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A B S T R A C T   

Background: This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) provides an overview of 
the mechanisms and treatment of obesity and hypertension. 
Methods: The scientific support for this CPS is based upon published citations, clinical perspectives of OMA 
authors, and peer review by the Obesity Medicine Association leadership. 
Results: Mechanisms contributing to obesity-related hypertension include unhealthful nutrition, physical inac-
tivity, insulin resistance, increased sympathetic nervous system activity, renal dysfunction, vascular dysfunction, 
heart dysfunction, increased pancreatic insulin secretion, sleep apnea, and psychosocial stress. Adiposopathic 
factors that may contribute to hypertension include increased release of free fatty acids, increased leptin, 
decreased adiponectin, increased renin-angiotensin-aldosterone system activation, increased 11 beta- 
hydroxysteroid dehydrogenase type 1, reduced nitric oxide activity, and increased inflammation. 
Conclusions: Increase in body fat is the most common cause of hypertension. Among patients with obesity and 
hypertension, weight reduction via healthful nutrition, physical activity, behavior modification, bariatric sur-
gery, and anti-obesity medications mostly decrease blood pressure, with the greatest degree of weight reduction 
generally correlated with the greatest degree of blood pressure reduction.   

1. Introduction 

Beginning in 2013, the Obesity Medicine Association (OMA) created 
and maintained an Adult “Obesity Algorithm” (i.e., educational slides 
and eBook) that underwent yearly updates by OMA authors and was 
reviewed and approved annually by the OMA Board of Trustees [1]. This 
current OMA Clinical Practice Statement (CPS) regarding obesity and 
hypertension was derived from extensive updates to the content of the 
2021 OMA Adult Obesity Algorithm. This CPS is one of a series of OMA 
CPSs designed to assist clinicians in the care of their patients with the 
disease of obesity. 

2. Obesity and high blood pressure/hypertension 

Hypertension can be defined as arterial blood pressure readings that, 
when persistently elevated above ranges established by medical orga-
nizations, adversely affect patient health [2]. For this discussion, high 
blood pressure refers to the physiologic measurement of the blood flow 
force on arteries, while hypertension refers to the disease of persistent 
high blood pressure. 

2.1. Blood pressure measurements 

Blood pressure measurements can be affected by many factors. A key 
for potentially actionable longitudinal assessment and treatment of high 

blood pressure is consistency in how blood pressure is measured, with 
recognition that blood pressure can be affected by:  

• White-coat hypertension: Some patients may experience an increase 
in blood pressure due to anxiety and stress before and dur-
ingencounters with the clinician. Such patients may benefit from 
home blood pressure (BP) monitoring and/or ambulatory BP moni-
toring (ABPM) [2].  

• Masked hypertension: Some patients have normal blood pressure 
measurements in the clinician office, but elevated blood pressure 
upon ambulatory blood pressure monitoring or home blood pressure 
monitoring. Patients with masked hypertension are at risk for car-
diovascular disease [3]. 

• Overstimulation: Patients should avoid caffeine, energy drinks, de-
congestants, physical exercise, stressful situations, full bladder, and/ 
or smoking for at least 30 minutes prior to BP measurement. For 
example, if a patient arrives to the medical office after experiencing 
frustration due to anxiety-producing traffic, then the patient should 
be given the opportunity to calm down in a quiet room for 30 mi-
nutes or longer. Patients with full bladder, [4] and/or who feel the 
need to urinate, may have increased blood pressure and should void 
prior to having blood pressure taken. Some patients with acute pain 
(e.g., immediately after a phlebotomy stick) or discomfort may also 
experience transient increased blood pressure; the high blood 
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pressure due to acute pain should resolve once the pain and/or 
discomfort resolves.  

• On first measurement date, blood pressure should optimally be 
measured in both arms by repeated values separated by at least 1 
min, with a record of the values and respective arms (left and right). 
Longitudinally, future BP measurement might best be measured on 
the same arm previously recorded as having the highest BP 
measurement.  

• Patients should have clothing removed from the arm, be seated with 
feet flat on the floor (i.e., not crossed), relaxed and quiet for 5–10 
minutes prior to BP measurement. Crossed legs may increase blood 
pressure [5].  

• During the BP measurement, the patient should not talk, nor should 
the patient be asked questions (including medical questions) during 
the time blood pressure is being assessed.  

• Blood pressure should be obtained by trained medical personnel 
using a properly validated and calibrated blood pressure measure-
ment device.  

• The cuff should be placed on around the skin of the upper arm (i.e., 
not over clothing).  

• The cuff type and size should be appropriate for the patient arm size 
[6].  

• If blood pressure is taken by a manual cuff (i.e., 
sphygmomanometer):  
o The cuff should be placed one inch above the elbow bend, with the 

center of the cuff (often identified with a marker) aligned with the 
brachial artery, as found by palpation.  

o The cuff should be inflated until the radial pulse is no longer felt.  
o The cuff is then slowly deflated until the pulse is felt again. This 

number reading (mmHg) on the mercury column is the approxi-
mate systolic blood pressure.  

o After deflating the cuff, and after waiting another 15 seconds, the 
bell of the stethoscope is placed over the brachial artery.  

o The cuff is then inflated 30 mmHg above the previous systolic 
blood pressure reading.  

o The cuff is then deflated (again) at 2 mmHg per second or beat.  
o The first of at least two regular beats is the systolic blood pressure.  
o When the beat disappears entirely, this is the diastolic blood 

pressure.  
o After obtaining BP readings, the cuff should be deflated, removed, 

and the systolic and diastolic BP should be recorded (in mmHg) 
immediately. 

