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Abstract  
Fentanyl is a highly selective μ-opioid receptor agonist with high analgesic activity. 
Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These 
were employed to elucidate ligand-receptor interactions using information derived only from the 
ligand structure to identify new potential lead compounds. The present studies demonstrated that 
three hydrophobic regions, one positive ionizable region and two hydrogen bond acceptor region 
sites located on the molecule seem to be essential for analgesic activity. The results of the 
comparative molecular field analysis model suggested that both steric and electrostatic interactions 
play important roles. The contributions from steric and electrostatic fields for the model were 0.621 
and 0.379, respectively. The pharmacophore model provides crucial information about how well the 
common features of a subject molecule overlap with the hypothesis model, which is very valuable 
for designing and optimizing new active structures. 
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INTRODUCTION 
    
Fentanyl is a highly selective μ-opioid 
agonist with specific pharmacological 
properties. Due to its high analgesic potency 
and generally favorable pharmacological 
profile, it is used widely as a narcotic 
analgesic[1]. However, because of the side 
effects of respiratory depression and their 
habit-forming characteristics, only three 
fentanyl-like compounds are commercially 
available: alfentanil, remifentanil and 
sufentanil (Figure 1). Due to their high 
potency and short duration of action, they 
are used mainly for the induction of general 
anesthesia. 

The derivatives sufentanil and alfentanil 
have been used as anesthetics. They have 
only slight effects on the cardiovascular 
system, so could be used in heart surgery. 
With the increasing use of transdermal 
formulations for the treatment of chronic and 
cancer-related pain, the search of new 
analogs with increased potency and longer 
duration of action could represent an 
interesting approach for novel 
analgesics[2-3].  
In rational drug design, the biological activity 
of a set of compounds acting upon a 
particular protein is usually known, but 
information on the three-dimensional (3D) 
structure of the active site of the protein is 
not. A 3D pharmacophore hypothesis which 
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is consistent with known data should be useful and 
predictive for evaluating new compounds and directing 
further design and synthesis[4-5]. A pharmacophore model 
postulates that there is an essential 3D arrangement of 
functional groups that a molecule must possess to be 
recognized by the active site of a macromolecule. It 
collects common features distributed in 3D space which 
are intended to represent groups in a molecule that 
participate in important interactions between drugs and 
the active sites of macromolecules[6]. Hence, a 
pharmacophore model provides crucial information about 
how well the common features of a subject molecule 
overlap with the hypothesis model. It also informs the 
ability of molecules to adjust their conformations to fit an 
active site with energetically reasonable 
conformations[7-8]. Such characterized 3D models convey 
important information in an intuitive manner. 
Genetic algorithm with linear assignment of 
hypermolecular alignment of datasets (GALAHAD) is a 
new program developed for carrying out molecular 
alignments based on pharmacophoric and steric features 
shared among a set of ligands[9]. The pharmacophore 
models produced comprise overlaid ligand structures 
and a pharmacophore query suitable for 3D flexible 
searching. The features are typically distributed across 
two sets, with all or most features in one set required to 
match and the remainder falling into a relatively “loose” 
partial match constraint. Partial mapping allows the 
identification of larger, more diverse, more significant 
hypotheses and alignment models without the risk of 
missing compounds that do not map to all of the 
pharmacophore features. 
GALAHAD finds common-feature pharmacophore 
models among a set of highly active compounds. It 
therefore carries out a “qualitative model” without the use 
of activity data. This represents the essential 3D 
arrangement of functional groups common to a set of 
molecules for interacting with a specific biological 
target[10]. GALAHAD does not require the selection of a 
template because each molecule in the dataset is treated 
as a template. Nevertheless, such models can also serve 
as templates for subsequent GALAHAD runs, allowing 
other ligands to be fitted to them. This 3D array of 
chemical features provides a relative alignment for each 
input molecule consistent with its binding to a proposed 
common receptor site[11]. The chemical features 
considered can be: donors and acceptors of hydrogen 
bonds; aliphatic and aromatic hydrophobes; positive and 
negative charges; and positive and negative ionizable 
groups[12]. 
In the present study, identification of a hypothetical 3D 
ligand-based pharmacophore model was based on a 
novel pharmacophore screening method. GALAHAD 
implemented in the SYBYL program was conducted to 

