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Abstract
In this study, we recruited 50 chronic pain (neuropathic and nociceptive) and 43 pain-free controls to identify specific blood 
biomarkers of chronic neuropathic pain (CNP). Affymetrix microarray was carried out on a subset of samples selected 10 
CNP and 10 pain-free control participants. The most significant genes were cross-validated using the entire dataset by quan-
titative real-time PCR (qRT-PCR). In comparative analysis of controls and CNP patients, WLS (P = 4.80 ×  10–7), CHPT1 
(P = 7.74 ×  10–7) and CASP5 (P = 2.30 ×  10–5) were highly significant, whilst FGFBP2 (P = 0.00162), STAT1 (P = 0.00223), 
FCRL6 (P = 0.00335), MYC (P = 0.00335), XCL2 (P = 0.0144) and GZMA (P = 0.0168) were significant in all CNP patients. 
A three-arm comparative analysis was also carried out with control as the reference group and CNP samples differenti-
ated into two groups of high and low S-LANSS score using a cut-off of 12. STAT1, XCL2 and GZMA were not significant 
but KIR3DL2 (P = 0.00838), SH2D1B (P = 0.00295) and CXCR31 (P = 0.0136) were significant in CNP high S-LANSS 
group (S-LANSS score > 12), along with WLS (P = 8.40 ×  10–5), CHPT1 (P = 7.89 ×  10–4), CASP5 (P = 0.00393), FGFBP2 
(P = 8.70 ×  10–4) and FCRL6 (P = 0.00199), suggesting involvement of immune pathways in CNP mechanisms. None of the 
genes was significant in CNP samples with low (< 12) S-LANSS score. The area under the receiver operating characteristic 
(AUROC) analysis showed that combination of MYC, STAT1, TLR4, CASP5 and WLS gene expression could be potentially 
used as a biomarker signature of CNP (AUROC − 0.852, (0.773, 0.931 95% CI)).
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Introduction

Chronic neuropathic pain (CNP) is a debilitating condition 
caused by lesion or disease of the peripheral and central 
divisions of the somatosensory system (Colloca et al., 2017; 
van Hecke et al., 2014). Drug management of CNP pro-
vides symptomatic relief in some but not all patients and 
is associated with hazardous side effects (Colloca et al., 
2017; Hoffman et al., 2017). This is largely due to the lack 
of objective biomarkers to guide diagnosis and choice of 
treatment (Backryd, 2015). The mechanism of CNP is also 
complicated by multiple and obscure pain aetiologies and 
involvement of many molecular and cellular pathways con-
tributing to the perception of pain (Campbell & Meyer, 
2006). It is suggested that different clinical pain manifesta-
tions and prognosis may be due to different mechanisms 
of CNP (Campbell & Meyer, 2006). To help improve pain 
management, there is a need to develop translational tools, 
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such as well-validated quantitative biomarkers as indicators 
of disease phenotype and drug response.

A plethora of inflammatory molecules dominate the gene 
expression (transcriptome) profile of patient blood in CNP 
(Backryd, 2015). Various inflammatory molecules are asso-
ciated with gender (Lopes et al., 2017; Sorge et al., 2011), 
Leeds Assessment of Neuropathic Symptoms and Signs 
(S-LANSS) scores (Bennett et al., 2005) and other clinical 
presentations (Lasselin et al., 2016; Sommer et al., 2018). 
Many non-inflammatory proteins have also been suggested 
to act as molecular mediators of CNP and are attracting 
interest for drug discovery and development of more selec-
tive analgesic drugs (Sommer et al., 2018). Examples of 
proteins that have been tested as potential biomarkers for 
pain include neurotrophic factors (Boucher & McMahon, 
2001; Kelleher et al., 2017), cytokines (Ellis & Bennett, 
2013; Uceyler & Sommer, 2012), neuropeptides (Carniglia 
et al., 2017), endothelin (Hans et al., 2008), heat shock pro-
teins (Hutchinson et al., 2009; Lei et al., 2017; Zou et al., 
2012), and GTP-cyclohydrolase 1 (GCH1) (Latremoliere 
& Costigan, 2011; Tegeder et al., 2006), although this list 
is not exhaustive. Studies utilising genetic tools such as 
genome-wide association studies (GWAS), transcriptome 
analysis with quantitative real-time PCR (qRT-PCR), pro-
tein expression studies and animal models along with other 
techniques have vastly contributed to the understanding of 
the molecular biological mechanisms contributing to CNP. 
Nevertheless, there is a need for comprehensive studies to 
contextualise how signalling pathways and different mol-
ecules synchronise in CNP. Gene expression studies coupled 
with newly developed statistical and bioinformatics tools 
can be useful for acquiring information about the molecu-
lar regulation of transcriptional responses of the peripheral 
nervous system to traumatic nerve injury.

Recently, we carried out a DNA microarray of 10 patients 
with chronic lower back pain and 10 pain-free controls to 
identify differentially expressed genes (Buckley et al., 2018). 
These genes were cross-validated using qRT-PCR of sam-
ples of dorsal horn tissue of rats having undergone spinal 
nerve ligation (SNL) or sham (placebo) surgery (Buckley 
et al., 2018). In this work, we have carried out Affymetrix 
microarray and qRT-PCR to differentiate the gene expres-
sion profiles of pain-free control and CNP patients. It is 
noteworthy that most of the studies in pain biomarker and 
drug-target discovery had been carried out in rat models and 
cross-species validation could be a major challenge due to 
fundamental metabolic differences between rats and humans 
(Buckley et al., 2018; Denk et al., 2016; Hutchinson et al., 
2009; Latremoliere & Costigan, 2018; Lopes et al., 2017; 
Xue et al., 2014). Our study is more powerful than previous 
studies because it is based on clinical samples and presents 
a more realistic and accurate outlook of the transcriptional 
changes associated with pain in humans.

Materials and Methods

Sample Acquisition

Samples for this study were collected at the University 
of Huddersfield (control subjects) and through the Pain 
Management Services at Seacroft Hospital, Leeds, UK. 
A total of 50 CNP patients and 43 pain-free healthy con-
trols participated in the study (Supplemental Tables 1 and 
2). The pain patients were recruited based on the CNP 
(> 3 months) as their clinical diagnosis. According to the 
7-item Leeds Assessment of Neuropathic Symptoms and 
Signs Pain Scale (S-LANSS) questionnaire, pain with 
S-LANSS score ≥ 12 is considered as neuropathic pain 
(Bennett et al., 2005). However, some CNP participants 
recruited in this study had SLANSS score < 12 although 
the clinical diagnosis was the pain of neuropathic origin. 
We consider these pain patients as CNP participants with 
nociceptive components as well. Both the controls and 
pain patients were excluded for any current diagnosis of 
diabetes, cancer, osteoarthritis, fibromyalgia and other 
complex metabolic diseases which could significantly alter 
their gene profiles. Controls did not have any symptoms 
of pain.

We performed sample size calculations based on gene 
expression analyses of a previous study of 10 disease indi-
viduals and 10 non-disease controls. We included gene 
expression data generated both by microarray and by 
qPCR. Independent calculations based on four significant 
transcripts resulted in corresponding sample size require-
ments of 21, 16, 27 and 15 participants per group to be able 
to reject the null hypothesis that the population means of 
the diseased and control groups were equal with probability 
(power) 0.8. The Type I error probability associated with 
this test of this null hypothesis is 0.05. Conservatively the 
required sample size for the current investigation was taken 
as being the largest of these figures; i.e. 27 per group or 
54 in total. Other non-selected genes, with correspondingly 
larger effects, would lead to lower requirements, whereas 
those genes with lower effects would in turn require larger 
numbers in the study, and hence we conservatively aimed 
to analyse 35 participants per group (70 in total). Allow-
ing for 20% attrition loss, we aimed to recruit a total of 86 
individuals to the current 2-arm study (43 per group). As 
CNP is often associated with co-morbidities, our main focus 
in patient recruitment was to use a relatively homogenous 
population without any comorbidity to identify changes 
associated with CNP. A similar strategy for patient recruit-
ment was used in a previous study on transcriptomic analysis 
of lower back pain patients (Dorsey et al., 2019).

Data for age, gender, Patient Health Questionnaire 
(PHQ-9) and State-Trait Anxiety Inventory (STAI) 
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questionnaires, STAI-I and STAI-II for current and trait 
anxiety, respectively, were collected for all the partici-
pants (See Supplementary file for details). Clinical data 
related to pain including pain duration in months, self-
reported pain, Leeds Assessment of Neuropathic Symp-
toms and Signs (S-LANSS), Chronic Pain Grade (CPG) 
and current medications were also recorded for CNP par-
ticipants. The medication histories of patients were col-
lected at the time of sample acquisition. Current medica-
tions were categorised as follows: (a) anti-inflammatory 

drugs, which included nonsteroidal anti-inflammatory 
drugs (NSAIDS), (b) antidepressants such as tricyclic 
antidepressants (TCAs), norepinephrine-serotonergic 
reuptake inhibitors (NSRIs) and selective serotonin reup-
take inhibitors (SSRIs), (c) anticonvulsants and (d) opioid 
analgesics.

Venous blood samples were collected from the ante-
cubital fossa of all participants using standard phlebot-
omy technique. Blood for RNA isolation was collected 
in 2.5 mL PAXgene Blood RNA tubes (BD Diagnostics, 

Table 1  Characteristics of patients and controls recruited for the present study

a Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS) pain scale
b Patient Health Questionnaire (PHQ)-9 (depression score)
c Chronic Pain Grade
d Non-steroidal anti-inflammatory drugs

Patient characteristics Patient (n = 50)

Age (years)
 Median 45
 Range 21–79

Gender
 Male 23
 Female 27

S-LANSSa score
 Median 17.5
 Range 0–24
 Patients with S-LANSS score < 12 28%
 Patients with S-LANSS score ≥ 12 72%

PHQ-9b score
 Median 14
 Range 0–29

CPGc 

 Median IV
 Range I–IV

Drug categories Patients taking 
the drugs (%)

Anti-inflammatory  (NSAIDSd) 48
Antidepressants with analgesic properties 52
Anticonvulsants 48
Opioids 62

Control characteristics Control (n = 43)

Age (years)
 Median 44
 Range 18–68

Gender
 Male 15
 Female 28

PHQ-9 score
 Median 2
 Range 0–8
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Wokingham, Berkshire, United Kingdom), which were 
stored at − 20 °C for < 24 h before transfer to − 80 °C for 
long-term storage.