2.2. Differential diagnosis of hypertension 

Among the more important considerations in evaluating high blood 
pressure in patients with obesity is ensuring an accurate diagnosis. 
While the adiposopathic effects of increased body fat are the most 
common cause of hypertension, simply because a patient has obesity 
does not negate the need to be mindful of other potential secondary 
causes that include [7]:  

⁃ Pheochromocytoma  
⁃ Primary hyperaldosteronism  
⁃ Hypercortisolism  
⁃ Hyperthyroidism  
⁃ Renal artery stenosis  
⁃ Kidney diseases  
⁃ Side effects of concomitant therapies  
⁃ Familial or genetic syndromes 

That said, overweight and obesity clearly increases the risk of hy-
pertension [8–10]. As with obesity itself, hypertension is a chronic dis-
ease that represents a major risk factor for cardiovascular disease (CVD), 
which is the most common cause of mortality among patients with 
obesity and hypertension [11]. In the United States, hypertension is 

present in over 40% and 25% of individuals with obesity and over-
weight, respectively. Over 70% of individuals with hypertension have 
overweight or obesity [12,13]. When implementing comprehensive 
management of obesity, standards of care include healthful nutrition, 
physical activity, behavior modification, and medical treatment (e.g., 
anti-obesity medications and/or bariatric procedures) [14,15]. 
Regarding medications, it is best to avoid obesogenic medications, and 
instead select pharmacotherapy that not only improves the body 
composition of patients, but also improves the health of patients, with 
control of blood pressure being a key health metric [16]. Table 1 de-
scribes ten takeaways from this current OMA CPS regarding obesity and 
hypertension. Fig. 1 illustrates how positive caloric balance may lead to 
increase body fat storage. If during the process of body fat storage, 
adipocyte proliferation is impaired resulting in pathogenic adipocyte 
hypertrophy, then this may lead to “sick fat disease” (adiposopathy), as 
well as “fat mass disease.” The ensuing deranged endocrine and immune 
responses, as well as pathogenic physical forces, all may contribute to 
obesity complications such as an increase in blood pressure. 

3. Conceptually, how does the “fat mass disease” of obesity 
contribute to hypertension? 

Fig. 2 illustrates how obesity may lead to fat mass disease. The 
increased body fat of obesity may result in pathogenic physical forces 

Table 1 
Ten takeaway messages: obesity and hypertension. The disease of obesity 
may promote the development of hypertension, which is a major risk factor for 
cardiovascular disease. See text for details.  

1. The disease of obesity may promote an increase in blood pressure, which if 
persistent, leads to the metabolic disease complication of hypertension. 

2. Over 70% of individuals with hypertension have overweight or obesity. 
Hypertension is a major risk factor for cardiovascular disease (CVD); CVD is 
the most common cause of mortality among patients with obesity and 
hypertension. 

3. Patients with obesity and hypertension should optimally undergo 
comprehensive obesity management (e.g., healthful nutrition, physical 
activity, behavior modification, and/or anti-obesity medications/bariatric 
procedures) [14] as well as global CVD risk reduction (e.g., optimal control of 
blood pressure, blood lipids, blood glucose, and smoking cessation) [2]. 

4. In addition to unhealthful food intake contributing to positive caloric balance, 
increased dietary sodium and saturated fats can also increase blood pressure. 
Conversely, nutritional interventions that contribute to healthful weight 
reduction and reduced sodium intake can help prevent and treat hypertension, 
especially when accompanied by routine physical activity and behavior 
modification. 

5. Obesity and “fat mass disease” can contribute to sleep apnea, kidney and renal 
vessel compression, perivascular adipose tissue (restricting blood vessel wall 
expansion) and increased cardiac output – all of which can increase blood 
pressure. 

6. Mechanisms contributing to obesity-related high blood pressure include 
unhealthful nutrition, physical inactivity, insulin resistance, increased 
sympathetic nervous system activity, renal dysfunction, vascular dysfunction, 
heart dysfunction, increased pancreatic insulin secretion, sleep apnea, and 
psychosocial stress. 

7. Adiposopathic factors that may contribute to high blood pressure include 
increased release of free fatty acids, increased leptin, decreased adiponectin, 
increased renin-angiotensin-aldosterone system activation, increased 11 beta- 
hydroxysteroid dehydrogenase type 1, reduced nitric oxide activity, and 
increased inflammation. 

8. Bariatric surgery (e.g., gastric bypass and sleeve gastrectomy) can produce 
clinically meaningful reduction in both blood pressure and body weight. 

9. Especially when accompanied by clinically meaningful weight reduction, 
many anti-obesity medications such as glucagon like peptide-1 (GLP-1) 
receptor agonists (e.g., semaglutide and liraglutide), GLP-1 and glucose- 
dependent insulinotropic peptide receptor agonist (e.g., tirzepatide), and some 
bariatric procedures, decrease blood pressure. Some adrenergic anti-obesity 
agents may initially increase blood pressure (i.e., sympathomimetics such as 
phentermine) with possible longer-term reduction in blood pressure 
(compared to baseline) after weight reduction. 

10. Unless the medication has blood pressure raising effects (i.e., some adrenergic 
agents), the degree of reduction with anti-obesity medications generally 
correlates to the degree of weight reduction.  
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contributing to biomechanical/structural abnormalities, which in turn 
can lead to sleep apnea, kidney and renal vessel compression, restriction 
of arteriole wall expansion, and increased cardiac output – all that 
contribute to high blood pressure and the disease of hypertension [8–10, 
18]. 

4. Conceptually, how does the “sick fat disease” (adiposopathy) 
of obesity cause hypertension? 

Independent of increased adiposity, high blood pressure can be 

caused by rare conditions such as pheochromocytoma, primary hyper-
aldosteronism, hypercortisolism, hyperthyroidism, renal artery stenosis, 
kidney diseases, side effects of concomitant therapies, and familial or 
genetic syndromes [7]. That said, increased body fat is by far the most 
common cause of hypertension. Estimates suggest the essential hyper-
tension is attributable to increased adiposity in 78% in men and 65% in 
women [12,19] Other reports suggest up to 80% of essential hyperten-
sion is attributable to increased adiposity [20]. Anatomically, if during 
positive caloric balance proliferation and differentiation of adipose tis-
sue is impaired in subcutaneous adipose tissue, then the energy overflow 

Fig. 1. Obesity, adiposopathy (sick fat disease), fat mass disease, and obesity complications. An increase in body fat can ultimately lead to endocrine/ 
metabolic and biomechanical/structural abnormalities, potentially leading to complications such as increased blood pressure [17]. 

Fig. 2. Fat mass disease and hypertension. Increased body fat leading to biomechanical and structural abnormalities (i.e., “fat mass disease”) may lead to hy-
pertension through promotion of sleep apnea, kidney/renal vessel compression, perivascular adipose tissue, and increased cardiac output (heart rate x stroke volume) 
[8–10,17,18]. 
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may result in fat deposition within and/or around other body tissues, 
such as the liver, muscle, and pancreas – potentially contributing to 
“fatty liver” and “fatty muscle” and lipotoxicity leading to insulin 
resistance [21]. This energy overflow may also increase fat deposition in 
the visceral region, as well as increase fat surrounding the blood vessels 
(i.e., perivascular fat), heart, and kidney [21]. An increase in the volume 
and activity of fat depots surrounding the arterial blood vessels, heart, 

and kidney may not only contribute to biomechanical dysfunction, but 
these fat depots may have pathogenic local and systemic immune and 
endocrine effects that contribute to high blood pressure [22]. In short, 
Fig. 3 illustrates how adiposopathic complications of obesity may lead to 
functional adiposopathy, or “sick fat disease,” resulting in immuno-
pathies, endocrinopathies, and increased circulating free fatty acids, all 
that may contribute to high blood pressure [8–10,18]. 

