.5 + −
7.5 + ++
8.5 − w

Bile % (w/v) 0.2 + w
Butyrate Yes No

Benzoic acid Yes No

+, positive; w, weakly positive; –, negative; T: Type strain.

As well as comparing strain types, this study also attempted to find different characteristics
between TF06-26 and other strains of the species C. aerofaciens. Since limited phenotypic information
of other C. aerofaciens strains has been reported, a comparative genome analysis was performed to
further investigate genomic differences. Four non-type strains and eight additional type strains of
the genus Collinsella were included. The pan-genome of these 14 genomes consisted of 535 core
genes, 2622 accessory genes and 4160 unique genes (Figure S1, Table S5). When compared with
additional type strains, the C. aerofaciens strains and TF06-26 had more accessory genes and fewer
unique genes. The dendrogram of both core genes and pan genes show that C. aerofaciens indica has
the closest phylogenetic relationship with TF06-26 (Figure 2). The KEGG functional annotation of
all 14 genomes indicates that there is a higher level of unique genes in carbohydrate metabolism
function, and the same trend can be observed for core genes in translation function (Figure S2a).
Identifying COG functional categories showed that core genomes were enriched in the (J) category
(translation, ribosomal structure and biogenesis), while accessory genes and unique genes could mostly
be ascribed to the (R) category (general function prediction only), the (G) category (carbohydrate
transport and metabolism) and the (K) category (transcription) (Figure S2b). In our new strain
TF06-26, 130 genes were specific. Functional annotation of these unique genes showed that butyric
acid kinase (EC:2.7.2.7), phosphate butyryltransferase (EC:2.3.1.19), mannose-specific IIB component
(EC:2.7.1.191) and mannose-specific IIC component were only coded by TF06-26 (Table 6). The two
former enzymes are related to butyric acid biosynthesis and the two latter enzymes are part of the
mannose transportation process. This suggests that only TF06-26 has the ability to produce butyric
acid and fermentation mannose within the genus Collinsella.
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Figure 2. Neighbor-joining phylogenetic tree based on core genes and pan genes by Bacterial Pan
Genome Analysis (BPGA) pipeline. (a) 535 core gene-based phylogenetic tree; (b) 7317 pan gene-based
phylogenetic tree. TF06-26 showed a close relationship with the species C. aerofaciens and C. aerofaciens
indica had the closest phylogenetic relationship with TF06-26.

Table 6. The KO annotation of the unique genes of TF06-26.

KO Definition Score

K00634 ptb; phosphate butyryltransferase (EC:2.3.1.19) 194
K02795 PTS-Man-EIIC; PTS system, mannose-specific IIC component 293
K02794 PTS-Man-EIIB; PTS system, mannose-specific IIB component (EC:2.7.1.191) 198
K12111 ebgA; evolved beta-galactosidase subunit alpha (EC:3.2.1.23) 1024
K03475 PTS-Ula-EIIC; PTS system, ascorbate-specific IIC component 544
K22044 ybiO; moderate conductance mechanosensitive channel 325
K19545 lnuA_C_D_E; lincosamide nucleotidyltransferase A/C/D/E 303
K06941 rlmN; 23S rRNA (adenine2503-C2)-methyltransferase (EC:2.1.1.192) 298
K00847 E2.7.1.4; fructokinase (EC:2.7.1.4) 291
K03655 recG; ATP-dependent DNA helicase RecG (EC:3.6.4.12) 249

K05946 tagA; N-acetylglucosaminyldiphosphoundecaprenol
N-acetyl-beta-D-mannosaminyltransferase (EC:2.4.1.187) 215

K00817 hisC; histidinol-phosphate aminotransferase (EC:2.6.1.9) 215
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4. Conclusions

In this study, a new butyric acid-producing Collinsella bacterium was tested after being isolated
from a human gut. The morphology of this bacterium was Gram-positive, obligate anaerobic,
non-motile, non-spore-forming and rod-shaped. The growing conditions of TF06-26 on PYG
medium included a temperature from 25 ◦C to 45 ◦C (optimum 37 ◦C) with pH 5.0–8.0 (optimum
pH 7.0). The 16S rRNA gene similarity, DDH relatedness values and ANI values all indicated that
TF06-26 should be assigned to C. aerofaciens. The differing phenotypical characteristics, such as
fermented D-lactose, D-fructose and D-maltose, biosynthesis butyric acid and its adaptability to acidic
environments, proved that this microorganism is distant from the type strain of the species C. aerofaciens.
Additionally, comparative genome analysis demonstrated genotypes unique from TF06-26 in butyric
acid biosynthesis and mannose transportation within the species C. aerofaciens, even within the genus
Collinsella. Thus, it is proposed that TF06-26 was classified as a novel subspecies of C. aerofaciens and
named Collinsella aerofaciens subsp. shenzhenensis subsp. nov., in which TF06-26T (=CGMCC 1.5216T =
DSM 105138T) was set as the type strain.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/3/78/s1,
Table S1: The effect of temperature, pH, NaCl and bile on the growth of TF06-26 and C. aerofaciens ATCC 25986T,
Table S2: The antibiotic susceptibility test results of TF06-26, Table S3: The GenBank accession, total length (bp)
and GC content (%) of 13 strains of the genus Collinsella, Table S4: The ANIb values between TF06-26 and five
strains of the species C. aerofaciens, Table S5: The number of core genes, accessory genes and unique genes of
TF06-26 and 13 strains of the genus Collinsella, Figure S1: The core genome and pan genome of TF06-26 and13
genomes of the genus Collinsella. Figure S2: Function annotation of the core, accessary and unique genes of 14
genomes. (a) KEGG-based functional annotation; (b) COG-based functional classification.
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