Transcriptomic Analysis

A total of 10 samples from CNP (with a S-LANSS 
score > 12) and control groups (n = 20) were included 

Table 2  Fold changes and P-values of top nine upregulated and downregulated genes in Affymetrix  microarraya and qRT-PCRb

a n = 10 controls, 10 CNP patients. Relative gene expression in microarray was calculated as a ratio of CNP average (log 2) and control average 
(log 2)
b n = 43 controls and N = 50 CNP participants
c Positive and negative values indicate upregulation and downregulation of genes, respectively, similar to fold-change output in microarray
d Values > 1 and < 1 indicate upregulation and downregulation of the gene, respectively. The relative gene expression in qRT-PCR is expressed as 
fold-change according to the  2−∆∆Ct method
e P-values were derived using age and gender as control

Transcript cluster ID Gene symbol Description Microarraya qRT-PCRb

Fold-
change 
(linear)

ANOVA P-value Fold-change 
(log scale)c

Fold-changed P-valuee

Genes upregulated in microarray

 TC11002692.hg.1 MS4A2 Membrane-spanning 4-domains, 
subfamily A, member 2

1.83 0.015 − 0.03 0.978 0.824

 TC12002538.hg.1 CHPT1 Choline phosphotransferase 1 1.66 0.008 1.38 2.61 7.74E−07
 TC0X001829.hg.1 AMMECR1 Alport syndrome, mental retardation, 

midface hypoplasia and elliptocyto-
sis chromosomal region gene 1

1.51 0.043 − 0.08 0.930 0.745

 TC01002763.hg.1 WLS Wntless Wnt ligand secretion media-
tor

1.51 0.038 1.34 2.55 4.8E−07

 TC05000307.hg.1 NAIP NLR family, apoptosis inhibitory 
protein

1.46 0.024 0.06 1.04 0.600

 TC11002819.hg.1 TRIM51EP Tripartite motif-containing 51E, 
pseudogene

1.46 0.012 0.22 1.17 0.656

 TC01001351.hg.1 FCER1A Fc fragment of IgE, high affinity I, 
receptor for; alpha polypeptide

1.45 0.008 − 0.13 0.91 0.297

 TC02004639.hg.1 TNFAIP6 Tumour necrosis factor, alpha-induced 
protein 6

1.43 0.019 0.14 1.12 0.446

 TC11003322.hg.1 CASP5 Caspase 5 1.41 0.009 0.48 1.41 2.30E−05

Genes downregulated in microarray

 TC05000231.hg.1 GZMA Granzyme A − 1.37 0.027 − 0.38 0.770 0.0168
 TC01003490.hg.1 XCL2 Chemokine (C motif) 

ligand 2
− 1.37 0.0005 − 0.40 0.772 0.014

 TC04002941.hg.1 FGFBP2 Fibroblast growth 
factor binding 
protein 2

− 1.42 0.012 − 0.58 0.664 0.00162

 TC03001304.hg.1 CX3CR1 Chemokine (C-X3-C 
motif) receptor 1

− 1.42 0.002 − 0.32 0.813 0.0978

 TC01001356.hg.1 FCRL6 Fc receptor-like 6 − 1.48 0.01 − 0.49 0.716 0.00335
 TC19002658.hg.1 KIR3DL2 Killer cell immuno-

globulin-like recep-
tor, three domains, 
long cytoplasmic 
tail, 2

− 1.33 0.048 − 0.45 0.745 0.0368

 TC01003455.hg.1 SH2D1B SH2 domain contain-
ing 1B

− 1.51 0.01 − 0.31 0.810 0.0417

 TC12001202.hg.1 KLRB1 Killer cell lectin-like 
receptor subfamily 
B, member 1

− 1.63 0.002 − 0.21 0.871 0.588

 TC07001296.hg.1 TARP TCR gamma alternate 
reading frame 
protein

− 1.96 0.015 − 0.30 0.816 0.0740
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for transcriptomic analysis. For transcriptomics, RNA 
was extracted using the PAXgene Blood RNA Kit (Pre-
AnalytiX GmbH, Switzerland) as per the manufacturer’s 
instructions. Total RNA was labelled using an Ambion 
WT Expression kit (Life Technologies, Bleiswijk, Neth-
erlands). The gene expression profiling was carried out 
using the GeneChip Human Transcriptome Array (HTA) 
2.0 (Affymetrix, Santa Clara, CA, USA). The Affymetrix 
HTA 2.0 covered about 67,500 transcript clusters (genes), 
both coding and non-coding included. The labelling, 
hybridization, scanning and data extraction of microar-
ray were performed by AROS Applied Biotechnology 
(Aarhus, Denmark) according to the recommended Affy-
metrix protocols. The digital signals obtained as CEL 
files were then processed using Affymetrix expression 
console (v1.4.1.46) with the standard configuration for 
expression arrays, including robust multi-array average 
(RMA) background correction (Irizarry et  al., 2003), 
median polish probe-level signal summarization and 
quantile normalisation. The detectable genes were defined 
as significant detection signals [P-value (P) < 0.05] for 
more than 50% of probe sets in at least one of all samples. 
The normalised files were then followed by pairwise com-
parison analysis for obtaining differential gene expression 
between pain and control participants in Transcription 
analysis console v-4.0. Annotated transcripts, P < 0.05 
(ANOVA) were considered suitable for further analysis.

Bioinformatics Analysis

Mapping of pathways, networks and biological functions of 
differentially expressed genes was carried out using Ingenu-
ity Pathway Analysis (IPA) (Qiagen, Redwood City, CA, 
USA). P < 0.05 was used as a cut-off and 1069 annotated 
genes were analysed (494 downregulated and 575 upregu-
lated) (Supplemental Table 3). Core analysis was carried out 
and both direct and indirect relationships were considered 
to generate the gene networks (Kramer et al., 2014). When 
generating networks, we used the settings of a maximum of 
140 genes per network and 10 networks per analysis, as the 
higher number of genes allows for the possibility that the 
same network can include all focus genes. The molecules or 
pathways specific to humans, experimentally observed and 
predicted with high confidence were used in IPA to ana-
lyse gene expression data in the context of known biologi-
cal response and regulatory networks. IPA returns P-values 
(P) for the networks and regulators based on Fisher’s exact 
test, which is a measure of the probability that the associa-
tion between a set of focus genes in the experiment and a 
given process or pathway is due to random chance alone 
(Kramer et al., 2014). Activation z-score was used to predict 
directionality based on the underlying findings, relationship 
bias and dataset bias (Kramer et al., 2014). The transcription 
factors with maximum interconnected genes in IPA were 
further analysed by qRT-PCR. IPA and String version 10.5 

Table 3  Top diseases and 
biological functions associated 
with the dataset in IPA

a The P-value indicates significance with which the attributes were associated with the dataset and the num-
ber of molecules indicates the number of genes from the dataset that were associated with it

Top diseases and biofunctions

Name P-value  rangea Number of 
molecules

Diseases and disorders
 Inflammatory response 2.89E−03 to 5.29E−10 222
 Immunological disease 2.89E−03 to 1.65E−06 134
 Gastrointestinal disease 2.89E−03 to 2.32E−06 148
 Organismal injury and abnormalities 2.94E−03 to 3.19E−06 291
 Cancer 2.94E−0.3 to 4.28E−06 177

Molecular and cellular functions
 Cell death and survival 2.51E−03 to 1.64E−10 274
 Cellular compromise 2.80E−03 to 1.64E−10 75
 Cell-to-cell signalling and interaction 2.91E−03 to 1.41E−07 197
 Cellular movement 2.62E−03 to 4.10E−07 190
 Cellular function and maintenance 2.81E−03 to 7.99E−07 141

Physiological system development and function
 Hematological system development and function 2.91E−03 to 7.82E−10 185
 Tissue morphology 2.81E−03 to 7.82E−10 161
 Lymphoid tissue structure and development 2.51E−03 to 1.97E−07 125
 Immune cell trafficking 2.62E−03 to 4.75E−06 115
 Digestive system Development and function 2.40E−03 to 6.27E−06 44
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(Szklarczyk et al., 2017) were used to generate the figures 
showing gene networks.

Quantitative PCR (qRT‑PCR)

The qRT-PCR of selected genes was carried out for all par-
ticipants. A total of 300 ng of RNA from each human sample 
was reverse transcribed using the Verso cDNA Synthesis Kit 
(Thermo Scientific™, UK) according to the manufacturer’s 
instructions. The complementary DNA was subsequently 
diluted tenfold. Amplification was performed in triplicate 
with a Roche LightCycler® 480 II (Roche Diagnostics Ltd., 
Burgess Hill, West Sussex, United Kingdom). Each 10 μl 
reaction mixture contained 3 μl of iTaq™ Universal SYBR® 
Green Supermix (Bio-Rad Laboratories, Berkeley, CA, 
USA), 300 nM of each forward and reverse primer (Sup-
plemental Table 4) and 1 μl of diluted cDNA. Amplification 
protocol was as follows: Polymerase activation and DNA 
denaturation at 95 °C for 2 min, 40 cycles of denaturation 
at 95 °C for 5 s with annealing and extension at 60 °C for 
30 s followed by fluorescence detection. Upon completion of 
thermal cycling, melt-curve analysis was carried out to con-
firm reaction specificity. The relative gene expression of the 
markers was normalised to the geometric mean of GAPDH 
and SDHA (Supplemental Table 4) and then to the control 
group, according to the  2–ΔΔCt method (Livak & Schmittgen, 
2001). The levels of expression for each gene are presented 
as fold-changes in comparison to controls.

Statistical Analysis

Statistical analyses were carried out using in IBM SPSS 
Statistics version 26 taking into account qRT-PCR-based 
normalised gene expression, age and gender of the patients/
control, the number of months patients have experienced 

pain, S-LANSS score, PHQ-9 score, CPG and ongoing 
medications of the patients. Medication data were recorded 
as binary variables, with intake of one or more individual 
medications within each medication group corresponding to 
a positive response. Primary outcome data were represented 
by gene expression levels, recorded on 23 genes of inter-
est (See “Results” section for further details). Secondary 
outcome data were represented by the PHQ-9 scores, which 
was considered as both a potential predictor and outcome 
measure, due to uncertainties about its position on the causal 
pathway.

The sample was summarised descriptively.
The extent and nature of missing data were examined. 

Very small proportions of missing data were recorded. Lit-
tle’s test revealed no evidence that this data was not missing 
completely at random (MCAR) (P = 0.207).

The P-values obtained from the ANCOVAs associated 
with the grouping variable were ordered and ranked. The 
Benjamini–Hochberg (B–H) critical value associated with 
each test was calculated, with the critical value for the ith 
P-value given by the expression Q(i∕m) , where m is the 
number of genes to be tested (23 in all analyses) and Q is the 
false discovery rate (FDR); set at 5% for all analyses. Any 
gene for which the P-value was lower than the correspond-
ing B–H critical value was deemed to be significant (and 
highlighted in tabulated data); as were all genes above it in 
the ordered list (i.e. those with lower P-values). Significance 
was also determined using familywise error rate (FWER) 
control via the Bonferroni method (using a critical signifi-
cance level of 0.217%); and using uncorrected P-values, to 
assess the sensitivity of the gene selection to the method 
used.

A series of univariate main effects analyses of covari-
ance (ANCOVAs) were conducted on the data. The P-values 
obtained from the ANCOVAs associated with the grouping 

Table 4  Ten networks associated with the dataset in the IPA analysis

a The score for each network is a measure of the fit of that network to the user-defined set of focus Genes. The score is derived from a P-value 
and indicates the likelihood of the focus Genes in a network being found together due to random chance

Network ID Scorea Number of focus 
molecules

Top diseases and functions

1 161 123 Developmental disorder, hereditary disorder, neurological disease
2 88 86 Cancer, organismal injury and abnormalities, cell death and survival
3 88 86 Cell-to-cell signalling and interaction, cellular compromise, inflammatory response
4 66 72 Inflammatory disease, organismal injury and abnormalities, respiratory disease
5 64 71 Developmental disorder, neurological disease, organismal injury and abnormalities
6 63 70 Post-translational modification, protein degradation, protein synthesis
7 61 69 Cancer, cardiovascular disease, developmental disorder
8 58 67 Post-translational modification, cellular compromise, nutritional disease
9 57 66 Hematological system development and function, tissue morphology, cell-to-cell 

signalling and interaction
10 53 63 Cancer, organismal injury and abnormalities, gastrointestinal disease
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variable were ordered and ranked. The false discovery rate 
(FDR) was set at 5% for all analyses. Expression levels for 
each gene were considered in turn as the outcome. The 
PHQ-9 depression score was also considered as a secondary 
outcome. Goodness-of-fit of the models was assessed from 
the range of adjusted-R2 statistics obtained.

We carried out three series of univariate main effects 
ANCOVAs on the data:

1. The first series of analyses included all CNP pain and 
control participants. Predictor variables included in 
these analyses were participant type (CNP or control), 
with age and gender included as controlling variables.

2. In the second series of analyses a distinction was made 
between 50 CNP patients based on the S-LANSS score. 
Hence the predictor variables included in these analy-
ses were patient type; CNP with SLANSS score ≥ 12, 
CNP with SLANSS score < 12, control (considered to 
represent the reference category). Age and gender were 
additionally included as controlling variables.