5. Nutrition and blood pressure 

Fig. 4 describes various mechanisms accounting for obesity-related 
hypertension. Among these mechanisms includes unhealthful nutri-
tion. Physiologically, eating stimulates both the anabolic para-
sympathetic nervous system [i.e., increases insulin secretion, increases 
peristalsis, increases gastrointestinal (GI) secretions] and catabolic 
sympathetic nervous system (promotes thermogenesis, decreases GI 
motility and secretions, helps maintain postprandial blood pressure 
through peripheral vasoconstriction to compensate for splanchnic 
vasodilation) [24,25]. Eating also increases blood flow to splanchnic 
vessels, increases release of vasoactive peptides, and causes gastric 
distention, which, along with effects upon autonomic nervous and bar-
oreflex systems, can cause relative or absolute reduction in blood pres-
sure (postprandial hypotension), increased heart rate (commonly 
detected by wearable heart rate technology after meals), and sometimes 
lightheadedness [24,26]. Postprandial hypotension may be mis-
diagnosed as “reactive hypoglycemia,” which has clinical relevance to 
patients who have undergone bariatric surgery [27]. Particularly in 
patients who experience significant reductions in blood pressure, when 
encountering a patient with lightheadedness after bariatric surgery, it is 
important to consider the potential of postprandial hypotension [28] in 
addition to the potential for postprandial hypoglycemia [29], as this 

Fig. 3. Adiposopathy and hypertension. Positive caloric balance, especially 
in an environment of limited adipocyte proliferation, often leads to dysfunc-
tional adipocyte hypertrophy and adipose tissue accumulation (i.e., “sick fat 
disease”), which in turn leads to immunopathies, endocrinopathies, and 
increased circulating free fatty acids that may promote hypertension [8–10, 
17,18]. 

Fig. 4. Obesity-related hypertension. Overweight and/or obesity may result in multiple mechanisms that help account for increased blood pressure.  

T.L. Clayton et al.                                                                                                                                                                                                                              



Obesity Pillars 8 (2023) 100083

5

might suggest the need to reduce or discontinue concomitant 
anti-hypertensive medications. 

Beyond the neurovascular effects of eating, unhealthful nutrition is 
an important driver of body fat accumulation and adipose tissue 
dysfunction [30]. In the absence of weight reduction among patients 
with pre-obesity or obesity, and compared to monounsaturated and 
polyunsaturated fats, increased saturated fat intake can increase blood 
pressure, possibly due to impaired arterial endothelial function [10]. 
Increased sodium intake can further increase blood pressure, especially 
among salt-sensitive patient populations [31–33]. Increased 
ultra-processed, refined carbohydrate intake may also increase blood 
pressure [34]. Specifically, the ultra-processing of food results in sub-
stantive changes to its matrices (i.e., highly degrades the food physical 
structure) that, especially when coupled with food additives and 
neo-formed contaminants, may not only affect absorption kinetics, 
satiety, glycemic response, and gut microbiota composition and func-
tion, but may also contribute to obesity, inflammation, oxidative stress, 
insulin resistance, and thus alterations in blood glucose, blood lipids, 
and blood pressure [35]. 

Fig. 5 illustrates healthful nutrition principles that may often 
improve hypertension, which are generally similar to nutritional rec-
ommendations regarding treatment of patients with increased body fat, 
increased blood sugars, and increased blood lipids [21]. In general, 
beyond the favorable blood pressure effects of a reduction in sodium 
intake and alcohol, and beyond the favorable effects of weight reduction 
alone, macronutrient consumption most associated with reduced blood 
pressure includes consumption of unprocessed, carbohydrate-rich diets 
that emphasize vegetables and fruits, low-fat dairy products, reduced 

saturated fat, total fat, and cholesterol, and replacement of refined/-
processed carbohydrate with either protein or with unsaturated fat [36]. 

6. Physical activity and blood pressure 

Fig. 4 also illustrates physical inactivity as a contributor to both 
obesity and hypertension [37]. Routine physical activity has health 
benefits in improving body composition [38], facilitating weight 
reduction, and especially maintaining weight reduction [30]. In addi-
tion, regular physical activity may lower blood pressure, reduce car-
diovascular risk, and improve cardiac remodeling. The cardiac 
remodeling from hypertension may result in pathogenic increases in 
myocyte hypertrophy, fibrosis, and risk of heart failure and mortality. 
Conversely, except for extreme physical exercise [39], the left ventric-
ular hypertrophy in athletes is generally non-pathologic (i.e., lacks 
fibrosis). In patients with hypertension, physical activity may result in a 
favorable regression or prevention of left ventricular hypertrophy [40]. 

7. Adipose tissue, increased body fat, and hypertension 

Fig. 6 describes adiposopathic factors that may contribute to high 
blood pressure. They include: 

7.1. Adiposopathy, insulin resistance, and pathogenic hormone & immune 
factors (Figs. 4 and 6) 

Positive caloric balance (especially when accompanied by physical 
inactivity and genetic predisposition) is often accompanied by 

Fig. 5. Implementation of healthful nutrition may help treat metabolic abnormalities, such as high blood sugar, high blood lipids, and high blood pressure (Copied 
with permission from Ref. [21]). 
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pathogenic adipocyte hypertrophy and adipose tissue accumulation 
leading to adiposopathic endocrinopathies and immunopathies that may 
contribute to insulin resistance, type 2 diabetes mellitus, and hyper-
tension [21] (Fig. 3). Hyperinsulinemia and insulin resistance may in-
crease sodium retention [41,42], increase fluid volume [43], increase 
sympathetic nervous system activity (i.e., with increased vasoconstric-
tion, increased heart rate and increased cardiac output) [44], reduce 
nitric oxide production (i.e., insulin is normally a vasodilator hormone; 
insulin resistance reduces vasodilation) [21], increase net inflammation 
(i.e., increased pro-inflammatory factors such as tumor necrosis factor 
and interleukin-6 and decreased anti-inflammatory factors such as adi-
ponectin) [21]. These adverse consequences ofhyperinsulinemia and/or 
insulin resistance may contribute to vascular endothelial dysfunction 
and hypertension [45,46] (See Section 10). If adiposopathic insulin 
resistance leads to type 2 diabetes mellitus, then the development of 
diabetes nephropathy and renal dysfunction may exacerbate the inap-
propriate activation of the renin-angiotensin-aldosterone system and 
sympathetic nervous system, increase fluid overload, promote mito-
chondria dysfunction, excessive oxidative stress, and exacerbate sys-
temic inflammation [47], leading to worsening high blood pressure 
[48]. 