search for pharmacophores. It modeled ligand-receptor 
interactions using information derived only from the 
ligand structure to identify new potential lead compounds. 
The most crucial step in undertaking comparative 
molecular field analysis (CoMFA) is to determine the 
bioactive conformations of the compounds so that all 
compounds can be aligned together. In the present study, 
a fairly rigid structure was selected as the template for 
structural alignment to establish three-dimensional 
quantitative structure-activity relationship (3D-QSAR) 
models[13].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS 
 
Generation of a 3D pharmacophore 
To set up a more general pharmacophore, a larger 
structural diversity was taken into account (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
Moreover, pharmacophore generation required 
compounds with potentially the same binding orientation 
in the active site and high relative potency[14-15]. 
Consequently, a set of 50 molecules was used to 
generate the 3D pharmacophore in the present study. 
The 50 molecules were divided into a training set (45 
molecules with prefixes A_, B_, C_, D_, E_, F_ and G_ 
are from the references[16] and which all had high relative 
analgesic potency; Table 1) and a test set (five molecules 
with prefixes H_; Table 2) by means of chemical and 
biological diversity. The parameter settings of align 
molecules used in searching for a pharmacophore are 
shown in Table 3.  

Figure 1  The structures of commercially available 
fentanyl-like compounds.  

(A) Fentanyl; (B) Suentanli; (C) Remifentanil; (D) Alfentanil. 

Figure 2  Compound 1 (left) and compound 2 (right) 
structures used for pharmacophore screening. 
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To generate potential conformations that the ligands may 
adopt, we used the automated feature alignment 
available in GALAHAD. Some molecules used in the 
present study had chiral centers (Figures 3 and 4), some 
of which have been reported[9, 11]. However, regarding the 
asymmetric atoms of compounds G_7, E_44, E_38, 
because no experimental data on the biologically 
relevant conformations of these molecules were 
available, it was arbitrarily decided to assign “undefined” 
chirality. This allowed the pharmacophore model 
procedure to choose which configuration of the 
asymmetric carbon atoms was the most appropriate[17-19]. 

The control parameters used for pharmacophore 
generation are summarized in Table 4. The overlay 
alignment of the training compounds which generated 
model 19 is shown in Figure 5. 
We used the function of “align molecules to template 
individually”, and the statistical results are displayed in 
Table 5. When values of the relative potency increased, 
the similarity of the pharmacophore query and the 
similarity of the pharmacophore also increased[20-22]. 
Model 19 had two ACCEPTOR_SITEs whereas model 
13 had three ACCEPTOR_SITEs (Figure 6). The relative 
locations of the phores between the two models were 

Table 1  The substituents of structure of compound 1 used for pharmacophore screening 

Molecule L1 L2 L3 R1 R2 Relative potencya

F_1f PhCH(OH)CH2- -H -Ph -CH3 - CH2CH3 16 000 
G_2 PhCH2CH2- -COOCH3 -Ph -H - CH2CH3 10 031 
G_3 C4H3S CH2CH2-b -COOCH3 -Ph -H - CH2CH3 8 676 
G_4 PhCH2CH2- -COOCH3 -Ph -H - C3H5

c) 6 176 
G_5 C4H3S CH2CH2-b -COCH2CH3 -Ph -H - CH2CH3 5 732 
G_6 PhCH2CH2- -COCH3 -Ph -H - CH2CH3 5 632 
G_7 PhCH2CH(CH3)- -COOCH3 -Ph -H - CH2CH3 5 016 
G_8 PhCH2CH2- -CH2OCH3 -Ph -H - CH2CH3 4 652 
G_9 PhCH2CH2- -COOCH3 -Ph -H - CH2CH3 4 586 
G_10 PhCH2CH2- -COCH3 -Ph -H - C3H5