3. A further series of univariate main effects ANCOVAs 
were conducted on the data arising from CNP patients 
only. In these analyses, the grouping variable was data 
available for pain patients only including CPG, months 
of pain experienced and medication in addition to gen-
der and age. To avoid model overfitting, a sequential 
modelling strategy was utilised to eliminate predictor 
variables of no substantive importance. Predictor vari-
ables were assigned to blocks. The first block comprised 
the patient-reported PHQ-9 and CPG scores, plus the 
number of months for which the patient had experienced 
pain. The second block comprised the variables related 
to patient medications. The third block included age, 
gender and the grouping variable. In each of the lower 
blocks, patterns of significance amongst considered vari-
ables were examined, and any exhibiting greater levels 
of significance than expected were carried forward for 
inclusion as higher-priority variables in the next block.

The significant genes were grouped together for calcula-
tion of the area under the receiver operator characteristic 
(AUROC) curve both for the control versus CNP group com-
parison, and the high versus low S-LANSS group compari-
son. Following standard procedures, the ROC Curves were 
derived from predicted probabilities of a logistic regression 
analysis using the grouping variable as the state variable.

Ethical Approval

The blood samples used in this study were obtained with 
informed consent from the patients. All the methods were 
performed in compliance with the institutional protocols. 
This study was approved by the Yorkshire & The Humber 

– Bradford Leeds Research Ethics Committee (14/YH/0117) 
and adapted to the NIHR Clinical Research Network (Port-
folio ID: 16774).

Results

Descriptive and Exploratory Analysis 
of the Participants

The characteristics of study participants are presented in 
Table 1 and Supplemental Tables 1 and 2. Amongst the 
50 CNP participants, 36 patients had SLANSS score ≥ 12  
whilst the remaining 14 patients had SLANSS score < 12 
(Supplemental Table 2).

The pain group comprised 23 men (46.0%) and 27 women 
(54.0%); with a mean age of 46.5 years (SD 12.5 years). The 
control group comprised 15 men (34.9%) and 28 women 
(65.1%); with a mean age of 38.4 years (SD 14.8 years). One 
missing value was recorded on each of the PHQ-9 score and 
CPG. Missing values were not imputed.

In the CNP group, 24 patients (48.0%) took analgesics 
(non-steroidal anti-inflammatory drugs); 25 patients (50.0%) 
took antidepressants with significant analgesic properties; 22 
patients (44.0%) took anticonvulsants; 33 patients (66.0%) 
took opioid analgesics. 48 out of 50 patients took medication 
from at least one group; with 4 patients taking medications 
from all 4 groups. The median number of groups from which 
medication taken was 2.

Within the pain group, the mean S-LANSS score was 
15.3 (SD 7.96; range 0–24). The mean PHQ-9 score was 
13.2 (SD 7.34; range 0–26); the median CPG was IV (range 
I-IV). The mean PHQ-9 score in controls was 2.21 (SD 2.34; 
range 0–8). Four patients (8.2%) had a chronic pain grade 
(CPG) of I; 8 patients (16.3%) had a CPG of II; 10 patients 
(20.4%) had a CPG of III; 27 patients (55.1%) had a CPG 
of IV.

Considering the 50 patients in the CNP group, 36 (72.0%) 
had SLANSS score ≥ 12  whilst 14 (28.0%) had SLANSS 
score < 12. The CNP patients with SLANSS score ≥ 12 
comprised 15 men (41.7%) and 21 women (58.3%); with a 
mean age of 43.9 years (SD 11.4 years). The CNP patients 
with SLANSS score < 12 comprised 8 men (57.18%) and 
6 women (42.9%); with a mean age of 53.1  years (SD 
13.1 years).

In the CNP group patients with SLANSS score ≥ 12, 17 
patients (47.2%) took analgesics (non-steroidal anti-inflam-
matory drugs); 18 patients (50%) took antidepressants with 
significant analgesic properties; 19 patients (52.7%) took 
anticonvulsants; 23 patients (63.8%) took opioid analge-
sics. 33 out of 36 patients took medication from at least one 
group; with 5 patients taking medications from all 4 groups.
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Amongst the CNP group with SLANSS score < 12, 7 
patients (50%) took analgesics (non-steroidal anti-inflam-
matory drugs); 3 patients (21.4%) took antidepressants with 
significant analgesic properties; 5 patients (35.7%) took anti-
convulsants; 8 patients (57.14%) took opioid analgesics. 12 
out of 14 patients took medication from at least one group; 
no patients took medications from all 4 groups.

Transcriptomic Analysis

All the arrays (10 CNP and 10 controls) passed the quality 
control tests carried out using Affymetrix console. The dif-
ferential gene expression analysis of CNP vs control revealed 
the fold-change, P-value (P) and FDR-corrected P-value of 

the gene. None of the genes in the microarray could pass 
the criteria of FDR < 0.1. The principal component analy-
sis (PCA) revealed that CNP and control groups were not 
clearly segregated across the first two PCAs (Supplemen-
tal Fig. 1). Therefore, we refrained from deriving any strict 
quantitative conclusions based on the microarray data and 
also cross-validated the top upregulated and downregulated 
genes using qRT-PCR. The top significant genes (P < 0.05) 
are presented in Table 2 and normalised gene expression as 
estimated by qRT-PCR is shown in Figs. 1 and 2.

IPA core analysis was carried out on annotated dif-
ferentially expressed genes obtained from microar-
ray analysis using a cut-off of P < 0.05 (Supplemental 
Table 3). The core analysis associated the dataset with 

Fig. 1  Validation of top upregulated genes observed in the Affym-
etrix analysis of CNP vs control samples in larger subset by qRT-
PCR. ∆Ct is inversely related to the gene expression. In the box red 
line shows the mean and pink and blue area indicates values within 
95% confidence interval and standard deviation 1, respectively. The 

markers indicate the normalised ∆Ct values of the genes in the sam-
ples. The names of statistically significant genes are outlined in a 
box and their P-values are marked with asterisks within the figure; 
***P < 0.001
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several canonical pathways each of which correlated 
with a P-value as described in the “Methods” section. A 
low P-value implies over-representation of focus genes in 
the pathway. We used the P < 1 ×  10−4 as a cut-off which 
revealed the seven most significant pathways (Fig. 3). The 
inflammasome pathway (z-score = 2.236) and Th1 pathway 
(z-score = − 2.233) showed the highest and lowest z-score, 
respectively (Supplemental Figs. 2–4). The positive and 
negative z-score implied the predicted activation and inacti-
vation of pathway, respectively. It also calculated a ratio of 
the number of genes from the list included in the canonical 
pathway and the total number of genes that make up the 
canonical pathway. The inflammasome pathway ranked the 
highest with a ratio of 0.25 (Fig. 3).

The IPA core analysis also provided the most significant 
diseases and disorders that could be linked to the dataset 
across all the genes (Table 3). The top disease identified, 
with 222 molecules, was in general related to the inflamma-
tory response which further reflects the role of inflammatory 
genes in pain phenotype. The smaller P-values imply that 
the association is non-random.

We limited our further IPA analysis to ten network func-
tions (Table 4). All the generated networks were intercon-
nected by one or more genes. The most significant network 
was associated with biological functions of developmental 
disorders, hereditary disorders and neurological diseases and 
included 123 focus molecules (Table 4). We merged the top 
five generated networks to obtain a master network of 687 

Fig. 2  Validation of top downregulated genes observed in the 
Affymetrix analysis of CNP vs control samples in larger subset 
by qRT-PCR. ∆Ct is inversely related to the gene expression. In the 
box red line shows the mean and pink and blue area indicates values 
within 95% confidence interval and standard deviation 1, respectively. 

The markers indicate the normalised ∆Ct values of genes in the sam-
ples. The names of statistically significant genes are outlined in a 
box and their P-values are marked with asterisks within the figure; 
**P < 0.01 and *P < 0.05
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focus molecules. The molecules with more than thirty-five 
interconnections are presented in Fig. 4 and these could be 
important in pain manifestations since it has been hypoth-
esised that highly connected molecules are most likely 
associated with diseases or biological functions (Barabasi 
et al., 2011; Jeong et al., 2000). This also included Glycogen 
synthase kinase 3 beta (GSK3B) which had more than 50 
connections in the generated master network.

Key Transcription Factors in CNP Networks

The IPA analysis predicted various upstream regula-
tors based on the differential gene dataset. We filtered the 
upstream regulators using transcription regulator as mol-
ecule type and z-score >|2| to predict key transcription 
regulators. Also, as the target molecules of many upstream 
regulators show an overlap, we merged the regulatory net-
works to display as one network. These included STAT3, 
HDAC5, JUNB, CBX5, IRF7, HDAC6, NFE2L2, HDAC2, 
IKZF1, GATA1, NFκBIA, RUNX3, SREBF1, TBX21, RELB, 
MTPN and MYC (Fig. 5). The transcription factors STAT3, 
NFκBIA and MYC showed more than 25 interconnections. 
NFκB pathway has been long associated with inflamma-
tion (Lawrence, 2009; Tak & Firestein, 2001), a hallmark 
of CNP (Hartung et al., 2015; Shih et al., 2015) so we did 

not analyse it any further. The transcription factors STAT3 
and MYC were analysed by qRT-PCR for cross-validation. 
We also carried out the qRT-PCR of STAT1 as it has been 
suggested to play a role in CNP (Denk et al., 2016). Also, 
STAT1 directly regulates T-box 21 (TBX21) which is one 
of the top regulatory molecules predicted by IPA based on 
our dataset.

We also carried out pathway analysis of our microarray 
dataset by the in-built WikiPathways (Slenter et al., 2018) 
function in Transcription analysis console v-4.0. The PI3-
Akt pathway was the top pathway by count linked to the 
dataset (Supplemental Fig. 5). PI3-Akt pathway includes 
both GSK3B and MYC which have been suggested as the 
important nodes in the IPA analysis (Supplemental Fig. 5).

qRT‑PCR‑Based Validation of Differentially 
Expressed Genes (CNP vs Control)

We carried out the qRT-PCR of the eighteen most frequent 
upregulated and downregulated genes observed in the 
microarray. A direct comparison of fold-change between 
the two methods (microarray and qRT-PCR) was not pos-
sible (Dallas et al., 2005; Morey et al., 2006), although 
some broad conclusions could be derived. Table 2 shows 
that the directionality of differential gene expression was 

Fig. 3  Canonical pathways in IPA analysis which are most sig-
nificant to the dataset using a P-value 1 × 10–4 as the cut-off. The 
ratio of the number of genes from the dataset that map to the pathway 

divided by the total number of genes that map to the respective path-
way is indicated on the right-side y-axis
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nearly the same in the two methods for all of the upregu-
lated and downregulated genes. The qRT-PCR-based nor-
malised gene expression of these genes in CNP and control 
samples is presented in Figs. 1 and 2. We also estimated 
the age- and gender-controlled p-values of qRT-PCR data 
between CNP and control participants and an FDR of 5% 
was applied to filter the significant genes (Supplemental 
Table 5). Genes with a P < 0.05 were considered significant 
in the qRT-PCR analysis. Amongst the upregulated genes, 
choline phosphotransferase 1 (CHPT1) gene was highly 
significant in both the microarray (P = 0.0086) and qRT-
PCR (P = 7.74 ×  10–7, respectively). Wntless Wnt ligand 
secretion mediator (WLS) was significant in the microarray 
(P = 0.038) whilst it was found to be strongly significant 
in qRT-PCR (P = 4.80 ×  10–7). Amongst the downregu-
lated genes, chemokine (C motif) ligand 2 gene (XCL2) 
was highly significant in the microarray (P = 0.0005) but 

showed less significance in qRT-PCR (P = 0.0144). Fibro-
blast growth factor binding protein 2 (FGFBP2) was signifi-
cant in microarray (P = 0.013) and highly significant in qRT-
PCR (P = 0.00162). The Fc receptor-like 6 gene (FCRL6) 
was significant in both microarray (P = 0.010) and qRT-PCR 
(P = 0.00335).