7.2. Increased free fatty acids 

Positive caloric balance in an environment of insufficient subcu-
taneous adipocyte proliferation often results in adipocyte hypertrophy 
and adipose tissue dysfunction. Subsequent adiposopathic endo-
crinopathies and immunopathies contribute to insulin resistance (Figs. 1 
and 3), with net increased release of free fatty acids into the circulation 
and potential fat deposition in the visceral region, liver, muscle, kidney, 
pancreas, and heart [21]. Increased circulating free fatty acids may 
contribute to endothelial dysfunction through impaired insulin signaling 
of nitric oxide production, oxidative stress [42], inflammation and the 
activation of the renin-angiotensin system and apoptosis in vascular 

endothelial cells [49]. Some saturated fatty acids may increase vascular 
inflammation (i.e., via cytokines such as tumor necrosis factor and 
interleukin-6) and oxidative stress [50,51], all contributing to increased 
blood pressure (See Fig. 6). 

7.3. Increased leptin 

Leptin is a peptide adipocytokine hormone primarily produced by 
adipocytes with anorexigenic signaling in the hypothalamus during 
times when the body has sufficient fat stores. Increased fat cell size in-
creases leptin blood levels. It is hypothesized that through mechanisms 
such as activation of melanocortin receptors [42], leptin increases 
sympathetic nervous system activity to tissues such as the heart, blood 
vessels, and kidneys, resulting in increased cardiac output, increased 
vascular tone, and activation of the renin-angiotensin system, resulting 
in sodium retention and circulatory expansion – all leading to increased 
blood pressure [52,53] (See Fig. 6). Other ways in which increased 
leptin levels with obesity are proposed to contribute to high blood 
pressure include increased vascular stiffness due to vascular smooth 
muscle cell proliferation and migration via direct effects on the aorta as 
well as tunica media and adventitia of arteries and inside atherosclerotic 
plaques, activation of the immune system (both monocytes and T-cell), 
and generation of radical oxygen species [22]. 

7.4. Reduced adiponectin 

Adiponectin is a peptide adipocytokine hormone produced primarily 
by adipose tissue. Adiponectin has anti-inflammatory effects, and en-
hances insulin sensitivity, reduces hepatic and muscle fat, and facilitates 
metabolism of lipids. Adiposopathic adipocyte hypertrophy and 
increased pro-inflammatory adipocytokine production reduces adipo-
nectin production, such that obesity is often associated with reduced 
adiponectin levels [21]. Blood pressure may be increased when 
obesity-mediated reduced adiponectin levels limit adiponectin’s 
anti-inflammatory effects, increased vasodilatory nitric oxide produc-
tion, suppression of sympathetic nervous system activity, and general 
improvement in endothelial function [54,55] (See Fig. 6). 

7.5. Increased activation of the renin-angiotensin-aldosterone system 
(RAAS) 

Angiotensinogen is mainly produced by the liver, with variably re-
ported angiotensinogen production by larger adipose tissue depots such 
as subcutaneous adipose tissue [20,56,57], as well as smaller adipose 
tissue depots such as visceral adipose tissue [58] and perivascular adi-
pose tissue [59]. Angiotensinogen levels are increased with obesity. 
Angiotensinogen is converted into angiotensin I by renal renin. Angio-
tensin I is converted to angiotensin II by angiotensin-converting enzyme 
(ACE). Angiotensin II has a role in oxidative stress, sympathetic acti-
vation [60], and is thus a vasoconstrictor that increases vascular pe-
ripheral resistance and increases blood pressure. Angiotensin II also 
stimulates the release of aldosterone, thus promoting sodium and water 
reabsorption by the kidneys. Just as angiotensin II can be produced by 
adipose tissue [20], aldosterone can also be produced by adipocytes in 
patients with obesity [61]. The increase in vascular vasoconstriction, 
coupled with increased water reabsorption increases blood pressure (See 
Fig. 6). 

7.6. Increased 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) 

11β-HSD1 is an enzyme produced in adipose tissue (and liver) that 
converts inactive cortisone to active cortisol. Increased 11β-HSD1 ac-
tivity with adipocyte hypertrophy and obesity may facilitate local 
glucocorticoid effects (“local Cushing’s syndrome”), even when circu-
lating glucocorticoid levels are not elevated [21]. Among the adiposo-
pathic consequences of increased local cortisol activity via increased 

Fig. 6. Illustrative adiposopathic factors that may contribute to hyper-
tension. Beyond the adverse biomechanical effects of fat mass alone shown in 
Fig. 2, positive caloric balance may lead to adipocyte hypertrophy and adipose 
tissue accumulation with pathogenic adipose tissue (including perivascular 
adipose tissue) [23] endocrine and immune factors that may contribute to 
hypertension. 11β-HSD1: beta-hydroxysteroid dehydrogenase type 1. 
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11β-HSD1 include increase lipolysis, increase lipotoxic release of free 
fatty acids, increase gluconeogenesis in the liver, and decrease glucose 
uptake in muscle. Specific to blood pressure, adiposopathic increases in 
11β-HSD1 with obesity amplify glucocorticoid effects resulting in 
salt-sensitive hypertension [62] (See Fig. 6). 

7.7. Reduced nitric oxide 

Nitric oxide is synthesized by nitric oxide synthase in most all cell 
types, tissues, and organs in the human body [63]. This is especially so 
with the endothelial cells of blood vessels, where nitric oxide serves as a 
vaso-protective vasodilator. Endothelial nitric oxide synthase is also 
present in adipocytes and endothelial cells of perivascular adipose tissue 
[64]. Production of nitric oxide may be diminished by aging [65], 
oxidative stress caused by factors such as smoking [66], and excessive 
alcohol consumption [67], as well as factors that may concomitantly 
contribute to obesity, such as physical inactivity [68] and consumption 
of saturated fats (i.e., as opposed to unsaturated fats, vegetables, and 
fruits) [69,70]. Nitric oxide may also be decreased with obesity itself 
[71] via development of adiposopathic insulin resistance [21], immu-
nopathies such as increased inflammatory factors [72] and reduced 
anti-inflammatory factors (i.e., adiponectin) [73]. Increased angiotensin 
II production is illustrative of an adiposopathic endocrinopathy that may 
promote oxidative stress and decrease endothelial nitric oxide function, 
leading to increased blood pressure [74,75] (See Fig. 6). 