c 4 586 
G_11 C4H3SCH2CH2-b -CH2OCH3 -Ph -H - CH2CH3 4 521 
A_12 PhCH2CH2- -COOCH3 -Ph -H -CHFMe 4 344 
D_13 PhCH2CH2- -COOCH3 -Ph -H n-C3H7 4 090 
D_14 PhCH2CH2- -CH2OCH3 -Ph -H - CH2CH3 4 038 
G_15 PhCH2CH2- -COOCH3 -Ph -H - C3H5

c 3 607 
A_16 PhCH2CH2- -COOCH3 -Ph -H - C3H5

c 3 475 
D_17 PhCH2CH2- -COOCH3 4-F-C6H4- -H - CH2CH3 3 150 
D_18 PhCH(OH)CH2- -CH2OCH3 -Ph -H - CH2CH3 2 863 
B_19 Me2C=CHCH2CH2- -COOCH3 -Ph -H - CH2CH3 2 780 
B_20 Me2C=C(Me)CH2CH2- -COOCH3 -Ph -H - CH2CH3 2 780  
G_21 PhCH2CH2- -COCH2CH3 -Ph -H - CH2CH3 2 675 
A_22 PhCH2CH2- -COOCH3 -Ph -H -CH=CH2 2 574 
D_23 2-Me-C6H4CH2CH2- -COOCH3 -Ph -H - CH2CH3 2 423 
D_24 2-MeO-C6H4CH2CH2- -COOCH3 -Ph -H - CH2CH3 2 423 
D_25 PhCH(OH)CH(Me) -COOCH3 -Ph -H - CH2CH3 2 423 
D_26 PhCH2CH2- -COOCH3 -Ph -H - C3H5

c 2 423 
B_27 Me(Cl)C=CMeCH2CH2- -COOCH3 -Ph -H - CH2CH3 2 206 
B_28 MeCH=CHCH2CH2 -COOCH3 -Ph -H - CH2CH3 2 044 
D_29 3-Me-C6H4CH2CH2- -COOCH3 -Ph -H - CH2CH3 1 575 
D_30 3-MeO-C6H4CH2CH2- -COOCH3 -Ph -H - CH2CH3 1 575 
D_31 PhCH2CH2- -COOCH3 3-MeO-C6H4- -H - CH2CH3 1 575 
D_32 PhCH2CH2- -COOCH3 -Ph -H -CH2CH2CH3 1 575 
A_33 PhCH2CH2- -COOCH3 -Ph -H -CHMe2 1 562 
A_34 PhCH2CH2- -COOCH3 -Ph -H -OMe 1 479 
B_35 Me(Cl)C=CHCH2CH2 -COOCH3 -Ph -H - CH2CH3 1 390 
E_36 PhCH2CH2- -H -Ph -CH3 - CH2CH3 1 300 
D_37 PhCH2CH(Me)- -CH2OCH3 -Ph -H - CH2CH3 1 260 
E_38 PhCH(n-C9H19COO)CH2- -H -Ph -CH3 - CH2CH3 1 200 
A_39 PhCH2CH2- -COOCH3 -Ph -H -CH2F 1 103 
D_40 n-C6H13- -COOCH3 -Ph -H - CH2CH3 1 050 
D_41 PhNHCH2CH3- -COOCH3 -Ph -H - CH2CH3 1 050 
D_42 n-C5H11- -COOCH3 -Ph -H - CH2CH3 1 016 
D_43 4-MeO-C6H4CH2CH2- -COOCH3 -Ph -H - CH2CH3 1 016 
E_44 PhCH(CH3COO)CH2- -COOCH3 -Ph -CH3 - CH2CH3 990 
C_45 C6H9CH2CH2- d -COOCH3 -C6H11

e -H - CH2CH3 818 

Capital letter in Molecules item represents substituent, and number represents group. a: Morphine = 1; b: 2-thienylethyl; c: cyclopropyl; d: 
1-cyclohexenylethyl; e: cyclohexanyl; f: configuration: CIS(3R,4S,2’S). L1, L2, L3, R1, R2 positions are listed in Figure 2. 
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slightly different. Then, using the function of align 
molecules to template individually[23], the test set (Table 2) 
was applied to validate the two hypotheses (Table 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  The substituents of the structure of compound 2 
used for pharmacophore validation 