We carried out the qRT-PCR of Toll-like receptor 4 
(TLR4) as previous studies have suggested its direct or indi-
rect role in CNP (Hutchinson et al., 2009; Shah & Choi, 
2017; Sorge et al., 2011). In the microarray, TLR4 was 
overexpressed in CNP patients (P = 0.036) and showed a 
similar significance in CNP vs control qRT-PCR analysis 
(P = 0.0368) but was not significant when an FDR cut-off 
of 5% was applied (Supplemental Fig. 6, Supplemental 
Table 5). GSK3B was identified by IPA analysis of microar-
ray data (Fig. 4) and previous studies have suggested its role 
in CNP (Gobrecht et al., 2014; Maixner & Weng, 2013). 

Fig. 4  Highly connected nodes in IPA based on the Affymetrix 
microarray data. A master network generated by merging top five 
networks identified the above nodes with maximum connectivity 
(> 35 connections). The nodes that were upregulated and downregu-
lated in the dataset are coloured red and blue, respectively. The nodes 

that have been predicted by IPA and were not present in the input 
dataset for microarray are filled in grey. The solid and dashed lines 
show direct and indirect connections, respectively. The circle around 
the node itself indicates self-regulation. The legend to the node 
shapes is presented in Supplemental Fig. 3



331NeuroMolecular Medicine (2022) 24:320–338 

1 3

In the present work, CNP vs control differential expression 
of GSK3B was non-significant at the transcriptional level 
both in the microarray and qRT-PCR (Supplemental Fig. 6, 
Supplemental Table 5). IPA suggested signal transducer and 
activator of transcription 1 and 3 (STAT1 and STAT3) and 
MYC as important transcription factors in our dataset. STAT1 
and MYC were significantly upregulated (P = 0.001 for both) 
in the patients with CNP compared to the controls whilst 
STAT3 did not show any significant differential expression 
(Supplemental Fig. 6, Supplemental Table 5).

We carried out a series of statistical analyses of qRT-PCR 
gene expression data from all participants. The qRT-PCR 
data of the eighteen differentially expressed genes derived 
from the microarray data and TLR4, STAT1 and 3, GSK3B 
and MYC were included in this analysis. Analysis carried 
out between controls and all CNP samples with age and 
gender as control revealed WLS, CHTP1, CASP5, FGFBP2, 
STAT1, FCRL6, MYC, XCL2 and GZMA to be significantly 
associated with CNP under an FDR of 5% (P = 4.80 ×  10–7, 
7.74 ×  10–7, 2.30 ×  10–5, 0.0016, 0.0022, 0.00335, 0.00335, 
0.0014 and 0.0168, respectively) (Supplemental Table 5).

We also carried out a three-arm analysis, with CNP 
grouped into two categories based on S-LANSS score 
cut-off of 12, and the control group used as the reference 

category. Ranking of p-values for multiple comparisons, 
under an FDR of 5%, revealed WLS, CHTP1, FGFBP2, 
FCRL6, SH2D1B, CASP5, KIR3DL2 and CXCR31 revealed 
to be significantly (P = 8.40 ×  10–5, 7.89 ×  10–4, 8.70 ×  10–4, 
0.002, 0.003, 0.004, 0.0084, 0.0136, respectively) associ-
ated with CNP with S-LANSS score ≥ 12 (Supplemental 
Table 6). However, none of the genes was significant with 
CNP with S-LANSS score < 12 (Supplemental Table 7). The 
genes SH2D1B, KIR3DL2 and CXCR31 were only associ-
ated with CNP samples with S-LANSS score ≥ 12.

A combination of expression data of genes significant 
between control and CNP groups that were also associated 
with the PI3-Akt pathway namely; MYC, STAT1, TLR4, 
CASP5 and WLS showed the AUROC of 0.852 (0.773, 0.931, 
95% CI) suggesting that it could be used as a biomarker sig-
nature for CNP (Fig. 6a). The perturbations of these genes 
are robust to also compare high and low S-LANSS CNP 
patients (AUROC-0.819 (0.666, 0.973, 95% CI)) (Fig. 6b).

Effect of Medications on the Gene Expression

The series of ANCOVAs conducted on gene expression 
data using medication variables as predictors, revealed that 

Fig. 5  Merged networks of 
transcription regulators with 
z-score >|2.0| in IPA. The 
transcription factors connected 
to more than 25 nodes are high-
lighted in yellow. The figure 
was generated in the program 
STRING. The coloured lines 
between the transcription fac-
tors are related to source of the 
database/relation between the 
genes; cyan: Curated databases, 
magenta: experimentally deter-
mined, blue: gene co-occur-
rence, black: co-expression, 
light blue: protein homology 
and light green: text mining
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anti-inflammatory, antidepressants and anticonvulsants 
drugs were all statistically significant at the 5% level in 1 
out of 26 genes. These findings were consistent with a uni-
form distribution of P-values that would be expected from 
repeated instances of tests under a null hypothesis of no 
association. Hence, none of these variables were carried for-
ward for inclusion in subsequent blocks. Opioid analgesics 
were statistically significant at the 5% level in 6 out of 26 
genes. This finding was not consistent under a null hypoth-
esis of no association, so this variable was carried forward 
for inclusion in the final blocks together with the grouping 
variable of CNP and the controlling variable age, gender and 
pain type (nociceptive and neuropathic pain).

Assuming an FDR of 5%, the genes TLR4 
(P = 8.58 ×  10–4), GSK3B (P = 0.00176) and KLRB1 
(P = 0.00529) were significantly associated with the intake 
of opioid analgesics (Supplemental Table 8). The compari-
son of gene expression of TLR4 and GSK3B in the CNP 
patients showed that the expression of these genes was 
decreased in patients taking opioids against those not on 
opioid medications (Fig. 7). On the other hand, KLRB1 
expression was higher in patients taking opioid medications.

Discussion and Conclusions

The screening of CNP is largely based on clinical diagnoses 
and questionnaires that have been used in the epidemiologi-
cal studies (Bouhassira & Attal, 2011; Torrance et al., 2006). 
In the present study, our aim was to identify potential blood 
biomarkers for effective diagnoses and treatment of CNP. 

Blood biomarkers can also serve to identify potential pertur-
bations in molecules and pathways that maybe linked to dis-
ease processes related to pain including in the CNS (Buckley 
et al., 2018; Yamamotova et al., 2010). We used a relatively 
homogeneous population for this study by excluding patients 
with cancer, fibromyalgia, osteoarthritis, diabetes and other 
complex metabolic disorders as these can change the land-
scape of expressed genes significantly and which may be 
correlated to CNP.

A critique of methodological limitations is necessary 
before discussing the main outcomes of the study. In our 
Affymetrix microarray results, the linear fold-change of most 
of the genes was between − 1.5 and 1.5. One reason for this 
could be that CNP and other nervous system disorders such 
as schizophrenia and autism are caused by subtle changes 
in many genes (Barnes et al., 2011; James, 2013). When 
comparing few genes with low fold-changes across a large 
number of genes, the calculated FDR values are very high 
(Tusher et al., 2001). Therefore, none of the genes in the 
CNP vs control comparison of microarray data could pass 
an FDR of 0.1. Also, each patient had a different medical 
history including ongoing medications. These medications 
can lead to variation within the group and affect the average 
value of gene expression in the group. Therefore, we have 
used a large sample set for confirming the gene perturbations 
by qRT-PCR and used a rigorous statistical approach for the 
analysis of qRT-PCR data.

Despite these limitations, our study provides some inter-
esting results. The most significantly perturbed genes in 
CNP samples were associated with inflammation ascertain-
ing that the state of inflammation was maintained in all the 

Fig. 6  Area under the ROC curve (AUROC) analysis. AUROC 
formed using WLS, MYC, STAT1, CASP5 and TLR4 gene expres-
sion between a control and all CNP patients and b high (≥ 12) and 

low (< 12) S-LANSS of CNP group. The combination of these gene 
expressions are robust enough to diagnose CNP
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pain patients. This has also been observed in the recent stud-
ies carried out using human neural tissues of CNP patients 
(North et al., 2019; Tavares-Ferreira et al., 2019). The fact 
that inflammation-related perturbations could be detected 
in the blood of CNP samples in this study establishes that 
inflammation is a hallmark of CNP, and that blood is not 
only a source of tissue can not only provide easily accessible, 
but also potential insights into disease processes. The genes 
CHTP1, WLS, MYC and CASP5 that were significant in all 
CNP samples are associated with inflammation. CHPT1 
regulates phosphatidylcholine biosynthesis and its involve-
ment in pain manifestation has yet not been demonstrated 
(Jia et al., 2016). On the other hand, indirect roles of WLS 
and MYC in inflammation have been suggested (Chen et al., 
2018). WLS regulates secretion and function of Wnt proteins 
which are crucial for neuronal development (Patapoutian 
& Reichardt, 2000). WLS interacts with mu-opioid recep-
tor (MOR) and it has been suggested that in the presence 
of opioids, the interaction of WLS with MOR can lead to 
decreased Wnt secretion further causing decreased neuro-
genesis (Jin et al., 2010). WLS can also lead to inflammation 
by activating NF-κB signalling (Wang et al., 2012a, 2012b). 
A potential role of MYC in inflammation has also been sug-
gested (Descalzi et al., 2017; Liu et al., 2015; Sipos et al., 
2016). CASP5 is a proinflammatory caspase linked to the 

formation of inflammasome and is upregulated in various 
neuroinflammatory conditions including multiple sclerosis 
and osteoarthritis (An et al., 2020; Venero et al., 2013). Pre-
vious studies, including one from our group, have shown 
role of caspases and CASP5 in CNP (Buckley et al., 2018; 
Joseph & Levine, 2004).

The three-arm analysis with CNP separated into two 
groups based on S-LANSS scores (SLANSS score 12 as a 
cut-off) and control group as a reference showed eight genes 
to be significantly associated with CNP with S-LANSS 
score ≥ 12. These also include WLS, CHTP1, FGFBP2, 
FCRL6 and CASP5 which are upregulated in all CNP sam-
ples as well (Supplemental Tables 5 and 6). The additional 
genes associated only with CNP with S-LANNS ≥ 12 are 
SH2D1B, KIR3DL2 and CXCR31 (Supplemental Table 6).

The genes STAT1 and FCRL6 were significantly upregu-
lated in the CNP compared to the controls (Supplemental 
Table 5). STAT1 is the downstream target of IFN-γ and also 
regulates expression of many genes that cause inflamma-
tion, survival of the cell, viability or pathogen response 
(Busch-Dienstfertig & González-Rodríguez, 2013; Kim 
et al., 2015; Tsuda et al., 2009). STAT1 expression has been 
found to increase in microglia of SNL compared to sham 
rats (Denk et al., 2016). Also, there is growing evidence to 
suggest that STAT3 activation is one of the key mediators 

Fig. 7  Comparison of TLR4, 
GSK3B and KLRB1 gene 
expression of CNP patients 
without and with opioids as 
the medication and controls. 
In the box, red line shows the 
mean and pink and blue area 
indicate values within 95% 
confidence interval and standard 
deviation 1, respectively. The 
markers in the box indicate nor-
malised ∆Ct values of the genes 
in the group. ∆Ct is inversely 
related to the gene expression. 
The no opioids and with opioids 
in the figure refer to the gene 
expression in patients without 
and with opioid medications. 
The statistically significant 
P-values are shown in the fig-
ure, **P < 0.01 and *P < 0.05
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of inflammation and CNP (Tsuda et al., 2011; Xue et al., 
2014). In the present study, STAT3 perturbation was not sig-
nificant in any analysis (Supplemental Tables 5–7,). It could 
be possible that CNP and STAT3 correlation could be more 
significant at the protein level as STAT proteins are regulated 
by tyrosine phosphorylation (Lim & Cao, 2006). FCRL6 is 
a cell surface glycoprotein which is selectively expressed by 
cytotoxic T-cells and natural killer (NK) cells (Rostamzadeh 
et al., 2018). It is upregulated in diseases characterised by 
chronic immune inflammation (Rostamzadeh et al., 2018) 
although its role in pain has not yet been validated.