7.8. Increased inflammatory factors (e.g., tumor necrosis factor and 
interleukin 6) 

Just as with their contribution to insulin resistance and type 2 dia-
betes mellitus [21], adipocytokines can contribute to high blood pres-
sure. Leptin and adiponectin are examples of adipocytokines produced 
by adipose tissue, and their roles in contributing to high blood pressure 
were described in sections 7.2 and 7.3. Two other adipocytokines that 
may be increased with obesity and often described to contribute to 
adiposopathic effects of obesity are tumor necrosis factor (TNF) and 
interleukin 6. TNF is an inflammatory adipocytokine produced by adi-
pose tissue that may promote high blood pressure via increased pro-
duction of angiotensinogen (See Section 7.4) [76], contribution to 
insulin resistance (See Section 7.1) [21], and worsening of endothelial 
dysfunction [45]. Interleukin-6 (IL-6) is another pro-inflammatory adi-
pocytokine produced by adipose tissue that can also contribute to 
worsening endothelial function [45] and therefore may contribute to 
high blood pressure (See Fig. 6). 

8. The brain, increased body fat, and hypertension 

Physiologically, the central nervous system regulation of blood 
pressure (e.g., water and electrolyte balance, heart rate and baroreflex 
activity) occurs via sensory afferent signaling from organs such as the 
kidney, heart, and vasculature [77]. Similar afferent nervous system 
signaling can also occur from adipose tissue, representing an adipose 
tissue-brain-cardiovasculature pathway. As with afferent signaling from 
other body tissues, afferent signaling to the brain from adipose tissue can 
contribute to pathogenic efferent sympathetic responses [77]. From a 
hormone standpoint, increased body fat may lead to hyperleptinemia 
(and possibly hyperinsulinemia) which can lead to increase central 
nervous system (CNS) sympathetic activation among patients with 
obesity [77,78]. The effects of increased sympathetic nervous system 
signaling [8,9,18,24] include increased liver glycogenolysis and glucose 
production, increased skeletal muscle glucose uptake, and increased 
pancreatic insulin release. Regarding effects more directly related to 
blood pressure, increased sympathetic activation increases circulating 
free fatty acids (i.e., via increased adipocyte lipolysis), increases 
renin-angiotensin-aldosterone system activity, increases sodium and 
fluid retention, increases heart rate, increases cardiac output, increases 

arteriole vasoconstriction, increases peripheral arterial resistance, and 
decreased adiponectin, which are effects that may help facilitate high 
blood pressure [10,55,77,79–81] (See Fig. 4). 

Another potential link between the brain and increased blood pres-
sure is the melanocortin system [82]. Anorexigenic hormones or neu-
rotransmitters such as leptin, insulin, and serotonin activate 
pro-opiomelanocortin neurons and inhibit Agouti-related peptide neu-
rons. These effects activate melanocortin 4 receptors (MC4R) that signal 
reduced food intake and/or increased energy expenditure [83]. Mela-
nocortin activation increases sympathetic nervous system activity and 
facilitates obesity-induced hypertension [84]. In fact, the potential to 
increase blood pressure represents challenges in developing MC4R ag-
onists to promote weight reduction [84]. 

9. The kidneys, increased body fat, and hypertension 

From a “fat mass disease” perspective, excessive intra-abdominal and 
retroperitoneal fat may cause renal compression, which increases 
intrarenal pressure, decreases sodium excretion, and stimulates the 
renin-angiotensin-aldosterone system (RAAS) [85] (See Figs. 1 and 2). 
From a “sick fat disease” perspective, “ectopic” adipose tissue sur-
rounding the kidney may transmit lipotoxic immune and endocrine ef-
fects as the result of oxidative stress, mitochondrial dysfunction, and 
endoplasmic reticulum stress [22]. Systemically, adiposopathic release 
of adipocytokines may promote inflammation and enhance activity of 
the RAAS, increasing renal sodium and water reabsorption [86]. 
Increased adiposopathic sympathetic nervous system activity may 
further increase RAAS activity (See Section 8), which, in turn, further 
increases production of angiotensin II with circular increase in sympa-
thetic nervous system activity [24,86], constriction of the efferent renal 
arterioles, increase in intraglomerular pressure, loss of nephrons, in-
crease in renal tubular sodium reabsorption, and impairment of pressure 
natriuresis leading to fluid retention [42]. Another factor that may 
worsen obesity-related hypertension is adiposopathic chronic kidney 
disease due to causes beyond high blood pressure (i.e., kidney disease 
due to type 2 diabetes mellitus or obesity itself [87]). Thus, adiposo-
pathic kidney disease is both a common cause of hypertension and a 
common complication of uncontrolled hypertension [88] (See Fig. 4). 

10. The vasculature, increased body fat, and hypertension 

Fig. 4 illustrates that adiposopathic vascular abnormalities represent 
another mechanism accounting for obesity-related hypertension. 
Endothelial dysfunction may occur due to pathogenic effects of obesity 
and increased perivascular adipose tissue on the inner lining of blood 
vessels, resulting in inflammation, resistance to vasodilation, impaired 
blood flow, and arterial stiffness [22,23,89], all potentially leading to 
high blood pressure. Other obesity-related factors that may contribute to 
endothelial dysfunction include insulin resistance, increased free fatty 
acids, increased leptin levels, decreased adiponectin levels, increased 
renin angiotensin aldosterone system activity, nitric oxide imbalance, 
and increase in pro-inflammatory factors and decrease in 
anti-inflammatory factors. Beyond obesity alone, endothelial dysfunc-
tion is also important in the pathogenesis of peripheral vascular disease, 
stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, 
tumor growth, metastasis, venous thrombosis, and severe viral infec-
tious diseases [90]. 