Molecules Absol configuration Relative potency 

H_1 (3R,4S,2’R) 2990 
H_2 (3R,4R,2’S) 1450 
H_3 (3S,4S,2’S) 980 
H_4 (3R,4R,2’R) 196 
H_5 (3S,4S,2’R) 185 

Capital letter in Molecules item represents substituent, and number 
represents group. 

Table 3  Parameter setting of align molecules 

Parameter Value of the 
parameter Definition of the parameter 

Align 
molecule 
method  

Based on 
features 

Generate a molecular alignment based 
on the pharmacophoric features in the 
final conformations 

Template 
molecule 

No template  Select the molecule to use as the 
template  

Align 
molecules 
to template 
individually 

Off  The selected molecules are all aligned 
as a group (these molecules are 
aligned to each other and to the 
template) 

Population 
size  

120 Number of chromosomes (solutions) to 
retain in the population 

Max 
generations 

100 Maximum number of generations 
evaluated by the genetic algorithm 

Mols 
required to 
Hit  

7  Number of molecules that must hit the 
query for the model to be kept 

Keep best N 
models  

20  The number of best scoring models to 
keep  

GA flags  On  Turn on to ensure that the best models 
so far will be preserved 

Freeze 
molecules 

No  Select the molecule(s) to remain 
unchanged by the genetic algorithm

Figure 3  Stereoview of the aligned congruent molecules. 

Different colors represent different substituents and 
groups. 

Figure 4  Congruent molecules for quantitative 
structure-activity relationship calculation.  

Different colors represent different substituents and 
groups. 

Table 4  Some parameters used for running 
pharmacophore hypothesis generation 

Parameter Value of the 
parameter Definition of the parameter 

Align 
molecule 
method 

Based on 
features 

Generate a molecular alignment based 
on the pharmacophoric features in the 
final conformations.  

Template 
molecule 

No template Select the molecule to use as the 
template 

Align 
molecules 
to template 
individually 

Off The selected molecules are all aligned 
as a group (these molecules are 
aligned to each other and to the 
template). 

Population 
size 

120 Number of chromosomes to retain in 
the population. 

Max 
generations 

100 Maximum number of generations 
evaluated by the genetic algorithm. 

Mols 
required to 
hit 

7 Number of molecules that must hit the 
query for the model to be kept. 

Keep best N 
models 

20 The number of best scoring models to 
keep. 

GA flags On Turn on to ensure that the best models 
so far will be preserved. 

Freeze 
molecules 

No Select the molecule(s) to remain 
unchanged by the genetic algorithm.

 

Figure 5  The best hypothesis of compound G_2 mapping 
to model 19. 
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Lead compound model built using information 
derived from the ligand structure  
The results of the CoMFA model suggested that steric 
and electrostatic interactions had important roles. The 
contributions from steric and electrostatic fields for the 
model were 0.621 and 0.379, respectively. The CoMFA 
contour maps provided a visual representation of the 
prospective binding modes of the fentanyl analogs, and 
could be used to predict the analgesic activities of novel 
ligands. This feature may be useful for pain control, and 
could provide clues for structural modifications to 
improve activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISCUSSION 
 