FGFBP2, XCL2 and GZMA were downregulated in CNP. 
These proteins are related to the immune response. FGFBP2 
is a serum protein that is selectively secreted by cytotoxic 
lymphocytes and may be involved in cytotoxic lymphocyte-
mediated immunity (Ogawa et al., 2001). FGFBP2 downreg-
ulation has been associated with idiopathic frozen shoulders 
and developing ankylosing spondylitis (Fang et al., 2015; 
Hagiwara et al., 2012). XCL2 is a chemokine, and increased 
activity of chemokines is suggested to directly or indirectly 
contribute to CNP (Ji et al., 2014; Kwiatkowski & Mika, 
2018; White et al., 2007; Zychowska et al., 2016). Interest-
ingly, we found that the XCL2 was downregulated in CNP 
compared to controls. Further investigation would be needed 
to determine whether the expression of XCL2 was reflective 
of CNP or a response to drug.

GZMA is a serine protease present constitutively in the 
cytotoxic T-cells and NK cells. It acts through a caspase-
independent pathway by inducing reactive oxygen species 
and targets infected cells as well as tumour cells (Rchiad 
et al., 2020; Zhou et al., 2020). GZMA has been associated 
with the regulation of inflammation and GZMA-deficient 
animal cells have shown increased levels of proinflamma-
tory cytokines such as TNF-α (Garcia-Laorden et al., 2016).

Three additional genes, SH2D1B, KIR3DL2 and CXCR31, 
significant in only CNP samples with S-LANSS score ≥ 12, 
are also associated with immune response. The expres-
sion of these genes was also decreased in CNP samples. In 
summary, the profile of differentially expressed genes sug-
gests that CNP patients have increased inflammation and a 
perturbed immune system (Baddack-Werncke et al., 2017; 
Costigan et al., 2009). In common with many of the other 
diseases are several potential confounding factors that might 
influence the results of our study. Perhaps the most difficult 
to correct for is depression suggested by a high-PHQ-9 score 
in CNP patients (Table 1). Hence, we cannot exclude the 
possibility that some changes in the gene expression could 
be due to underlying depression. For example, along with 
CNP overexpression of GSK3B has also been widely linked 
to anxiety, depression, neurological and neurodegenerative 
disorders (Beurel et al., 2015; Chen et al., 2015; Gobre-
cht et al., 2014; Liu et al., 2017; Maixner & Weng, 2013; 
Mazzardo-Martins et al., 2012; Ronai et al., 2014), possibly 

through neuroinflammation (Beurel et al., 2015; Jope et al., 
2007; Kremer et al., 2011).

When comparing control and CNP samples, the AUROC 
curve analysis that functions as a clinical risk prediction 
model, and showed that the combination of MYC, STAT1, 
TLR4, CASP5 and WLS gene expression has a high sensi-
tivity as well as specificity and thus considered a strong 
biomarker for CNP (Fig.  6a). These genes were robust 
enough to distinguish high and low S-LANSS CNP sam-
ples (Fig. 6b). All these genes are associated with PI3k-Akt 
pathway suggesting the involvement of this pathway in the 
pathogenesis of CNP.

We observed that expression of GSK3B, TLR4 and 
KLRB1 varies with the opioid intake (Fig. 7 and Supplemen-
tal Table 8). This may reflect the broad-spectrum analgesic 
actions of the opioids (Smith, 2012). It is well established 
that opioids can interact with TLR4 and GSK3B (Maixner & 
Weng, 2013; Shah & Choi, 2017). Interaction of morphine 
and other opioids with TLR4 has been shown to activate 
TLR4 pathway, resulting in the release of cytokines that 
can exacerbate inflammation leading to a state of hyperal-
gesia (Wang et al., 2012a, 2012b). In the present study, the 
expression of both TLR4 and GSK3B were reduced whilst 
the expression of KLRB1 was increased in CNP patients tak-
ing opioid medication compared to the patients that were not 
taking any opioid medication (Fig. 6). KLRB1 belongs to a 
lectin superfamily group that binds to other proteins and are 
calcium-dependent (Kirkham & Carlyle, 2014). Similar to 
GSK3B and TLR4, KLRB1 are also involved in PI3k-Akt 
pathway (Kirkham & Carlyle, 2014). Previous reports sug-
gest that opioids activate TLR4 pathway of inflammation 
but their effect on TLR4 expression is not clear (El-Hage 
et al., 2011; Shah & Choi, 2017; Wang et al., 2012a, 2012b). 
Franchi et al. have shown that TLR4 mRNA expression was 
decreased in murine macrophages due to the activation of 
the Mu-opioid receptor (Franchi et al., 2012). A similar 
mechanism could be possible here, although there are vari-
ous limitations to this conclusion; firstly, other medications 
can also affect TLR4 expression. Secondly, nearly all stud-
ies investigating the association between TLR4 and opioids 
have been carried out on brain cells, whereas our study used 
blood samples. The possibility that TLR4 shows different 
tissue-specific response to the opioids cannot be ruled out. 
Thirdly, the number of patients with and without opioids 
was not equal (33 vs 17) in the CNP cohort of our study. 
Nevertheless, it is an interesting outcome and we aim to 
investigate the opioid effect on the TLR4 expression on a 
larger cohort in the future.

Our study shows that GSK3B could be perturbed in CNP. 
Recent studies suggested that GSK3B levels are elevated 
in CNP (Maixner & Weng, 2013; Martins et  al., 2011; 
Mazzardo-Martins et  al., 2012). We observed that opi-
oids decreased GSK3B expression in the patients. Previous 
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studies have also shown that opioids like morphine can 
inhibit GSK3B in cancer cells and rat microglia (Xie et al., 
2010; Zhao et al., 2009). However, effects of opioids on 
GSK3B requires further investigation for long-term implica-
tions on patients as GSK3B itself is a tightly regulated pro-
tein and master regulator of key neuronal signalling proteins 
(Beurel et al., 2015). We could not carry out protein analysis 
on the present samples as GSK3B could not be detected in 
the circulating plasma. However, it remains a key molecule 
for investigation for our future studies on CNP.

In conclusion, our results demonstrated that MYC, STAT1, 
TLR4, CASP5 and WLS gene expression function as strong 
clinical risk predictors and could be purposed as a potential 
biomarker signature for CNP. The effects of confounding 
factors, i.e. medications and depression cannot be fully ruled 
out in patient samples. As our study has been carried out on 
the patients rather than animal models, it provides us with 
an actual outlook of these potential biomarkers that could 
provide insight into CNP. We aim to validate our findings 
and evaluate the clinical utility of the potential predictive 
and prognostic biomarkers identified.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12017- 021- 08694-8.

Acknowledgements PCM would like to acknowledge funding support 
from the British Pain Society through the 2013 Mildred B. Clulow 
Award and the Centre for Biomarker Research. We would also like to 
acknowledge the Pain Management Services at Seacroft Hospital for 
their support in the collection of pain participant samples.

Declarations 

Conflict of interest The authors have no conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

An, S., Hu, H., Li, Y., & Hu, Y. (2020). Pyroptosis plays a role in 
osteoarthritis. Aging and Disease, 11(5), 1146–1157. https:// doi. 
org/ 10. 14336/ AD. 2019. 1127

Backryd, E. (2015). Pain in the blood? Envisioning mechanism-based 
diagnoses and biomarkers in clinical pain medicine. Diagnostics 
(basel), 5(1), 84–95. https:// doi. org/ 10. 3390/ diagn ostic s5010 084

Baddack-Werncke, U., Busch-Dienstfertig, M., Gonzalez-Rodriguez, 
S., Maddila, S. C., Grobe, J., Lipp, M., Stein, C., & Muller, G. 
(2017). Cytotoxic T cells modulate inflammation and endogenous 
opioid analgesia in chronic arthritis. Journal of Neuroinflamma-
tion, 14(1), 30. https:// doi. org/ 10. 1186/ s12974- 017- 0804-y

Barabasi, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network 
medicine: A network-based approach to human disease. Nature 
Reviews Genetics, 12(1), 56–68. https:// doi. org/ 10. 1038/ nrg29 18

Barnes, M. R., Huxley-Jones, J., Maycox, P. R., Lennon, M., Thornber, 
A., Kelly, F., Bates, S., Taylor, A., Reid, J., Jones, N., Schroeder, 
J., Scorer, C. A., Davies, C., Hagan, J. J., Kew, J. N., Angelinetta, 
C., Akbar, T., Hirsch, S., Mortimer, A. M., … de Belleroche, J. 
(2011). Transcription and pathway analysis of the superior tempo-
ral cortex and anterior prefrontal cortex in schizophrenia. Journal 
of Neuroscience Research, 89(8), 1218–1227. https:// doi. org/ 10. 
1002/ jnr. 22647

Bennett, M. I., Smith, B. H., Torrance, N., & Potter, J. (2005). The 
S-LANSS score for identifying pain of predominantly neuropathic 
origin: validation for use in clinical and postal research. Journal of 
Pain, 6(3), 149–158. https:// doi. org/ 10. 1016/j. jpain. 2004. 11. 007

Beurel, E., Grieco, S. F., & Jope, R. S. (2015). Glycogen synthase 
kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol-
ogy & Therapeutics, 148, 114–131. https:// doi. org/ 10. 1016/j. 
pharm thera. 2014. 11. 016

Boucher, T. J., & McMahon, S. B. (2001). Neurotrophic factors and 
neuropathic pain. Current Opinion in Pharmacology Journal, 
1(1), 66–72.

Bouhassira, D., & Attal, N. (2011). Diagnosis and assessment of neuro-
pathic pain: the saga of clinical tools. Pain, 152(3 Suppl), S74-83. 
https:// doi. org/ 10. 1016/j. pain. 2010. 11. 027

Buckley, D. A., Jennings, E. M., Burke, N. N., Roche, M., McInerney, 
V., Wren, J. D., Finn, D. P., & McHugh, P. C. (2018). The devel-
opment of translational biomarkers as a tool for improving the 
understanding, diagnosis and treatment of chronic neuropathic 
pain. Molecular Neurobiology, 55(3), 2420–2430. https:// doi. org/ 
10. 1007/ s12035- 017- 0492-8

Busch-Dienstfertig, M., & González-Rodríguez, S. (2013). IL-4, JAK-
STAT signaling, and pain. JAK-STAT, 2(4), e27638. https:// doi. 
org/ 10. 4161/ jkst. 27638

Campbell, J. N., & Meyer, R. A. (2006). Mechanisms of neuropathic 
pain. Neuron, 52(1), 77–92. https:// doi. org/ 10. 1016/j. neuron. 2006. 
09. 021

Carniglia, L., Ramirez, D., Durand, D., Saba, J., Turati, J., Caruso, 
C., Scimonelli, T. N., & Lasaga, M. (2017). Neuropeptides and 
microglial activation in inflammation, pain, and neurodegenera-
tive diseases. Mediators of Inflammation, 2017, 5048616. https:// 
doi. org/ 10. 1155/ 2017/ 50486 16

Chen, C., Bao, G. F., Xu, G., Sun, Y., & Cui, Z. M. (2018). Altered Wnt 
and NF-kappaB signaling in facet joint osteoarthritis: Insights 
from RNA deep sequencing. Tohoku Journal of Experimental 
Medicine, 245(1), 69–77. https:// doi. org/ 10. 1620/ tjem. 245. 69