Increases in adiposopathic cytokine release increases mitochondrial 
stress (imbalance between reactive oxygen species [ROS] production 
and ROS clearance), increases ROS, and activates the RAAS [80,86]. 
Adiposopathy, inflammation (e.g., increased tumor necrosis factor & 
interleukin-6 with decreased adiponectin), lipotoxicity, food composi-
tion, lack of physical activity, and increases in RAAS can promote 
endothelial dysfunction and increased vasoconstriction and high blood 
pressure via [8,9,18,80,91,92]: 
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• Increased angiotensinogen  
• Increased angiotensin II  
• Increased sympathetic nervous system activity  
• Increased endothelial vasoconstrictors  
• Decreased nitric oxide production  
• Decreased endothelia-dependent vasodilation  
• Increased arterial stiffness 

11. The heart, increased body fat, and hypertension 

Fig. 4 illustrates the heart as a contributor to obesity-related hyper-
tension. Adverse consequences of obesity related to the heart that 
contribute to hypertension include increased blood volume, increased 
heart rate, increased cardiac output, and endothelial damage that may 
ultimately lead to heart failure [93], including heart failure with pre-
served ejection fraction [94]. 

Another way in which the heart may contribute to high blood pres-
sure among patients with obesity is fluid retention. Natriuretic peptides 
are a group of hormones primarily produced by the heart, that regulate 
body fluid balance, blood pressure, and cardiovascular function. Atrial 
Natriuretic Peptide (ANP) is produced by the heart atria in response to 
increased blood volume and pressure, and functions to promote diuresis 
and natriuresis, thus promoting elimination of water and sodium, 
reducing blood volume, and lowering blood pressure. Brain Natriuretic 
Peptide (“B-type BNP”) is produced by the heart ventricles as the result 
of stretching of the heart muscle cells. BNP also promotes diuresis and 
natriuresis to reduce blood volume and blood pressure. Atrial natriuretic 
peptide (ANP) and B-type natriuretic peptide (BNP) are stimulated with 
increased ventricular filling [95]. Elevated active BNP and its inactive 
metabolite N-terminal pro B-type natriuretic peptide (NT-proBNP) help 
diagnose heart failure [95,96]. ANP and BMP have diuretic, natriuretic, 
and antihypertensive effects via inhibition of the RAAS [80]. While less 
so with ANP produced by atrial muscle cells, BNP produced by the left 
ventricle is decreased with obesity [95,97,98]. In fact, in patients with 
clinical heart failure, lower NT-proBNP levels in patients with over-
weight or obesity may not rule out diagnosis of HfpEF [96]. Loss of BNP 
natriuresis with obesity may contribute to sodium retention and 
increased blood pressure. Nutritional weight loss in patients with 
obesity may increase BNP [99]. 

12. The pancreas, increased body fat, insulin resistance, and 
hypertension 

The adiposopathic endocrine and immune consequences of obesity 
often lead to insulin resistance and increased insulin secretion from the 
pancreas [21] (See Fig. 4). Insulin resistance represents a decrease in 
responsiveness of body tissues to the metabolic actions of insulin, such 
as a decrease in insulin-mediated glucose disposal [21,100]. A decreased 
in the responsiveness of the vasculature to insulin, and the decrease in 
nitric oxide production, may help promote vascular stiffness [100]. As 
with hyperleptinemia, the increased insulin blood levels with insulin 
resistance have variably been described to increase sympathetic nervous 
system activity and thus contribute to high blood pressure [78,101,102]. 
That said, hyperglycemia (and dyslipidemia) may act synergistically 
with hypertension to cause vascular and kidney injury, exacerbating 
hypertension [102] (See Fig. 4). 

13. Sleep apnea and hypertension 

Sleep apnea is a common complication of obesity. Sleep apnea is a 
potential contributor to hypertension [103] (See Fig. 4). Mechanisms 
that may help account for increased blood pressure with sleep apnea 
include pathogenic alterations in intrathoracic pressure, intermittent 
hypoxia, oxidative stress with increased reactive oxygen species, 
inflammation, neurohormonal dysregulation, increased sympathetic 
nervous system activation, vasoconstriction, endothelial dysfunction, 

and alterations in circadian rhythms [42,104–107] (See Fig. 4). 

14. Psychosocial stress and hypertension 

As with depression, the relationship between obesity and psychoso-
cial stress is bidirectional. Stress can contribute to obesity; obesity can 
contribute to stress [108–110]. Increase in acute mental stress may in-
crease sympathetic nervous response, with the increased release of 
catecholamines leading to increased heart rate, increased cardiac 
output, vasoconstriction, and increase in blood pressure [111,112]. In 
some patients, chronic stress may also contribute to glucocorticoid 
excess (i.e., cortisol) [110] with potential increases in blood pressure 
[108] (See Fig. 4). 

15. Genetics, epigenetics, sex, gender, race, ethnicity, obesity, 
and hypertension 

With or without obesity, individuals have varying degrees of genetic 
susceptibility to hypertension [42]. Similarly, as with obesity itself, 
epigenetic factors may predispose to hypertension. Among the most 
applicable epigenetic alteration in gene expression [(i.e., without 
interfering with deoxynucleic acid (DNA) structure)] include: (a) DNA 
methylation, (b) histone modification, and (c) non-coding RNA [42, 
113]. 

It is suggested that hypertension has the highest impact on mortality 
of all pharmacologically modifiable cardiovascular risk factors [114]. 
Among those younger than 60 years of age, the prevalence of hyper-
tension in males is higher than females, potentially related in part due to 
favorable effects of female estrogen on the vasculature and sympathetic 
nervous system [114]. Among those over 60 years of age, the prevalence 
of hypertension is higher in females than males [115]. As with males, an 
increase in body weight in females increases blood pressure [42], with 
78% of new cases of “essential hypertension” in men and 65% in women 
reportedly attributable to excess body fat [116]. Regarding gender, 
gender affirming hormone therapy utilized by transgender individuals 
may have heterogenous responses, with unclear long-term effects on 
cardiovascular outcomes [117]. 

Race may also play a role in obesity and hypertension. Obesity in-
creases cardiovascular disease risk factors in patients from South and 
East Asia [118,119]. Genetic predisposition to higher blood pressure 
may be an independent risk factor for hypertension and incident hy-
pertension among those of Asian descent [120], with the caveat being 
that many of the identified genetic polymorphism markers of hyper-
tension being derived from European and East Asian populations [121]. 
While some argue that race is a “social construct and not a defining 
biology [122],” African Americans and other people of African descent 
have a higher incidence of hypertension and related comorbidities 
compared to White individuals, with several identifiable genes helping 
to potentially account for racial differences regarding hypertension 
[123]. Regarding perceived racial discrimination and hypertension, the 
reported association is variable [124–128], with challenges regarding 
methodology of analyses, and likely most applicable when examined on 
an individual basis. Obesity also is also pathogenic among Latine in-
dividuals [129], who have high rates of cardiometabolic risk factors 
such as obesity, high blood glucose, high blood lipids, and high blood 
pressure [130]. Challenges exist in precisely characterizing unique ge-
netic predispositions, due to the heterogeny in Latine individuals 
regarding race and ancestry, as well as variances in social composition 
and health-related behaviors [131]. 