Twenty hypotheses were generated, and the two models 
shown in Table 5 were chosen based on the criteria 
shown below. Low-energy conformers of the highly 
active compounds mapped to the model ideally. The 
resultant models were further validated through the test 
set (Table 2) and the results were reasonable.  
Among the 20 hypotheses, model 19 and model 13 
complied with low-energy conformers of the highly active 
compounds mapping to the model ideally (Figure 6). Seven 
representative molecules chosen from the molecules used 
for pharmacophore screening were aligned individually onto 
model 19 and model 13 separately. 
Differences in the molecule conformations resulted in 
differences in relative potencies (Table 6). When the 
values of the relative potency increased, the similarity of 
the pharmacophore query and the similarity of the 
pharmacophore increased, whereas the energy of the 
conformations decreased. For some inactive compounds, 
their lack of affinity was primarily due to their inability to 
achieve an energetically favorable conformation shared 
by the active compounds[24-27]. Among the five molecules, 
H_1 was the most active, but its MOL_QRY value (which 
reflects how similar the pharmacophore query is to the 
ligands) based on model 13, was too low. This suggested 
that the similarity of the pharmacophore query was not 
satisfactory whereas the MOL_QRY value based on 

Table 5  Summary of the statistical results, when aligning 
the molecules individually to models 19 and 13 

Model 19 
Molecule Relative 

potency Energy Sterics Hbond Mol_query

G_2 10031 11.20 325.40 75.20 51.41 
G_4 6176 19.40 88.20 96.40 20.60 
G_5 5732 11.26 606.70 67.20 15.85 
G_6 5632 15.95 87.40 61.30 33.94 
D_30 1575 9.25 394.30 56.90 32.32 
D_40 1050 58.46 329.70 43.30 8.63 
D_42 1016 17.68 46.10 38.00 25.33 
      

Model 13 
Molecule Relative 

potency Energy Sterics Hbond Mol_query

G_2 10031 6.96 193.10 81.50 65.31 
G_4 6176 16.49 65.40 89.80 61.59 
G_5 5732 11.88 772.20 84.60 43.57 
G_6 5632 3.02 43.50 57.20 41.13 
D_30 1575 17.36 195.80 57.80 41.13 
D_40 1050 28.66 400.60 33.60 28.79 
D_42 1016 9.56 32.20 34.20 19.50 

 
Capital letter in Molecules item represents substituent, and number 
represents group. Hbond: A measure of the pharmacophoric 
similarity among ligand conformers. Sterics: A measure of the 
steric similarity among ligand conformers. Mol_query: Reflects how 
similar the pharmacophore query is to the ligands. Energy: 
Indicates the energy of the molecules in the training set for the 
conformations encoded in the torsional chromosome. 

Figure 6  Essential features of model 19 pharmacophore. 

Model 19 
Molecule 

Energy Sterics Hbond Mol_query 

H_1 20.72 486.70 17.70 4.83 
H_2 14.72 416.90 17.70 4.83 
H_3 140.68 450.30 20.00 4.85 
H_4 32.27 558.70 17.70 4.83 
H_5 18.78 131.70 6.20 1.33 

     
Model 13 

Molecule 
Energy Sterics Hbond Mol_query 

H_1 15.72 503.50 19.30 0.49 
H_2 11.14 345.80 22.50 5.58 
H_3 19.35 271.20 20.70 5.58 
H_4 256.05 468.00 19.30 0.49 
H_5 39.58 195.30 7.70 1.58 

Capital letter in Molecules item represents substituent, and number 
represents group. Morphine = 1; Hbond: A measure of the 
pharmacophoric similarity among ligand conformers. Sterics: A 
measure of the steric similarity among ligand conformers. 
Mol_query: Reflects how similar the pharmacophore query is to the 
ligands. Energy: Indicates the energy of the molecules in the 
training set for the conformations encoded in the torsional 
chromosome. 