Chen, J., Wang, M., Waheed Khan, R. A., He, K., Wang, Q., Li, Z., 
Shen, J., Song, Z., Li, W., Wen, Z., Jiang, Y., Xu, Y., Shi, Y., & Ji, 
W. (2015). The GSK3B gene confers risk for both major depres-
sive disorder and schizophrenia in the Han Chinese population. 
Journal of Affective Disorders, 185, 149–155. https:// doi. org/ 10. 
1016/j. jad. 2015. 06. 040

Colloca, L., Ludman, T., Bouhassira, D., Baron, R., Dickenson, A. H., 
Yarnitsky, D., Freeman, R., Truini, A., Attal, N., Finnerup, N. B., 
Eccleston, C., Kalso, E., Bennett, D. L., Dworkin, R. H., & Raja, 
S. N. (2017). Neuropathic pain. Nature Reviews. Disease Primers, 
3, 17002. https:// doi. org/ 10. 1038/ nrdp. 2017.2

Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-
Gandhu, M., Herbert, T. A., Barrett, L., Brenner, G. J., Vardeh, 
D., Woolf, C. J., & Fitzgerald, M. (2009). T-cell infiltration and 
signaling in the adult dorsal spinal cord is a major contributor 

https://doi.org/10.1007/s12017-021-08694-8
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14336/AD.2019.1127
https://doi.org/10.14336/AD.2019.1127
https://doi.org/10.3390/diagnostics5010084
https://doi.org/10.1186/s12974-017-0804-y
https://doi.org/10.1038/nrg2918
https://doi.org/10.1002/jnr.22647
https://doi.org/10.1002/jnr.22647
https://doi.org/10.1016/j.jpain.2004.11.007
https://doi.org/10.1016/j.pharmthera.2014.11.016
https://doi.org/10.1016/j.pharmthera.2014.11.016
https://doi.org/10.1016/j.pain.2010.11.027
https://doi.org/10.1007/s12035-017-0492-8
https://doi.org/10.1007/s12035-017-0492-8
https://doi.org/10.4161/jkst.27638
https://doi.org/10.4161/jkst.27638
https://doi.org/10.1016/j.neuron.2006.09.021
https://doi.org/10.1016/j.neuron.2006.09.021
https://doi.org/10.1155/2017/5048616
https://doi.org/10.1155/2017/5048616
https://doi.org/10.1620/tjem.245.69
https://doi.org/10.1016/j.jad.2015.06.040
https://doi.org/10.1016/j.jad.2015.06.040
https://doi.org/10.1038/nrdp.2017.2


336 NeuroMolecular Medicine (2022) 24:320–338

1 3

to neuropathic pain-like hypersensitivity. Journal of Neurosci-
ence, 29(46), 14415–14422. https:// doi. org/ 10. 1523/ JNEUR OSCI. 
4569- 09. 2009

Dallas, P. B., Gottardo, N. G., Firth, M. J., Beesley, A. H., Hoffmann, 
K., Terry, P. A., Freitas, J. R., Boag, J. M., Cummings, A. J., & 
Kees, U. R. (2005). Gene expression levels assessed by oligonu-
cleotide microarray analysis and quantitative real-time RT-PCR—
How well do they correlate? BMC Genomics, 6, 59. https:// doi. 
org/ 10. 1186/ 1471- 2164-6- 59

Denk, F., Crow, M., Didangelos, A., Lopes, D. M., & McMahon, S. B. 
(2016). Persistent alterations in microglial enhancers in a model 
of chronic pain. Cell Reports, 15(8), 1771–1781. https:// doi. org/ 
10. 1016/j. celrep. 2016. 04. 063

Descalzi, G., Mitsi, V., Purushothaman, I., Gaspari, S., Avrampou, K., 
Loh, Y. E., Shen, L., & Zachariou, V. (2017). Neuropathic pain 
promotes adaptive changes in gene expression in brain networks 
involved in stress and depression. Science Signaling. https:// doi. 
org/ 10. 1126/ scisi gnal. aaj15 49

Dorsey, S. G., Renn, C. L., Griffioen, M., Lassiter, C. B., Zhu, S., 
Huot-Creasy, H., McCracken, C., Mahurkar, A., Shetty, A. C., 
Jackson-Cook, C. K., Kim, H., Henderson, W. A., Saligan, L., 
Gill, J., Colloca, L., Lyon, D. E., & Starkweather, A. R. (2019). 
Whole blood transcriptomic profiles can differentiate vulnerability 
to chronic low back pain. PLoS ONE, 14(5), e0216539. https:// 
doi. org/ 10. 1371/ journ al. pone. 02165 39

El-Hage, N., Podhaizer, E. M., Sturgill, J., & Hauser, K. F. (2011). Toll-
like receptor expression and activation in astroglia: Differential 
regulation by HIV-1 Tat, gp120, and morphine. Immunological 
Investigations, 40(5), 498–522. https:// doi. org/ 10. 3109/ 08820 139. 
2011. 561904

Ellis, A., & Bennett, D. L. (2013). Neuroinflammation and the genera-
tion of neuropathic pain. British Journal of Anaesthesia, 111(1), 
26–37. https:// doi. org/ 10. 1093/ bja/ aet128

Fang, F., Pan, J., Xu, L., Li, G., & Wang, J. (2015). Identification 
of potential transcriptomic markers in developing ankylosing 
spondylitis: A meta-analysis of gene expression profiles. BioMed 
Research International, 2015, 826316. https:// doi. org/ 10. 1155/ 
2015/ 826316

Franchi, S., Moretti, S., Castelli, M., Lattuada, D., Scavullo, C., Pan-
erai, A. E., & Sacerdote, P. (2012). Mu opioid receptor activation 
modulates Toll like receptor 4 in murine macrophages. Brain, 
Behavior, and Immunity, 26(3), 480–488. https:// doi. org/ 10. 
1016/j. bbi. 2011. 12. 010

Garcia-Laorden, M. I., Stroo, I., Blok, D. C., Florquin, S., Medema, J. 
P., de Vos, A. F., & van der Poll, T. (2016). Granzymes A and B 
regulate the local inflammatory response during Klebsiella pneu-
moniae pneumonia. Journal of Innate Immunity, 8(3), 258–268. 
https:// doi. org/ 10. 1159/ 00044 3401

Gobrecht, P., Leibinger, M., Andreadaki, A., & Fischer, D. (2014). 
Sustained GSK3 activity markedly facilitates nerve regeneration. 
Nature Communications, 5, 4561. https:// doi. org/ 10. 1038/ ncomm 
s5561

Hagiwara, Y., Ando, A., Onoda, Y., Takemura, T., Minowa, T., Han-
agata, N., Tsuchiya, M., Watanabe, T., Chimoto, E., Suda, H., 
Takahashi, N., Sugaya, H., Saijo, Y., & Itoi, E. (2012). Coexist-
ence of fibrotic and chondrogenic process in the capsule of idio-
pathic frozen shoulders. Osteoarthritis Cartilage, 20(3), 241–249. 
https:// doi. org/ 10. 1016/j. joca. 2011. 12. 008

Hans, G., Deseure, K., & Adriaensen, H. (2008). Endothelin-1-induced 
pain and hyperalgesia: A review of pathophysiology, clinical man-
ifestations and future therapeutic options. Neuropeptides, 42(2), 
119–132. https:// doi. org/ 10. 1016/j. npep. 2007. 12. 001

Hartung, J. E., Eskew, O., Wong, T., Tchivileva, I. E., Oladosu, F. 
A., O’Buckley, S. C., & Nackley, A. G. (2015). Nuclear factor-
kappa B regulates pain and COMT expression in a rodent model 

of inflammation. Brain, Behavior, and Immunity, 50, 196–202. 
https:// doi. org/ 10. 1016/j. bbi. 2015. 07. 014

Hoffman, E. M., Watson, J. C., St Sauver, J., Staff, N. P., & Klein, C. J. 
(2017). Association of long-term opioid therapy with functional 
status, adverse outcomes, and mortality among patients with poly-
neuropathy. JAMA of Neurology, 74(7), 773–779. https:// doi. org/ 
10. 1001/ jaman eurol. 2017. 0486

Hutchinson, M. R., Ramos, K. M., Loram, L. C., Wieseler, J., Sholar, 
P. W., Kearney, J. J., Lewis, M. T., Crysdale, N. Y., Zhang, Y., 
Harrison, J. A., Maier, S. F., Rice, K. C., & Watkins, L. R. (2009). 
Evidence for a role of heat shock protein-90 in toll like recep-
tor 4 mediated pain enhancement in rats. Neuroscience, 164(4), 
1821–1832. https:// doi. org/ 10. 1016/j. neuro scien ce. 2009. 09. 046

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., & 
Speed, T. P. (2003). Summaries of affymetrix GeneChip probe 
level data. Nucleic Acids Research, 31(4), e15.

James, S. (2013). Human pain and genetics: Some basics. British Jour-
nal of Pain, 7(4), 171–178. https:// doi. org/ 10. 1177/ 20494 63713 
506408

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A. L. 
(2000). The large-scale organization of metabolic networks. 
Nature, 407, 651. https:// doi. org/ 10. 1038/ 35036 627

Ji, R. R., Xu, Z. Z., & Gao, Y. J. (2014). Emerging targets in neuroin-
flammation-driven chronic pain. Nature Reviews Drug Discovery, 
13(7), 533–548. https:// doi. org/ 10. 1038/ nrd43 34

Jia, M., Andreassen, T., Jensen, L., Bathen, T. F., Sinha, I., Gao, H., 
Zhao, C., Haldosen, L. A., Cao, Y., Girnita, L., Moestue, S. A., 
& Dahlman-Wright, K. (2016). Estrogen receptor alpha promotes 
breast cancer by reprogramming choline metabolism. Cancer 
Research, 76(19), 5634–5646. https:// doi. org/ 10. 1158/ 0008- 5472. 
CAN- 15- 2910

Jin, J., Kittanakom, S., Wong, V., Reyes, B. A., Van Bockstaele, E. J., 
Stagljar, I., Berrettini, W., & Levenson, R. (2010). Interaction 
of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt 
secretion: potential implications for opioid dependence. BMC 
Neuroscience, 11, 33. https:// doi. org/ 10. 1186/ 1471- 2202- 11- 33

Jope, R. S., Yuskaitis, C. J., & Beurel, E. (2007). Glycogen synthase 
kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neu-
rochemical Research, 32(4–5), 577–595. https:// doi. org/ 10. 1007/ 
s11064- 006- 9128-5

Joseph, E. K., & Levine, J. D. (2004). Caspase signalling in neuro-
pathic and inflammatory pain in the rat. European Journal of 
Neuroscience, 20(11), 2896–2902. https:// doi. org/ 10. 1111/j. 1460- 
9568. 2004. 03750.x

Kelleher, J. H., Tewari, D., & McMahon, S. B. (2017). Neurotrophic 
factors and their inhibitors in chronic pain treatment. Neurobiol-
ogy of Disease, 97, 127–138. https:// doi. org/ 10. 1016/j. nbd. 2016. 
03. 025

Kim, H. S., Kim, D. C., Kim, H. M., Kwon, H. J., Kwon, S. J., Kang, 
S. J., Kim, S. C., & Choi, G. E. (2015). STAT1 deficiency redi-
rects IFN signalling toward suppression of TLR response through 
a feedback activation of STAT3. Scientific Reports, 5, 13414. 
https:// doi. org/ 10. 1038/ srep1 3414

Kirkham, C. L., & Carlyle, J. R. (2014). Complexity and diversity of 
the NKR-P1: Clr (Klrb1:Clec2) recognition systems. Frontiers in 
Immunology, 5, 214. https:// doi. org/ 10. 3389/ fimmu. 2014. 00214