16. Socio-economic status, obesity, and hypertension 

Like obesity, lower socio-economic status is associated with higher 
rates of hypertension, especially among those with lower levels of ed-
ucation [132], and even within races [129,133]. Beyond lower educa-
tion, factors that may contribute to higher blood pressure among 
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socio-economically disadvantaged individuals include disparities 
resulting in less healthful nutrition (i.e., increased saturated fats and 
sodium) [134,135], less access to healthful nutrition (i.e., cost, food 
desserts) [136], lack of fruits and vegetables, less physical activity, more 
alcohol consumption, increased smoking, higher rates of dyslipidemia, 
increased psychosocial stress, discrimination, malnutrition in early 
childhood, poverty at older age, increased air pollution, reduced 
employment status, higher comorbid health conditions, and limitations 
to quality health care [133,137]. 

17. Treatment of obesity and hypertension 

17.1. Medical nutrition therapy, physical activity, and behavior 
modification treatment of obesity 

Nutritional intervention to reduce dietary sodium [138] and satu-
rated fats may lower blood pressure (See Fig. 5), as typified by the Di-
etary Approaches to Stop Hypertension (DASH) [30]. DASH medical 
nutrition therapy effectively reduces blood pressure in patients with 
obesity, but may not necessarily promote clinically meaningful weight 
reduction [22]. However, when nutritional intervention, again such as 
the DASH diet, is accompanied by weight reduction management, and if 
clinically meaningful weight reduction is achieved, then the blood 
pressure lowering through nutritional intervention is substantially 
enhanced [22]. Dietary and moderate-intensity aerobic physical exer-
cise may not only achieve clinically meaningful blood pressure reduc-
tion, but clinically meaningful weight reduction as well, with the caveat 
that the addition of moderate-intensity aerobic physical exercise to 
nutritional intervention may result in only marginal further reduction in 
body weight compared to nutritional intervention alone [22]. Overall, 
as noted with anti-obesity medications and bariatric surgery (See 
Table 2), the reported blood pressure reduction with healthful nutrition, 
physical activity, and/or behavior modification is widely variable, 
depending on the study, interventions, and duration of follow-up, with 
some reports demonstrating only modest blood pressure reduction, 
while other reporting blood pressure reductions as high as 16 mmHg 
systolic and 10 mmgHg diastolic [22]. 

17.2. Bariatric surgery 

Bariatric surgery (e.g., gastric bypass and sleeve gastrectomy) can 
produce clinically meaningful reduction in both blood pressure and 
body weight [22,139]. Fewer anti-hypertensive medications are typi-
cally required after bariatric surgery [140,141], with remission of hy-
pertension after bariatric surgery reported as high as 50–75% [141, 
142]. Mechanistically, bariatric surgery may reduce RAAS activation, 
reduce systemic inflammation (i.e., with decreased vascular constric-
tion, decreased arterial stiffness, and decreased sodium reabsorption), 
decrease insulin resistance (i.e., with decreased arterial stiffness), and 
decrease in sympathetic nervous system activation [143]. The reduced 
incidence of hypertension with bariatric surgery is consistent with the 
beneficial effects of bariatric surgery on other cardiometabolic health 
metrics, such as reduced incidence type 2 diabetes mellitus, reduced 
dyslipidemia, reduced ischemic heart disease, reduced cardiovascular 
mortality, and reduced rate of all-cause mortality [144]. The effects on 
blood pressure with bariatric surgery are widely variable, depending on 
the study, the procedure, and the duration of follow-up. 

17.3. Anti-obesity medications 

Anti-diabetes medications that reduce body weight generally reduce 
blood pressure [149]. Table 2 describes the blood pressure effects of 
anti-obesity medications. This table should be viewed with caution, in 
that the data does not represent blinded, randomized, controlled clinical 
trials directly comparing the listed anti-obesity medications. Phenter-
mine is not listed because phentermine has not been evaluated in pro-
spective, randomized clinical trials lasting one year or longer. 

Phentermine is a sympathomimetic amine with adrenergic effects 
that is contraindicated in patients with cardiovascular disease (e.g., 
coronary artery disease, stroke, cardiac dysrhythmias, congestive heart 
failure, uncontrolled hypertension) [150]. In a 28 week study designed 
to evaluate phentermine/topiramate and its components, the phenter-
mine 15 mg per day group experienced a placebo corrected 5% weight 
reduction, 1.7% systolic blood pressure reduction, and a 0.2% diastolic 
blood pressure reduction [151] This study is limited in that it was only 
28 weeks (not a full year) and because the dose evaluated was phen-
termine 15 mg per day (with a more common prescribed dose being 37.5 
mg per day) [141]. 

As can be seen from Table 2, many of the older anti-obesity medi-
cations have modest effects on both blood pressure and body weight. 
Phentermine/topiramate producesmore clinically meaningful weight 
reduction and blood pressure lowering than some of the older anti- 
obesity medications. Naltrexone (i.e., opioid antagonist [152]) has the 
potential to increase catecholamine concentrations [153]. Bupropion (i. 
e., inhibitor of neuronal reuptake of norepinephrine and dopamine used 
as an antidepressant and for smoking cessation [152]) can sometimes 
increase blood pressure [154]. The naltrexone/bupropion combination 
anti-obesity medication Prescribing Information lists increase in blood 
pressure and heart rate as a “Warning and Precaution” (https://cont 
rave.com/storage/2022/02/Contrave_PI_CON-LC115.02_0222.pdf). 