Table 6  The result of the pharmacophore validation of 
align molecules to template 
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model 19 was acceptable. We choose model 19 as the 
most appropriate model. It was found that the hypothesis 
had a good correlation with MOL_QRY and relative 
potency. Figure 5 shows the mapping of a statistically 
optimal hypothesis with compound G_2. G_2 mapped 
well to all the features of the hypotheses. 
Pharmacophore screening using GALAHAD was 
undertaken as shown in Figure 6. 
The analysis of CoMFA contour maps provided insights 
into possible modification of the molecules for higher 
activity. Favored and disfavored levels, fixed at 80% and 
20%, respectively, were used to display steric and 
electrostatic fields (Figure 7). The contours for steric fields 
are shown in green (more bulk favored) and yellow (less 
bulk favored), whereas the electrostatic field contours are 
shown in red (electronegative substituents favored) and 
blue (electropositive substituents favored). The green 
polyhedron located at the N substituent of the pyridine ring 
indicated that bulky substituents would be favorable. This 
explains why compounds 1, 2, 3 and 4 had relatively lower 
activity than other compounds with a bulky replacement at 
the N position. At the benzene-ring position, there was a 
relatively large yellow region. This suggested that 
substituents on this position could not be too bulky 
otherwise lower activity would result, so no substituents or 
small groups on the benzene ring were permitted[15, 28]. The 
red polyhedron located at the R2 substituent position 
suggested that a negatively charged atom or group may 
increase activity, so electron-rich atoms and groups at this 
position showed strong activity. This was why compounds 
10, 13, 16 and 19 were more potent than compounds 8, 11, 
14 and 17, respectively. The large blue polyhedral circling 
the pyridine ring suggested that substitution by 
electropositive elements on the pyridine ring were 
favorable (i.e., that positively charged groups such as NO2, 
CN and F would show more potent activity). The respective 
relative contributions of steric and electrostatic fields were 
0.481 and 0.519, respectively, indicating that the 
electrostatic field was predominant. 
In the present study, 50 compounds which were potent 
competitive μ opioid agonists were successfully aligned. 
The model had been created to explain the observed 
structure-activity relationships for a series of derivatives. 
Among the 20 commonly featured models generated by 
program SYBYL/GALAHAD, compound G_2 with high 
relative potency mapped well onto all the HY, NP and AA 
features of the hypothesis, which was further validated by 
using an external set of five compounds. Conversely, less 
active compounds were shown to have difficulty achieving 
the energetically favorable conformations seen in active 
molecules that fitted the 3D common-feature 
pharmacophore models. The present study demonstrated 
that three HY, one NP and two AA sites located on the 
molecule seemed to be essential for analgesic activity. 

The 3D-QSAR analysis using CoMFA based on the 
resultant pharmacophore was successfully applied to a 
set of fentanyl derivatives.  
Virtual screening of commercial databases was 
undertaken using a 3D pharmacophore developed using 
GALAHAD. Based on the structure of the virtual hits, 
small-molecule libraries with novel scaffolds were 
designed. According to the predictions provided by the 
model, the synthesis and biological evaluation of analogs 
are currently in progress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MATERIALS AND METHODS 
 
Design 
A computer-aided drug design study. 
 
Time and setting 
The present study was undertaken at the Life Science 
College and Chemistry Department of Capital Normal 
University (Beijing, China) from 2004 to 2011. 
 
Methods 
GALAHAD used in pharmacophore screening  
The overall process comprised two major steps: (1) a 
pharmacophore model was built using GALAHAD; (2) a 
GALAHAD module in SYBYL was employed to align the 
dataset with the resultant pharmacophores as 
templates[25, 29-30].  
Pharmacophore screening and CoMFA studies were done 
on a Redhat Linux WS 3.0 system using the SYBYL 7.0 
software package ver 7.2 (Tripos, St. Louis, MO, USA) 
installed on a Pentium 3.6 GHz personal computer. 
Structural and biological data were collected from articles[31] 
in which all compounds were tested for their analgesic 
ability using the hotplate test in mice. The relative 
analgesic potency was calculated by using the 50% F

 Figure 7  Comparative molecular field analysis (CoMFA) 
steric and electrostatic contour with μ opioid receptor plot 
from partial least squares analysis.  