Kramer, A., Green, J., Pollard, J., Jr., & Tugendreich, S. (2014). Causal 
analysis approaches in Ingenuity Pathway Analysis. Bioinformat-
ics, 30(4), 523–530. https:// doi. org/ 10. 1093/ bioin forma tics/ btt703

Kremer, A., Louis, J. V., Jaworski, T., & Van Leuven, F. (2011). GSK3 
and Alzheimer’s disease: Facts and fiction. Frontiers in Molecular 
Neuroscience, 4, 17. https:// doi. org/ 10. 3389/ fnmol. 2011. 00017

Kwiatkowski, K., & Mika, J. (2018). The importance of chemokines 
in neuropathic pain development and opioid analgesic potency. 
Pharmacological Reports, 70(4), 821–830. https:// doi. org/ 10. 
1016/j. pharep. 2018. 01. 006

https://doi.org/10.1523/JNEUROSCI.4569-09.2009
https://doi.org/10.1523/JNEUROSCI.4569-09.2009
https://doi.org/10.1186/1471-2164-6-59
https://doi.org/10.1186/1471-2164-6-59
https://doi.org/10.1016/j.celrep.2016.04.063
https://doi.org/10.1016/j.celrep.2016.04.063
https://doi.org/10.1126/scisignal.aaj1549
https://doi.org/10.1126/scisignal.aaj1549
https://doi.org/10.1371/journal.pone.0216539
https://doi.org/10.1371/journal.pone.0216539
https://doi.org/10.3109/08820139.2011.561904
https://doi.org/10.3109/08820139.2011.561904
https://doi.org/10.1093/bja/aet128
https://doi.org/10.1155/2015/826316
https://doi.org/10.1155/2015/826316
https://doi.org/10.1016/j.bbi.2011.12.010
https://doi.org/10.1016/j.bbi.2011.12.010
https://doi.org/10.1159/000443401
https://doi.org/10.1038/ncomms5561
https://doi.org/10.1038/ncomms5561
https://doi.org/10.1016/j.joca.2011.12.008
https://doi.org/10.1016/j.npep.2007.12.001
https://doi.org/10.1016/j.bbi.2015.07.014
https://doi.org/10.1001/jamaneurol.2017.0486
https://doi.org/10.1001/jamaneurol.2017.0486
https://doi.org/10.1016/j.neuroscience.2009.09.046
https://doi.org/10.1177/2049463713506408
https://doi.org/10.1177/2049463713506408
https://doi.org/10.1038/35036627
https://doi.org/10.1038/nrd4334
https://doi.org/10.1158/0008-5472.CAN-15-2910
https://doi.org/10.1158/0008-5472.CAN-15-2910
https://doi.org/10.1186/1471-2202-11-33
https://doi.org/10.1007/s11064-006-9128-5
https://doi.org/10.1007/s11064-006-9128-5
https://doi.org/10.1111/j.1460-9568.2004.03750.x
https://doi.org/10.1111/j.1460-9568.2004.03750.x
https://doi.org/10.1016/j.nbd.2016.03.025
https://doi.org/10.1016/j.nbd.2016.03.025
https://doi.org/10.1038/srep13414
https://doi.org/10.3389/fimmu.2014.00214
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.3389/fnmol.2011.00017
https://doi.org/10.1016/j.pharep.2018.01.006
https://doi.org/10.1016/j.pharep.2018.01.006


337NeuroMolecular Medicine (2022) 24:320–338 

1 3

Lasselin, J., Kemani, M. K., Kanstrup, M., Olsson, G. L., Axelsson, J., 
Andreasson, A., Lekander, M., & Wicksell, R. K. (2016). Low-
grade inflammation may moderate the effect of behavioral treat-
ment for chronic pain in adults. Journal of Behavioral Medicine, 
39(5), 916–924. https:// doi. org/ 10. 1007/ s10865- 016- 9769-z

Latremoliere, A., & Costigan, M. (2011). GCH1, BH4 and pain. Cur-
rent Pharmaceutical Biotechnology, 12(10), 1728–1741.

Latremoliere, A., & Costigan, M. (2018). Combining human and rodent 
genetics to identify new analgesics. Neuroscience Bulletin, 34(1), 
143–155. https:// doi. org/ 10. 1007/ s12264- 017- 0152-z

Lawrence, T. (2009). The nuclear factor NF-kappaB pathway in 
inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), 
a001651. https:// doi. org/ 10. 1101/ cshpe rspect. a0016 51

Lei, W., Mullen, N., McCarthy, S., Brann, C., Richard, P., Cormier, J., 
Edwards, K., Bilsky, E. J., & Streicher, J. M. (2017). Heat-shock 
protein 90 (Hsp90) promotes opioid-induced anti-nociception by 
an ERK mitogen-activated protein kinase (MAPK) mechanism in 
mouse brain. Journal of Biological Chemistry, 292(25), 10414–
10428. https:// doi. org/ 10. 1074/ jbc. M116. 769489

Lim, C. P., & Cao, X. (2006). Structure, function, and regulation of 
STAT proteins. Molecular BioSystems, 2(11), 536–550. https:// 
doi. org/ 10. 1039/ b6062 46f

Liu, S., Wang, L., Sun, N., Yang, C., Liu, Z., Li, X., Cao, X., Xu, Y., & 
Zhang, K. (2017). The gender-specific association of rs334558 in 
GSK3beta with major depressive disorder. Medicine (baltimore), 
96(3), e5928. https:// doi. org/ 10. 1097/ MD. 00000 00000 005928

Liu, T., Zhou, Y., Ko, K. S., & Yang, H. (2015). Interactions between 
Myc and mediators of inflammation in chronic liver diseases. 
Mediators of Inflammation, 2015, 276850. https:// doi. org/ 10. 
1155/ 2015/ 276850

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene 
expression data using real-time quantitative PCR and the 2(-Delta 
Delta C(T)) method. Methods, 25(4), 402–408. https:// doi. org/ 10. 
1006/ meth. 2001. 1262

Lopes, D. M., Malek, N., Edye, M., Jager, S. B., McMurray, S., McMa-
hon, S. B., & Denk, F. (2017). Sex differences in peripheral not 
central immune responses to pain-inducing injury. Scientific 
Reports, 7(1), 16460. https:// doi. org/ 10. 1038/ s41598- 017- 16664-z

Maixner, D. W., & Weng, H. R. (2013). The role of glycogen synthase 
kinase 3 beta in neuroinflammation and pain. Journal of Phar-
macy and Pharmacology (los Angel), 1(1), 001. https:// doi. org/ 
10. 13188/ 2327- 204X. 10000 01

Martins, D. F., Rosa, A. O., Gadotti, V. M., Mazzardo-Martins, L., Nas-
cimento, F. P., Egea, J., Lopez, M. G., & Santos, A. R. (2011). The 
antinociceptive effects of AR-A014418, a selective inhibitor of 
glycogen synthase kinase-3 beta, in mice. Journal of Pain, 12(3), 
315–322. https:// doi. org/ 10. 1016/j. jpain. 2010. 06. 007

Mazzardo-Martins, L., Martins, D. F., Stramosk, J., Cidral-Filho, F. 
J., & Santos, A. R. (2012). Dec 13). Glycogen synthase kinase 
3-specific inhibitor AR-A014418 decreases neuropathic pain in 
mice: Evidence for the mechanisms of action. Neuroscience, 226, 
411–420. https:// doi. org/ 10. 1016/j. neuro scien ce. 2012. 09. 020

Morey, J. S., Ryan, J. C., & Van Dolah, F. M. (2006). Microarray vali-
dation: Factors influencing correlation between oligonucleotide 
microarrays and real-time PCR. Biological Procedures Online, 
8, 175–193. https:// doi. org/ 10. 1251/ bpo126

North, R. Y., Li, Y., Ray, P., Rhines, L. D., Tatsui, C. E., Rao, G., 
Johansson, C. A., Zhang, H., Kim, Y. H., Zhang, B., Dussor, G., 
Kim, T. H., Price, T. J., & Dougherty, P. M. (2019). Electrophysio-
logical and transcriptomic correlates of neuropathic pain in human 
dorsal root ganglion neurons. Brain, 142(5), 1215–1226. https:// 
doi. org/ 10. 1093/ brain/ awz063

Ogawa, K., Tanaka, K., Ishii, A., Nakamura, Y., Kondo, S., Suga-
mura, K., Takano, S., Nakamura, M., & Nagata, K. (2001). A 
novel serum protein that is selectively produced by cytotoxic 

lymphocytes. The Journal of Immunology, 166(10), 6404–6412. 
https:// doi. org/ 10. 4049/ jimmu nol. 166. 10. 6404

Patapoutian, A., & Reichardt, L. F. (2000). Roles of Wnt proteins in 
neural development and maintenance. Current Opinion in Neuro-
biology, 10(3), 392–399.

Rchiad, Z., Haidar, M., Ansari, H. R., Tajeri, S., Mfarrej, S., Ben 
Rached, F., Kaushik, A., Langsley, G., & Pain, A. (2020). Novel 
tumour suppressor roles for GZMA and RASGRP1 in Theileria 
annulata-transformed macrophages and human B lymphoma cells. 
Cell Microbiology, 22(12), e13255. https:// doi. org/ 10. 1111/ cmi. 
13255

Ronai, Z., Kovacs-Nagy, R., Szantai, E., Elek, Z., Sasvari-Szekely, M., 
Faludi, G., Benkovits, J., Rethelyi, J. M., & Szekely, A. (2014). 
Glycogen synthase kinase 3 beta gene structural variants as pos-
sible risk factors of bipolar depression. American Journal of 
Medical Genetics B, 165B(3), 217–222. https:// doi. org/ 10. 1002/ 
ajmg.b. 32223

Rostamzadeh, D., Kazemi, T., Amirghofran, Z., & Shabani, M. (2018). 
Update on Fc receptor-like (FCRL) family: New immunoregula-
tory players in health and diseases. Expert Opinion on Therapeutic 
Targets, 22(6), 487–502. https:// doi. org/ 10. 1080/ 14728 222. 2018. 
14727 68

Shah, M., & Choi, S. (2017). Toll-like receptor-dependent negative 
effects of opioids: a battle between analgesia and hyperalgesia 
[mini review]. Frontiers in Immunology. https:// doi. org/ 10. 3389/ 
fimmu. 2017. 00642

Shih, R. H., Wang, C. Y., & Yang, C. M. (2015). NF-kappaB signaling 
pathways in neurological inflammation: A mini review. Frontiers 
in Molecular Neuroscience, 8, 77. https:// doi. org/ 10. 3389/ fnmol. 
2015. 00077

Sipos, F., Firneisz, G., & Muzes, G. (2016). Therapeutic aspects of 
c-MYC signaling in inflammatory and cancerous colonic diseases. 
World Journal of Gastroenterology, 22(35), 7938–7950. https:// 
doi. org/ 10. 3748/ wjg. v22. i35. 7938

Slenter, D. N., Kutmon, M., Hanspers, K., Riutta, A., Windsor, J., 
Nunes, N., Melius, J., Cirillo, E., Coort, S. L., Digles, D., Ehrhart, 
F., Giesbertz, P., Kalafati, M., Martens, M., Miller, R., Nishida, 
K., Rieswijk, L., Waagmeester, A., Eijssen, L. M. T., … Wil-
lighagen, E. L. (2018). WikiPathways: a multifaceted pathway 
database bridging metabolomics to other omics research. Nucleic 
Acids Research, 46(D1), D661–D667. https:// doi. org/ 10. 1093/ 
nar/ gkx10 64

Smith, H. S. (2012). Opioids and neuropathic pain. Pain Physician, 
15(3S), ES93–ES110.