Among the more recent highly effective anti-obesity medications 
include semaglutide (i.e., a glucagon-like peptide 1 receptor agonist) 
and tirzepatide (a glucagon-like peptide 1 receptor agonist and glucose- 
dependent insulinotropic polypeptide receptor agonist, not FDA 
approved for obesity at the time of this writing) [155]. The Semaglutide 
Treatment Effects in People with Obesity (STEP) 1 trial was a 68-week 
trial in patients with overweight or obesity, but without diabetes mel-
litus. Body weight was reduced by ~15% (with a 2.4% reduction in the 
placebo group) [145]. Semaglutide reduced placebo-corrected systolic 
blood pressure 5% and reduced diastolic blood pressure 2.4% [145]. 
Regarding tirzepatide, the SURMOUNT-1 study was a 72-week trial in 
patients with overweight or obesity, but without diabetes mellitus. In 
the tirzepatide 15 mg group, body weight was reduced by 21% (with a 
3% reduction in the placebo group). Tirzepatide reduced placebo 

Table 2 
Blood pressure and body weight changes compared to placebo after at 
least 1-year of treatment with anti-obesity medications approved for long- 
term treatment of obesity. [11–14,141,145,146] The listed blood pressures are 
not from head-to-head controlled clnical trials and only intended to provide a 
general overview of potentially expected blood pressure responses. Some of the 
reported values are pooled data, and may not be consistent with individual 
studies – especially those studies less than one year. The reported blood pressure 
reduction with bariatric surgery is heterogenous, depending on the study, pro-
cedure, and duration of follow-up with study suggesting an average of 9 mmHg 
reduction in systolic blood pressure, variable effects on diastolic blood pressure 
[147], and greater weight reduction associated with higher rates of hypertension 
remission [148].  

Anti-Obesity 
Medication 

Systolic blood 
pressure (mmHg) 

Diastolic blood 
pressure (mmHg) 

% Weight 
reduction 

Phentermine/ 
topiramate 

-3 -1 -9 

Naltrexone/ 
bupropion 

+1.5 +1 -4 

Orlistat -1 -1 -3 
Liraglutide -3 -1 -5 
Semaglutide -5 -2.4 -12 
Tirzepatidea -6 -4 -18%  

a Tirzepatide is not approved for treatment of obesity at the time of this 
writing. Shown are the blood pressure effects of the tirzepatide 15 mg dose when 
studied in patients with obesity and without diabetes mellitus. 
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corrected reduction systolic blood pressure 6% and diastolic blood 
pressure 4.0% [146]. 

17.4. Obesity treatment effects on pulse/heart rate 

Direct comparison obesity treatment effects on pulse/heart rate also 
presents challenges due to lack of comprehensive head-to-head clinical 
data, especially long-term clinical data. While weight reduction via 
healthful nutrition and physical activity seems to consistently improve 
heart rate variability [156], the reports of the effects of caloric restric-
tion on heart rate are more variable, with results most often favoring a 
reduction in heart rate [157,158]. Both low energy diets and very low 
energy diets generally decrease heart rate (and decrease blood pressure) 
[159]. 

Regarding anti-obesity medications, in a chart review of 300 patients 
seen at a private weight management practice, phentermine treatment 
did not appear to increase heart rate (or blood pressure) after a mode of 
52 weeks [160]. However, in a 28-week, randomized, head-to-head, 
controlled trial compared the combination of phentermine and top-
iramate extended-release with its components as monotherapies and 
with placebo adults with obesity, phentermine 15 mg increased heart 
rate by 1.1 beats per minute, phentermine HCL/topiramate extended 
release 15/92 mg decreased heart rate by 1.6 beats per minute, and 
placebo decreased heart rate 1.9 beats per minute. Thus, compared to 
placebo, phentermine 15 mg per day increased pulse rate 3.0 beats per 
minute while the heart rate effect of phentermine HCL/topiramate 
extended release 15/92 mg was generally similar to placebo; phenter-
mine HCL/topiramate extended release 15/92 mg had greater weight 
loss than either placebo or phentermine alone [151]. In a randomized 
clinical trial, time-weighted average heart rate regarding the naltrex-
one/bupropion combination agent increase heart rate 0.7 beats/min in 
the naltrexone-bupropion group and 0.6 beats/min in the placebo group 
[161]. Orlistat may reduce resting heart rate 2 beats per minute [162], 
with a meta-analysis supporting that a weight loss of ≥10% associated 
with a significant reduction in heart rate, blood pressure, and systolic 
workload [163]. 

Glucagon-like peptide 1 receptor agonists may cause a small increase 
in heart rate. While some have suggested that glucagon-like peptide 1 
receptor agonists may facilitate an imbalanced response of the auto-
nomic nervous system (i.e., sympathetic relative to parasympathetic 
activity), the mechanisms are not definitively established [164]. Ac-
cording to their respective prescribing information, liraglutide for 
obesity may increase pulse rate 2–3 beats per minute (https://www.no 
vo-pi.com/saxenda.pdf), semaglutide for obesity may increase pulse 
rate 1–4 beats per minute (https://www.novo-pi.com/wegovy.pdf), and 
tirzepatide for treatment of type 2 diabetes mellitus (not yet approved 
for obesity) may increase pulse rate 2–4 beats per minute (https://uspl. 
lilly.com/mounjaro/mounjaro.html#pi). 

17.5. Medication treatment of hypertension in patients with obesity 

Regarding the overall effect of anti-obesity therapies in patients with 
obesity-related, adiposopathic hypertension, healthful weight reduction 
often reduces blood pressure. Prior to introduction of some of the newer 
highly effective anti-obesity medications [155], the obesity treatment 
intervention most associated with longer term blood pressure control 
was bariatric surgery [148]. Longer-term clinical data will better define 
the longer-term blood pressure effects (and cardiovascular disease 
outcome effects) of more recent, novel anti-obesity medications [165]. 

Alternatively, regarding anti-hypertensive therapy body weight ef-
fects, some beta-blockers may increase body weight (e.g., propranolol, 
atenolol, and metoprolol). Peripheral alpha-1 antagonists [166], vaso-
dilators such as hydralazine [167], and some older dihydropyridines 
calcium channel blockers such as nifedipine and amlodipine [16] may 
increase fluid retention, contribute to edema, and increase body weight. 
Non-dihydropyridines such as diltiazem and verapamil have less 

potential for edema (with edema also being common in patients with 
obesity) and thus these agents have less potential for weight gain [16]. 
Other anti-hypertensive medications less likely to result in weight gain 
include some beta blockers (i.e., carvedilol) [16,168], as well as di-
uretics (i.e., improvement in edema and congestive heart failure may 
result in weight loss) [169], angiotensin converting enzyme inhibitors 
[170], and angiotensin II receptor blockers [171]. 

18. Conclusions 

This Obesity Medicine Association (OMA) Clinical Practice State-
ment (CPS) on obesity and hypertension is designed to assist clinicians in 
better understanding the physiology and treatment of obesity. The in-
formation presented in this CPS may aid clinicians in improving the 
health and wellbeing of their patients with the disease of obesity and the 
adiposopathic complication of hypertension. 
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