The green polyhedron located at the N substitute of 
pyridine ring indicates bulky substituents. At the benzene 
ring position, there is a relatively large yellow region 
suggesting substituent on this position. The red 
polyhedron located at R2 substituent position suggests 
negative atom or group. 
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effective dose values of morphine as standard[32]. 
The structures were built with the Sketcher module and 
energy minimized by Powell’s method using Tripos force 
field and Gasteiger-Marsili charges[33]. Minimization was 
terminated at a maximum value of the gradient at      
21 kJ/mol/nm. 
 
GALAHAD used in 3D-QSAR analyses 
A low value of q2 for the training set can serve as an 
indicator of the low predictive ability of a model, but the 
opposite is not necessarily true. Indeed, a high value of 
q2 does not automatically imply a high predictive ability of 
the model. To develop and validate the model, one needs 
to split the entire available dataset into the training and 
test set. The only way to estimate the true predictive 
power of a model is to test it on a sufficiently large 
collection of compounds from an external test set. 
A set of 50 molecules was used to generate the 3D 
pharmacophore (Table 1). The analgesic activity, log10 

potency, was used as a dependent variable. Using the 
training-set molecules, 3D-QSAR models were 
generated and validated with the test set. The external 
predictions were used to select the best model. 
We used values of log10 potency as the dependent 
variable in the linearization procedure, gathered in Table 
1, and the activity values were transformed as follows: 
Activity = log10(potency) 
where the potency values are the relative potency based 
on the morphine’s (morphine = 1). 
Meaningful conformations and suitable alignments of lead 
compounds for building interpretable and predictive 
models are essential for 3D-QSAR/CoMFA and 
ligand-based drug design in general. The present study 
used GALAHAD to align the training set molecules. It is 
done by decomposing the process into two steps: a 
genetic algorithm[34] operating in torsional (internal 
coordinate) space is used to examine the full range of 
possible conformations, then a rigid-body hyper-molecular 
alignment process is applied to overlay the conformations 
obtained in Cartesian space. In this work, we align the 
molecules of the training set on compound 10 using 
GALAHAD, which has the highest relative potency.  
The steric and electrostatic fields in CoMFA were 
calculated at each lattice intersection of a regularly 
spaced grid of 0.2 nm in all three dimensions within the 
defined region. The steric and electrostatic field energies 
were calculated using a sp3 carbon atom with a +1 
charge as a probe. The van der Waals potential and 
Coulombic energy between the probe and the molecule 
were calculated using the standard Tripos force field. A 
distance-dependent dielectric constant of 1.0r was used 
in the calculation of the electrostatics. The steric field and 
the electrostatic fields were truncated at points where the 
value exceeded +126 kJ/mol. 

Partial Least Squares regression[9] was used to set up a 
correlation between the molecular fields and the 
biological data of the molecules. Leave-One-Out 
cross-validation was utilized to optimize the number of 
principal components and to evaluate the predictive 
capability of models. 
To speed up the analysis and reduce noise, columns with a 
value (r) below 8.2 kJ/mol were filtered off. Final analysis 
was performed to calculate the conventional r2 using the 
optimum number of components. Knowing the risk of 
utilizing the leave-one-out q2 as a criterion for selecting the 
best model, the quality of the final models was further 
verified using leave-N-out (10%) cross-validation[35]. 
 
CoMFA model validation and CoMFA contours  
The most critical and important part of the QSAR model 
development is the model validation. It is widely 
accepted that a correlation with a q2 value greater than 
0.5-0.6 is useful for the prediction of new biologically 
active molecules in the present work, only models having 
a value of cross-validated r2 (q2) above 0.5 were 
considered. The predictive correlation coefficient (r2

pred), 
based on the test set molecules, is defined as 
r2

pred = (SD-PRESS)/SD, 
where SD is the sum of squared deviations between the 
biological activity of the test set and the mean activity of the 
training set molecules and the PRESS is the sum of 
squared deviations between predicted and actual activity 
values for every molecule in the test set. In the present 
study, the r2 value of the test set for the best model is 0.627. 
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