Sommer, C., Leinders, M., & Uceyler, N. (2018). Inflammation in the 
pathophysiology of neuropathic pain. Pain, 159(3), 595–602. 
https:// doi. org/ 10. 1097/j. pain. 00000 00000 001122

Sorge, R. E., LaCroix-Fralish, M. L., Tuttle, A. H., Sotocinal, S. G., 
Austin, J. S., Ritchie, J., Chanda, M. L., Graham, A. C., Topham, 
L., Beggs, S., Salter, M. W., & Mogil, J. S. (2011). Spinal cord 
Toll-like receptor 4 mediates inflammatory and neuropathic 
hypersensitivity in male but not female mice. Journal of Neuro-
science, 31(43), 15450–15454. https:// doi. org/ 10. 1523/ JNEUR 
OSCI. 3859- 11. 2011

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simon-
ovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, 
L. J., & von Mering, C. (2017). The STRING database in 2017: 
quality-controlled protein-protein association networks, made 
broadly accessible. Nucleic Acids Research, 45(D1), D362–D368. 
https:// doi. org/ 10. 1093/ nar/ gkw937

Tak, P. P., & Firestein, G. S. (2001). NF-kappaB: A key role in inflam-
matory diseases. Journal of Clinical Investigation, 107(1), 7–11. 
https:// doi. org/ 10. 1172/ JCI11 830

Tavares-Ferreira, D., Lawless, N., Bird, E. V., Atkins, S., Collier, D., 
Sher, E., Malki, K., Lambert, D. W., & Boissonade, F. M. (2019). 
Correlation of miRNA expression with intensity of neuropathic 

https://doi.org/10.1007/s10865-016-9769-z
https://doi.org/10.1007/s12264-017-0152-z
https://doi.org/10.1101/cshperspect.a001651
https://doi.org/10.1074/jbc.M116.769489
https://doi.org/10.1039/b606246f
https://doi.org/10.1039/b606246f
https://doi.org/10.1097/MD.0000000000005928
https://doi.org/10.1155/2015/276850
https://doi.org/10.1155/2015/276850
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1038/s41598-017-16664-z
https://doi.org/10.13188/2327-204X.1000001
https://doi.org/10.13188/2327-204X.1000001
https://doi.org/10.1016/j.jpain.2010.06.007
https://doi.org/10.1016/j.neuroscience.2012.09.020
https://doi.org/10.1251/bpo126
https://doi.org/10.1093/brain/awz063
https://doi.org/10.1093/brain/awz063
https://doi.org/10.4049/jimmunol.166.10.6404
https://doi.org/10.1111/cmi.13255
https://doi.org/10.1111/cmi.13255
https://doi.org/10.1002/ajmg.b.32223
https://doi.org/10.1002/ajmg.b.32223
https://doi.org/10.1080/14728222.2018.1472768
https://doi.org/10.1080/14728222.2018.1472768
https://doi.org/10.3389/fimmu.2017.00642
https://doi.org/10.3389/fimmu.2017.00642
https://doi.org/10.3389/fnmol.2015.00077
https://doi.org/10.3389/fnmol.2015.00077
https://doi.org/10.3748/wjg.v22.i35.7938
https://doi.org/10.3748/wjg.v22.i35.7938
https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1097/j.pain.0000000000001122
https://doi.org/10.1523/JNEUROSCI.3859-11.2011
https://doi.org/10.1523/JNEUROSCI.3859-11.2011
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1172/JCI11830


338 NeuroMolecular Medicine (2022) 24:320–338

1 3

pain in man. Molecular Pain, 15, 1744806919860323. https:// doi. 
org/ 10. 1177/ 17448 06919 860323

Tegeder, I., Costigan, M., Griffin, R. S., Abele, A., Belfer, I., Schmidt, 
H., Ehnert, C., Nejim, J., Marian, C., Scholz, J., Wu, T., 
Allchorne, A., Diatchenko, L., Binshtok, A. M., Goldman, D., 
Adolph, J., Sama, S., Atlas, S. J., Carlezon, W. A., … Woolf, C. J. 
(2006). GTP cyclohydrolase and tetrahydrobiopterin regulate pain 
sensitivity and persistence. Nature Medicine, 12(11), 1269–1277. 
https:// doi. org/ 10. 1038/ nm1490

Torrance, N., Smith, B. H., Bennett, M. I., & Lee, A. J. (2006). The epi-
demiology of chronic pain of predominantly neuropathic origin. 
Results from a general population survey. Journal of Pain, 7(4), 
281–289. https:// doi. org/ 10. 1016/j. jpain. 2005. 11. 008

Tsuda, M., Kohro, Y., Yano, T., Tsujikawa, T., Kitano, J., Tozaki-Sai-
toh, H., Koyanagi, S., Ohdo, S., Ji, R. R., Salter, M. W., & Inoue, 
K. (2011). JAK-STAT3 pathway regulates spinal astrocyte prolif-
eration and neuropathic pain maintenance in rats. Brain, 134(4), 
1127–1139. https:// doi. org/ 10. 1093/ brain/ awr025

Tsuda, M., Masuda, T., Kitano, J., Shimoyama, H., Tozaki-Saitoh, H., 
& Inoue, K. (2009). IFN-gamma receptor signaling mediates spi-
nal microglia activation driving neuropathic pain. Proceedings of 
the National Academy of Sciences of the United States of America, 
106(19), 8032–8037. https:// doi. org/ 10. 1073/ pnas. 08104 20106

Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis 
of microarrays applied to the ionizing radiation response. Pro-
ceedings of the National Academy of Sciences of the United States 
of America, 98(9), 5116. https:// doi. org/ 10. 1073/ pnas. 09106 2498

Uceyler, N., & Sommer, C. (2012). Cytokine-related and histological 
biomarkers for neuropathic pain assessment. Pain Management, 
2(4), 391–398. https:// doi. org/ 10. 2217/ pmt. 12. 28

van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H., & Torrance, N. 
(2014). Neuropathic pain in the general population: A systematic 
review of epidemiological studies. Pain, 155(4), 654–662. https:// 
doi. org/ 10. 1016/j. pain. 2013. 11. 013

Venero, J. L., Burguillos, M. A., & Joseph, B. (2013). Caspases playing 
in the field of neuroinflammation: Old and new players. Develop-
mental Neuroscience, 35(2–3), 88–101. https:// doi. org/ 10. 1159/ 
00034 6155

Wang, L. T., Wang, S. J., & Hsu, S. H. (2012a). Functional characteri-
zation of mammalian Wntless homolog in mammalian system. 
The Kaohsiung Journal of Medical Sciences, 28(7), 355–361. 
https:// doi. org/ 10. 1016/j. kjms. 2012. 02. 001

Wang, X., Loram, L. C., Ramos, K., de Jesus, A. J., Thomas, J., Cheng, 
K., Reddy, A., Somogyi, A. A., Hutchinson, M. R., Watkins, L. 
R., & Yin, H. (2012b). Morphine activates neuroinflammation 

in a manner parallel to endotoxin. Proceedings of the National 
Academy of Sciences of the United States of America, 109(16), 
6325–6330. https:// doi. org/ 10. 1073/ pnas. 12001 30109

White, F. A., Jung, H., & Miller, R. J. (2007). Chemokines and the 
pathophysiology of neuropathic pain. Proceedings of the National 
Academy of Sciences of the United States of America, 104(51), 
20151–20158. https:// doi. org/ 10. 1073/ pnas. 07092 50104

Xie, N., Li, H., Wei, D., LeSage, G., Chen, L., Wang, S., Zhang, Y., 
Chi, L., Ferslew, K., He, L., Chi, Z., & Yin, D. (2010). Glycogen 
synthase kinase-3 and p38 MAPK are required for opioid-induced 
microglia apoptosis. Neuropharmacology, 59(6), 444–451. https:// 
doi. org/ 10. 1016/j. neuro pharm. 2010. 06. 006

Xue, Z. J., Shen, L., Wang, Z. Y., Hui, S. Y., Huang, Y. G., & Ma, C. 
(2014). STAT3 inhibitor WP1066 as a novel therapeutic agent for 
bCCI neuropathic pain rats. Brain Research, 1583, 79–88. https:// 
doi. org/ 10. 1016/j. brain res. 2014. 07. 015

Yamamotova, A., Sramkova, T., & Rokyta, R. (2010). Intensity of pain 
and biochemical changes in blood plasma in spinal cord trauma. 
Spinal Cord, 48(1), 21–26. https:// doi. org/ 10. 1038/ sc. 2009. 71

Zhao, M., Zhou, G., Zhang, Y., Chen, T., Sun, X., Stuart, C., Hanley, 
G., Li, J., Zhang, J., & Yin, D. (2009). beta-arrestin2 inhibits 
opioid-induced breast cancer cell death through Akt and caspase-8 
pathways. Neoplasma, 56(2), 108–113.

Zhou, Z., He, H., Wang, K., Shi, X., Wang, Y., Su, Y., Wang, Y., Li, 
D., Liu, W., Zhang, Y., Shen, L., Han, W., Shen, L., Ding, J., & 
Shao, F. (2020). Granzyme A from cytotoxic lymphocytes cleaves 
GSDMB to trigger pyroptosis in target cells. Science. https:// doi. 
org/ 10. 1126/ scien ce. aaz75 48

Zou, W., Zhan, X., Li, M., Song, Z., Liu, C., Peng, F., & Guo, Q. 
(2012). Identification of differentially expressed proteins in the 
spinal cord of neuropathic pain models with PKCgamma silence 
by proteomic analysis. Brain Research, 1440, 34–46. https:// doi. 
org/ 10. 1016/j. brain res. 2011. 12. 046

Zychowska, M., Rojewska, E., Piotrowska, A., Kreiner, G., & Mika, 
J. (2016). Microglial inhibition influences XCL1/XCR1 expres-
sion and causes analgesic effects in a mouse model of diabetic 
neuropathy. Anesthesiology, 125(3), 573–589. https:// doi. org/ 10. 
1097/ ALN. 00000 00000 001219

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1177/1744806919860323
https://doi.org/10.1177/1744806919860323
https://doi.org/10.1038/nm1490
https://doi.org/10.1016/j.jpain.2005.11.008
https://doi.org/10.1093/brain/awr025
https://doi.org/10.1073/pnas.0810420106
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.2217/pmt.12.28
https://doi.org/10.1016/j.pain.2013.11.013
https://doi.org/10.1016/j.pain.2013.11.013
https://doi.org/10.1159/000346155
https://doi.org/10.1159/000346155
https://doi.org/10.1016/j.kjms.2012.02.001
https://doi.org/10.1073/pnas.1200130109
https://doi.org/10.1073/pnas.0709250104
https://doi.org/10.1016/j.neuropharm.2010.06.006
https://doi.org/10.1016/j.neuropharm.2010.06.006
https://doi.org/10.1016/j.brainres.2014.07.015
https://doi.org/10.1016/j.brainres.2014.07.015
https://doi.org/10.1038/sc.2009.71
https://doi.org/10.1126/science.aaz7548
https://doi.org/10.1126/science.aaz7548
https://doi.org/10.1016/j.brainres.2011.12.046
https://doi.org/10.1016/j.brainres.2011.12.046
https://doi.org/10.1097/ALN.0000000000001219
https://doi.org/10.1097/ALN.0000000000001219

	The Identification of Blood Biomarkers of Chronic Neuropathic Pain by Comparative Transcriptomics
	Abstract
	Introduction
	Materials and Methods
	Sample Acquisition
	Transcriptomic Analysis
	Bioinformatics Analysis
	Quantitative PCR (qRT-PCR)
	Statistical Analysis
	Ethical Approval

	Results
	Descriptive and Exploratory Analysis of the Participants
	Transcriptomic Analysis
	Key Transcription Factors in CNP Networks
	qRT-PCR-Based Validation of Differentially Expressed Genes (CNP vs Control)
	Effect of Medications on the Gene Expression

	Discussion and Conclusions
	Acknowledgements 
	References




